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Because our immune system has ability to expel microorganisms invading our body,
parasites need evolution to maintain their symbiosis with the hosts. One such strategy of
the parasites is to manipulate host immunity by producing immunomodulatory molecules
and the ability of parasites to regulate host immunity has long been a target of research.
Parasites can not only manipulate host immune response specific to them, but also
influence the host’s entire immune system. Such ability of the parasites may sometimes
bring benefit to the hosts as many studies have indicated the “hygiene hypothesis” that a
decreased opportunity of parasitic infections is associated with an increased incidence of
allergy and autoimmune diseases. In other words, elucidating the mechanisms of
parasites to regulate host immunity could be applied not only to resolution of parasitic
infections but also to treatment of non-parasitic immunological disorders. In this review,
we show how much progress has been made in the research on immunomodulation of
host immunity by parasites. Here, we define the word ‘parasitomimetics’ as emulation of
parasites’ immunomodulatory systems to solve immunological problems in humans and
discuss potential applications of parasite-derived molecules to other diseases.

Keywords: parasites, hygiene hypothesis, immunological disorders, immunomodulatory molecules,
therapeutic interventions
INTRODUCTION

Parasitism, one form of symbiosis, is a relationship between species where one species receives
benefit from the host while causing harm to the host. Infection with parasites causes parasitic
diseases which have been major health threats to humans for a long time. There are three main
classes of parasites that can cause disease in humans: protozoa, helminths, and ectoparasites. Even
in this modern era, more than 1.5 billion people, or 24% of the world’s population, are infected with
soil-transmitted helminth infections worldwide (1).

Majority of parasites cause chronic infections, i.e., sustained survival in their hosts. This means
that the hosts have enough time to recognize the invading foreign bodies and establish immunity to
expel the parasites. The host immune response can be classified into innate and acquired immunity,
and the host defends itself against pathogens with a variety of strategies. In contrast, parasites, which
org March 2022 | Volume 13 | Article 8246951

https://www.frontiersin.org/articles/10.3389/fimmu.2022.824695/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.824695/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.824695/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.824695/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:aygoto@g.ecc.u-tokyo.ac.jp
https://doi.org/10.3389/fimmu.2022.824695
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.824695
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.824695&domain=pdf&date_stamp=2022-03-21


Nagai and Goto Parasitomimetics for Immunological Disorders
require chronic infection of the host, have often been able to
escape the host immunity by inducing immune modulation in
the host. In other words, as the host evolves its own immune
mechanisms, the parasite evolves its own mechanisms to evade
immunity. The ability of these parasites to regulate host
immunity has long been a target of research.

Helminths are the representative parasites that regulate host
immunity with diverse strategies. One of the strategies is to mimic
host molecules which are involved in immunosuppression. An
example is TGF-b which induces regulatory T cells and inhibits
effector functions in NK cells and macrophages to suppress host
immunity (2), and it is known that helminths have a homologue of
a mammalian TGF-b; a TGF-b homologue was discovered in
Brugia malayi and named Bm-TGH-2 (3). Other helminth-
derived molecules such as FhTLM from Fasciola hepatica and
HpTGM from Heligmosomoides polygyrus have been identified
and are involved in T cell suppression through binding to TGF-b
receptors on T cells and its signaling (4, 5). Furthermore, FhTLM
binds not only to TGF-b receptors on T cells but also to TGF-b
receptors on macrophages and induces IL-10 secretion by
macrophages (4). Interestingly, although HpTGM is a protein
with cytokine-like functions, it has no homology to mammalian
TGF-b or other members of the TGF-b family (5). Thus, parasites
have molecules that functionally play similar roles to host
molecules, even though they are not structurally conserved.

Another example of parasite secretory molecules mimicking
host molecules is macrophage migration inhibitory factor (MIF).
MIF is a cytokine that causes inflammation and migration of
immune cells, and is mainly expressed by pituitary corticotropic
cells, monocytes/macrophages, and T cells (6, 7). MIF causes
allergic reactions by inducing pro-inflammatory cytokines such
as TNF-a, IL-1b, and IL-8 (8, 9). Many homologs of MIF have
been discovered, such as Bm-MIF from B. malayi (10), TsMIF
from Trichinella spiralis (11), AceMIF from Ancylostoma
ceylanicum (12), and AsMIF from Anisakis simplex (13).
However, functions of the parasite-derived MIFs are
respectively diverse. Bm-MIFs, like host MIFs, induce IL-8 and
TNF-a, leading to inflammation (10). Bm-MIF also induces host
MIF, enhancing MIF-mediated immune responses (10). On the
other hand, TsMIF and AceMIF are known to bind to host MIF
receptors, but their detailed functions are not known (11, 12).
Furthermore, AsMIF not only regulates macrophages by
reducing Th2-related cytokines, but also induces regulatory T
cells and immunosuppression by production of IL-10 and TGF-b
(13). Thus, even if parasite molecules have sequence homology to
host molecules, their functions are not necessarily conserved.

Parasite molecules that resemble host molecules are not limited
to cytokines. Cystatin acts as a cysteine protease inhibitor in vivo.
In the immune system, cystatins inhibit cysteine proteases
involved in antigen processing such as lysosomal cathepsins and
asparaginyl endopeptidase (AEP) (14). Some homologs of cystatin
have been identified in parasites. Bm-CPI-2 and Al-CPI from B.
malayi and Ascaris lumbricoides, respectively, inhibit host cysteine
proteases and suppress antigen presentation (15, 16). Hp-CPI
from H. polygyrus inhibits antigen and MHC class II molecule
processing and induces immunosuppression (17). LsCystatin from
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Litomosoides sigmodontis reduces nitric oxide production (18) and
onchocystatin fromOnchocerca volvulus induces IL-10 production
and suppresses antigen-stimulated cell proliferation (19).

As mentioned earlier, it has also been reported that parasite
molecules structurally dissimilar to host molecules may act directly
on the host immune system to induce immunomodulation.
Omega-1 is a glycoprotein which is secreted from Schistosoma
mansoni eggs. Omega-1 acts as T2 ribonuclease (RNase) and
prevents protein synthesis by decomposing of ribosome RNA or
messenger RNA (20). This RNase activity plays a role in
conditioning DCs to prime Th2 responses (21, 22). CP1412, a
close homolog to omega-1 from Schistosoma japonicum, also
induces Th2 cell polarization through the RNase activity (23).

Although it has been reported that S. mansoni soluble egg
antigen prevents type 1 diabetes in non-obese diabetic (NOD)
mice (24), the identification of omega-1 leads to possibility to
utilize parasite-derived molecules as therapeutic agents of type 1
diabetes. Injection of recombinant omega-1 into NOD mice
induces expression of IL-4 and Foxp3 (25). Moreover, injection
of the molecule into obese mice improves insulin sensitivity by IL-
33 release from white adipose tissue (26). These results indicate
that parasite molecules, even structurally dissimilar to host
molecules, can be useful for therapy of immune-mediated diseases.

Together, parasites have potential to manipulate the host
immunity. Here, we would like to shift the focus to protozoa.
One of the characteristics of protozoan parasites is their
intracellular parasitism to various types of host cells, and
especially those living in phagocytic cells may require the highest
level of immune escape by immunomodulation. Here, we focus on
protozoa that parasitize phagocytic cells (macrophages, DCs),
Toxoplasma gondii, Leishmania spp. and Trypanosoma
cruzi, and review immunomodulatory molecules and their
mechanisms of action and potential of the parasite-derived
immunomodulators as drugs for immunological disorders.
IMMUNOMODULATORY MOLECULES
AND THEIR MECHANISMS OF ACTION

Toxoplasma gondii
Toxoplasma gondii is a eukaryotic parasite that can only grow in
host cells. T. gondii is one of the most widespread apicomplexans
and is a common parasite of animals and humans. It is well
known to cause serious opportunistic infections. Tachyzoites of
T. gondii can infect any cell types but erythrocytes and can evade
host immunity of macrophages or DCs (27, 28).

Rhoptry proteins of T. gondii are secreted from rhoptry and
are associated with invasion of the parasites into host cells.
ROP16 is one of the rhoptry proteins which was originally
identified as a serine-threonine kinase (29), and then was
shown to directly phosphorylates host STAT3/6, suppresses
innate immune cytokine secretion (29, 30), and to induce
macrophages to become M2 macrophages (30, 31). Other rhoptry
proteins that directly act on host immunity include ROP18, which
inhibits IRG-mediated clearance of macrophages (32).
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ROP18 phosphorylates p65 and inhibits NF-kB, resulting in
suppression of inflammatory cytokines (32, 33).

Dense granule proteins secreted by T. gondii may
manipulate host inflammatory responses. GRA18 has been
identified as the parasite’s anti-inflammatory molecule; once
released in the host cell cytoplasm, it forms complexes with
regulatory elements of the b-catenin destruction complex and
prevents b-catenin from being destroyed (34). Within
macrophages, GRA18 induces expression of a specific set of
genes commonly associated with anti-inflammatory responses,
including genes encoding the chemokines CCL17 and CCL22
(34). T. gondii inhibitor of STAT1 transcriptional activity
(TgIST) binds to activated STAT1 dimers in the nucleus of
IFN-g-treated cells and represses the IFN-g–mediated STAT1-
dependent proinflammatory expression (35).

Leishmania spp.
Leishmaniasis is a disease caused by protozoan parasites of the
genus Leishmania. The parasites are transmitted to the mammalian
host by sand fly. There are three main forms of leishmaniasis,
cutaneous leishmaniasis, mucocutaneous leishmaniasis and visceral
leishmaniasis. Leishmania proliferates within macrophages in their
mammalian hosts. Because macrophages have ability to kill
internalized pathogens, it is likely that Leishmania has acquired a
sophisticated system for evading the host immunity by directly
controlling the immune system.

Leishmania GP63 is a metalloprotease that causes cleavage of
various peptides. It has already been reported to cleave several host
immune-related proteins such as MARCKS-related protein (36),
mTOR (37), NF-kB p65 (38), PTP and SHP-1 (39). Cleavage of
PTP results in stimulation of phosphatase activity, which leads to
rapid downregulation of Janus kinase and mitogen-activated
protein kinase signaling (39). GP63 also cleaves mTOR and
dephosphorylates 4E-BP1, resulting in transcriptional repression
and macrophage suppression (37). SHP-1-mediated suppression
of macrophages is dependent not only on cleavage by GP63, and
another leishmanial protein elongation factor-1alpha (EF-1a)
binds to and activates SHP-1, which in turn inhibits
macrophage activation (40, 41). This ability of Leishmania to
inhibit macrophage effector functions may result from direct
interference by Leishmania molecules such as GP63 and EF-1a
with macrophage signal transduction pathways.

TGF-b prevents macrophage activation and exacerbates
Leishmania infections (42). Some species of Leishmania have
been known to trigger the production of biologically active TGF-
b by macrophages (42, 43). The latent TGF-b1 is activated by
treatment with proteases such as plasmin and cathepsin D. It has
been reported that Leishmania parasites contain high levels of
cysteine proteases, belonging to cathepsin L and cathepsin B
families (44). Cathepsin B-like cysteine protease from
Leishmania donovani is able to cleave latent TGF-b1 into an
active form releasing latency-associated protein (45).

Arginase encoded in Leishmaniamay manipulate the polarity
of host macrophages. Macrophages harbor two competing
pathways for arginine metabolism initiated by the enzymes
inducible NO synthase (iNOS) and arginase, respectively.
Mammalian arginase-I hydrolyzes arginine to urea and
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ornithine, and macrophages dominated by the arginase
pathway, in other words alternatively activated macrophages,
have suppressed iNOS production resulting in defects in nitric
oxide-mediated parasite killing. Parasite-derived arginase seems
to cause local depletion of the iNOS substrate arginine and to
enhances parasite survival (46, 47).

Similar to helminths, Leishmania and Toxoplasma also encode
MIF homologs (48). Leishmania MIF upregulates inflammatory
and innate immune signaling in infected macrophages including
inflammatory genes such as cxcl1, tlr2, and tnf (49). Toxoplasma
MIF induces IL-8 production by human peripheral blood
mononuclear cells and activates the ERK/MAPK pathway in
mouse bone marrow-derived macrophages (50).

Trypanosoma cruzi
Chagas disease is a chronic disease caused by infection with
Trypanosoma cruzi. The parasites are transmitted to the
mammalian host by reduviid bug. Some people with chronic T.
cruzi infection eventually develop clinical disease including
predominantly cardiac dysfunction.

One of the characteristics of T. cruzi infection is polyclonal
activation of B cells (51). The polyclonal B cell activation could
restrict optimal development of antigen-specific lymphocytes
involved in protective responses to the infection by increasing
competition for activation and survival signals in the lymphoid
tissues (52). T. cruzi proline racemase was identified as a B cell
mitogen which activates B cells polyclonally (53). Moreover, its
racemase active site is necessary for mitogenic activity and it was
a new finding that the eukaryotic amino acid racemase has
potential to activate B cells (53). T. cruzi trans-sialidase (TcTS)
is also known as a B cell mitogen that causes T cell-independent
B cell activation and induces non-specific immunoglobulin
secretion (54). TcTS also promotes IL-17 production by
activated B cells (55). T. cruzi P21 binds to CXCR4 and
activates actin polymerization and macrophage phagocytosis
through PI3-kinase signaling pathway (56, 57). This favors
phagocytosis of the parasites by macrophages. Furthermore,
P21 induces recruitment of leukocytes to the site of
inflammation and up-regulates expression of IL-4 inducing
Th2 immune response (58).

T. cruzi trypomastigotes are complement-resistant (59, 60). T.
cruzi calreticulin (TcCRT) inhibits both the classical and lectin
complement pathways (61, 62). It binds and inactivates the first
complement component C1 and mannose-binding lectin (62).
TcCRT prevents C1 formation by interfering binding of C1r and
C1s to C1q (63). TcCRT also binds to the L-ficolin collagenous
portion and prevents the human complement lectin pathway
activation (62). Moreover, in mammals, the binding of C1q to
calreticulin is a so-called “eat-me signal” that can recruit
macrophages and initiate the apoptotic process (64). TcCRT
promotes infectivity of T. cruzi and is essential for the parasites
to invade host macrophages (65). Together, TcCRT, which
mimics host calreticulin, may be important for survival of T.
cruzi by ensuring efficient entry to macrophages without
inducing their parasite-killing activities.

The main cysteine peptidase from T. cruzi is cruzipain, a
papain-like endopeptidase expressed in all life cycle stages of the
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parasite (66). Cruzipain is able to activate latent TGF-b in vitro
(67). Activation of TGF-b is required for parasite entry into the
mammalian cells and play an important role in cardiomyocyte
invasion by T. cruzi (68). A moderate oxidative environment is
advantageous for T. cruzi proliferation (69) and Chagas disease is
known to cause an increase in reactive oxygen species (ROS) in
infected tissues and cells (70). Intracellular T. cruzi forms release
in the host cytosol its major cyclophilin of 19 kDa (TcCyp19)
(71). TcCyp19, causes the increase in ROS required for parasite
growth in the mammalian host (71).
POTENTIAL OF PARASITE-DERIVED
IMMUNOMODULATORS AS DRUGS FOR
IMMUNOLOGICAL DISORDERS

Though parasites’ skills to modulate host immunity are beneficial
for their own survival, situations where such immunomodulatory
molecules are highly appraised may go beyond infections. The
“hygiene hypothesis” states that as exposure to pathogens
decreases due to improved sanitation, the risk of allergic and
autoimmune diseases increases. This hypothesis is based on the
fact that the large increase in the frequency of allergic and
autoimmune diseases observed in developed countries over the
past 40 years is negatively correlatedwith anoverall decrease in the
frequency of infectious diseases (72). In experimental models, the
occurrence of autoimmune disease is prevented by infection with
distinct pathogens, such as bacteria, virus and parasite (72).

There have already been attempts to treat immune-mediated
diseases by artificially infecting them with helminths. Because
Trichuris suis can be obtained from experimentally infected pigs,
the parasite has been used in immunotherapy research to artificially
infect people. There are some clinical reports that patients who
ingested T. suis had a reduction in several immune disorders such as
Crohn’s disease (73) and ulcerative colitis (74). However, some
clinical trials have shown no therapeutic effect (75, 76) and in a large
study using meta-analysis, T. suis showed no apparent benefit for
inflammatory bowel disease patients (77). Besides, therapeutic
benefit by parasites may be limited to the infection sites but not
systemic. A clinical trial of artificial infection with T. suis, a parasite
of the intestine, did not provide relief from allergic rhinitis (78).
Furthermore, infection with live parasites for therapeutic use may
not be practical, and can sometimes cause other unintended
consequences. There is also a risk of inadvertently transmitting
pathogenic parasites. For this reason, it is imperative to identify
immunomodulatory molecules and apply them to treatment of
immune-mediated diseases rather than using live parasites. In order
to ensure safety, it is also necessary to elucidate the detailed
mechanism of how the molecule regulates immunity.

Using helminth molecules that regulate host immunity could
have the potential to alleviate the symptoms of immune disorders.
As mentioned above, helminth cystatins exhibit host
immunosuppression through a variety of mechanisms.
Recombinant proteins of B. malayi and Clonorchis sinensis
cystatin showed anti-inflammatory activity and significantly
reduced symptom of dextran sulfate sodium (DSS)-induced colitis
Frontiers in Immunology | www.frontiersin.org 4
in mice (79, 80). The recombinant cystatins down-regulated
expressions of IFN-g and TNF-a and up-regulated IL-10
expression in the DSS-induced colitis mice (79, 80).
Administration of recombinant S. japonicum cystatin also reduced
inflammatory parameters and ameliorated the severity of the
trinitrobenzene sulfonic acid (TNBS)-induced colitis (81).
HpTGM from H. polygyrus is a TGF-b mimicry and suppresses
intestinal inflammatory response (5, 82). In Smyth’s study (2020),
active HpTGM was recombinantly expressed by Chlamydomonas
reinhardtii in order to be safely consumed orally in mice and
humans. Oral administration of recombinant HpTGM regulated
immune cells and ameliorated weight loss, lymphadenopathy, and
disease symptoms in a mouse model of DSS-induced colitis (82).

This section explains the status of research on how the
protozoan parasites introduced in the previous chapter can be
applied to the treatment of immune-mediated diseases. T. gondii
can be divided into distinct clonal lines: types I, II and III and
each strain has a different virulence (83–85). ROP16 of T. gondii
type I and III (ROP16 I/III) induces M2 macrophages to
ameliorate inflammatory bowel disease (86). This study was
based on the fact that ROP16 I/III induce deflection of
RAW264.7 to M2 macrophages and suppress M1-related
inflammatory responses (86, 87). In fact, Caco-2 intestinal
epithelial cells co-cultured with M1 macrophages underwent
apoptosis, but Caco-2 cells co-cultured with ROP16-transfected
macrophages induced to M2 showed suppressed apoptosis (86).

When Leishmania is taken up by macrophages, LPS-induced
proinflammatory cytokines such as IL-12, IL-17, and IL-6 are
specifically suppressed by the parasite (88). L. donovani infection
of monocytes causes suppression of TLR2 and TLR4-stimulated IL-
12, with an increase in IL-10 production (89, 90). Because chronic
secretion of inflammatory cytokines is one of the causes of immune-
mediated diseases such as atherosclerosis (91), Crohn’s disease (92),
and rheumatoid arthritis (93), identification of the leishmanial
immunosuppressive factors (components) will lead to the
development of therapeutic agents for the immune-mediated
diseases in the future. L. infantum infection also induces down-
regulation of NLRP3 inflammasome activation in Ab42-stimulated
cells (94). Activation of the NLRP3 inflammasome is a major play in
the neuroinflammation that accompanies Alzheimer’s disease (95)
and the down-regulation could prevent disease development.

The potential of parasite-derived molecules is not only to
suppress host immunity and alleviate immune diseases. They can
also be used to manipulate host immune cells and to prevent
other pathogen infection. TcTS may have a potential to remove
sialic acid from cellular membranes, and TcTS treatment
decreases mycoplasma infection through preventing of
adhesion to the glycoproteins which require sialic acid (96).
This study was based on the observation that chagasic patients
was are less likely to be infected with mycoplasma (96).
CONCLUSIONS

With a recent increase in the prevalence of immune disorders, such
as allergic disorders (97, 98), rheumatoid arthritis (99), ulcerative
March 2022 | Volume 13 | Article 824695
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colitis and Crohn’s disease (100, 101), there is an increasing demand
on therapeutic interventions for such diseases. Since many of
currently available drugs are derived from natural resources, it is
also reasonable to seek clues for novel immunomodulatory
interventions in parasites, the professional immunomodulatory
organisms. Biomimetics is an emulation of models and systems
living organisms have and their applications to solve various issues
we face. We here propose a new term ‘parasitomimetics’, which is
made up with ‘parasite’ and ‘biomimetics’, to represent research
activities focusing on parasites’ unique skills and their utilization for
tackling medical issues including immune disorders. Parasites have
acquired amazing abilities in the process of evolution, e.g., cell
adhesion, cell invasion, escape from host cells, and morphological
changes/metamorphosis. Among them, parasites’ abilities to
regulate host immunity may be one of the most practical for
medical applications. However, parasites’ harmful effects to the
hosts should be seriously considered when applying them to other
diseases. Unlike the usage of live parasites, an approach to mimic
parasites’ immunomodulatory skills by identifying the responsible
molecules and synthesizing them for administration will lead to
more controlled product development/standardization and
minimize a risk of adverse events. On the other hand,
immunomodulatory effects of parasites are often achieved by
more than one molecules and active components can be missed
during the identification process if we conceive that the
immunomodulatory effect is derived from a single molecule.
Besides, immunomodulatory molecules of parasites are not
limited to proteins, which are covered in this review. For
example, trehalose was identified as a molecule derived from
Frontiers in Immunology | www.frontiersin.org 5
H. polygyrus that induce CD8+ Treg cells leading to prevention of
autoimmune-mediated diabetes (102). Some cautions and novel
systematic methods in identifying divergent and/or multi-
component immunomodulators may increase the success rate
of parasitomimetics.

Like helminths, there is also progress in identifying molecules
from protozoa parasites that manipulate host immunity and
elucidating their mechanisms. On the other hand, attempts to use
them for treatment of immune-mediated diseases are lagging when
compared with helminths. Immunomodulatory abilities of the
protozoan parasites that have evolved to parasitize within
immune cells should be unique and divergent from those of
helminths and may be applied to resolving human immune-
mediated diseases where helminth-derived molecules cannot cover.
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