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Ulceration and immune status are independent prognostic factors for survival in
melanoma patients. Herein univariate Cox regression analysis revealed 53 ulcer-
immunity-related DEGs. We performed consensus clustering to divide The Cancer
Genome Atlas (TCGA) cohort (n = 467) into three subtypes with different prognosis and
biological functions, followed by validation in three merged Gene Expression Omnibus
(GEO) cohorts (n = 399). Multiomics approach was used to assess differences among the
subtypes. Cluster 3 showed relatively lesser amplification and expression of immune
checkpoint genes. Moreover, Cluster 3 lacked immune-related pathways and immune cell
infiltration, and had higher proportion of non-responders to immunotherapy. We also
constructed a prognostic model based on ulceration and immune related genes in
melanoma. EIF3B was a hub gene in the intersection between genes specific to Cluster
3 and those pivotal for melanoma growth (DepMap, https://depmap.org/portal/
download/). High EIF3B expression in TCGA and GEO datasets was related to worst
prognosis. In vitro models revealed that EIFSB knockdown inhibited melanoma cell
migration and invasion, and decreased TGF-B1 level in supernatant compared with si-
NC cells. EIF3B expression was negatively correlated with immune-related signaling
pathways, immune cell gene signatures, and immune checkpoint gene expression.
Moreover, its low expression could predict partial response to anti-PD-1
immunotherapy. To summarize, we established a prognostic model for melanoma and
identified the role of EIF3B in melanoma progression and immunotherapy
resistance development.
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INTRODUCTION

Melanoma is a highly aggressive skin malignant tumor that is
prone to metastasis at an early stage and has the highest
mortality rate among skin cancers (1). In recent years, its
incidence has increased, and it has become one of the fastest
growing tumors (2). The rate of diagnosis among adolescents is
also increasing (3). The prognostic risk factors of malignant
melanoma include fraction of tumor infiltrating lymphocytes (4,
5), and tumor stage including tumor thickness and ulceration
(6). Although immunotherapy (e.g., anti-PD-1 therapy) has been
found to significantly reduce the mortality of melanoma in recent
years (7), numerous patients still develop resistance, and thus,
the mortality rate continues to remain high (8).

It has been shown that ulceration is correlated to worse
overall survival in melanoma, and it plays as an independent
prognostic factor of melanoma (9, 10). Moreover, according
to previous studies, immune cell infiltration in patients
with melanoma is related to an improvement in the survival
rate and response to immunotherapy (4, 11). More interestingly,
ulceration has been proven to help build an immunosuppressive
microenvironment for melanoma. Ulcerated melanoma is
associated with higher infiltration of immunosuppressive cells
(12), such as tumor-associated macrophages (13) and Treg
cells, but lesser infiltration of GZMB+ and cytotoxic CD8+
T cells (14). The low tumor infiltrating lymphocytes
combined with presence of ulceration evidently accelerates
melanoma progression (4, 15). Therefore, it is necessary to
comprehensively understand the molecular characteristics of
patients showing a combination of ulceration and immune
cell infiltration.

To provide important insights into the molecular
characteristics of ulcers and immune cell infiltration in
patients, we comprehensively identified three different Clusters
(Clusterl1, Cluster2, Cluster3) based on ulcer-immunity-related
DEGs. Then we analyzed differences in prognosis, genomic
profiles, immune cell infiltration, and immunotherapy response
among the three subtypes. EIF3B was then identified as the hub
gene of the subtype related with the worst prognosis in
melanoma, which provided a clue that EIF3B could be a
potential therapeutic drug target in melanoma. EIF3B, a
subunit of the eIF3 translation initiation factor complex, is
particularly essential as it serves a critical scaffolding function
for the entire eIF3 complex (16). EIF3B is evidently
overexpressed in various human cancers and acts as an
oncogene to promote their invasion and metastasis. Wang et
al. proved that EIF3B is upregulated in prostate and bladder
cancer tissues and that it promotes bladder and prostate cancer
growth and lung metastasis/colonization by regulating
the expression of integrin o5 and cell cycle-related proteins
(17). Besides, Ma et al. proved that EIF3B regulates various
cancer-related pathways to promote gastric cancer occurrence
and development (18); However, its role in melanoma
remains unclear.

This study revealed that EIF3B expression was negatively
correlated with immune-related signaling pathways, immune cell
gene signatures, and immune checkpoint gene expression. EIF3B

knockdown also inhibited the migration and invasion of
melanoma cells in vitro, and decreased concentration of TGF-
B1 in supernatant. And we further constructed and verified a
prognostic model based on the ulceration and immune related
genes in melanoma. Our prognostic model could provide
meaningful prognostic value in clinical application, and our
findings also highlight the potential role of EIF3B in
melanoma progression.

MATERIALS AND METHODS

Dataset Source and Preprocessing

Opverall, 937 patients from six suitable skin cutaneous melanoma
(SKCM) cohorts [GSE65904, GSE59455, GSE19234, GSE78220,
GSE91061, GSE54467, and The Cancer Genome Atlas (TCGA)-
SKCM] were subjected to analyses. Patients without survival
information and RNA-seq data were excluded. For the dataset
from Gene Expression Omnibus (GEO), we downloaded
preprocessed clinical and transcriptome data using the R
‘GEOquery’ package (19) and merged the related GEO dataset
using the ‘ComBat’ algorithm from the R ‘sva’ package (20). As
for the dataset from TCGA, we used the R ‘TCGAbiolinks’
package (21) to download all available transcriptome
[fragments per kilobase of transcript per million fragments
mapped (FPKM) value] and clinical data from the Genomic
Data Commons (GDC, https://portal.gdc.cancer.gov/).
Furthermore, clinical information pertaining to ulceration in
TCGA patients was extracted from the UCSC Cancer Browser
(XENA, https://xenabrowser.net/datapages/). FPKM values were
then converted to transcripts per million (TPM) values, which
were used in subsequent analyses.

Identification of Differentially Expressed
Genes (DEGs)

We used the R “TCGAbiolinks’ package (21) to download raw
read counts for TCGA-SKCM patients from the GDC. The R
‘DESeq2’ package (22) was applied to standardize the read counts
and perform differential gene analysis. And for the multiclass
DEseq2, we only took the genes in the top 25% of variance for
further differential gene expression analysis. Ulcer-immunity-
related DEGs between the “ulcer_low-immunity” and
“nonulcer_high-immunity” groups were identified as those
with fold change > 2 and false discovery rate (FDR) < 0.05.
FDR < 0.05 was the significance criterion for cluster-
specific genes.

Gene Set Variation Analysis (GSVA)

and Single-Sample Gene Set

Enrichment Analysis (ssGSEA)

ssGSEA and GSVA were performed using the R ‘gsva’ package
(23). The gene set ‘c2.cp.kegg.v7.4.symbols.gmt’ was downloaded
from MSigDB v7.4 for GSVA. For ssGSEA, 24 immune cell
signatures (24) were used to describe immune cell populations in
individual patients.
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Construction and Validation of the Ulcer
Immunity Subtype

To identify prognostic genes with P < 0.05, univariate Cox
regression analysis was performed using DEGs identified on
comparing the “ulcer_low-immunity” and “nonulcer_high-
immunity” groups. Based on 53 prognostic genes, we used the
R ‘ConsensuClusterPlus’ package (25) to generate robust clusters
of TCGA-SKCM patients. The delta area and cumulative
distribution function were used to identify the optimal K value
of 3. To validate the subtype in the three merged GEO cohorts
(GSE65904, GSE59455, GSE19234), The Nearest Template
Prediction (NTP) method provides a convenient way to make
classification predictions using only a list of signature genes and a
test data set for predictive confidence assessment of gene
expression data for each individual patient (26). In our study,
the top 200 upregulated of each cluster in TCGA (600 genes in
total) were applied to predict the clusters in merged GEO dataset
by applying the R ‘MOVICs’ package (27).

Analysis of Genomic Alterations

Somatic mutations and somatic copy number alternations
(CNAs) were downloaded from the GDC using the R
‘TCGADbiolinks’ package (21). The R ‘Maftools’ package (28)
was then used to visualize and analyze data pertaining to somatic
mutations and CNAs (GISTIC output). GISTIC 2.0 (29) was
used to identify significant copy number amplifications and
deletions. Chi-square and Fisher’s exact test were used to
detect differential mutated genes and differentially copy
number gains and losses.

Quantification of Immune Cell Infiltration
The EPIC (30), CIBERSORT (31, 32), MCPcounter (33), and
Quantiseq (34) algorithms were used to estimate the fraction of
immune cells based on the transcriptome data (TPM value) of
TCGA-SKCM patients.

Protein-Protein Interaction (PPI) Network
Construction and Selection of Hub Genes
The PPIs between differentially expressed genes were searched
using the Search Interacting Genes/Proteins (STRING) v.11.5
database with a confidence level of 0.7, and the interaction
network was visualized using Cytoscape software. In a PPI
network, nodes with higher connectivity are more important
for maintaining the stability of the entire network and are
therefore considered more relevant to the overall biological
process. The radiality method is a topological analysis method
that plays an important role in predicting key nodes (35). Using
the radiality method of CytoHubba plugin (35) in Cytoscape
software, the top 10 genes in the network were screened as hub
genes by radiality method.

Cell Culture, Transient Transfection,

RNA Extraction, and Quantitative
Real-Time PCR (qRT-PCR)

We herein used the A375 (ATCC, Cellcook Biotechnology,
Guangzhou, China) and SK-MEL-28 (ATCC, Cellcook

Biotechnology) cell lines. A375 and SK-MEL-28 cells were
cultured in DMEM (Gibco, Carlsbad, CA, USA) supplemented
with 10% fetal bovine serum (Gibco) and Penicillin Steptomycin
(Invitrogen, Carlsbad, CA, USA). For siRNA transfection, A375
and SK-MEL-28 cells were transfected with EIF3B siRNA
(RiboBio, Guangzhou, China) using Lipofectamine 3000
(Invitrogen), according to manufacturer instructions. The
sequence of siRNAs for targeting EIF3B was as follows:
CCTTAGCGTTTGTGGACACTT (EIF3B siRNA1) and
CGGGAAGATTGAACTCATCAA (EIF3B siRNA2). Total
RNA extraction, purification, and qRT-PCR were performed as
previously reported. The sequences of primers used for qRT-
PCR were as follows: (1) PB-actin: forward primer,
CTCGCCTTTGCCGATCC and reverse primer, TTCTCCA
TGTCGTCCCAGTT and (2) EIF3B: forward primer, CTGGG
TGCCTGAAGACAAAGA and reverse primer, CGTTCT
TCTGCCAATGGAGC.

Western Blotting

Western blotting was performed as previously described (36)
using primary antibodies against o-tubulin (A11126, Invitrogen)
and EIF3B (MA5-36159, Thermo Fisher).

Transwell Migration and Invasion Assays
For the transwell migration assay, after 16h serum-free
starvation, the cells were resuspended in serum-free media;
subsequently, 250000 cells in 300 pL serum-free media were
seeded into transwell inserts (Corning) with 8-pum pore size.
Different treatment media were then added in the lower
chamber. For the invasion assay, the inserts were coated with
40 pL matrigel (1 mg/ml, BD Biosciences). The cells were then
seeded onto the coated inserts and incubated with different
treatment media. After 24 h or 48 h of incubation at 37°C in a
CO, incubator, the cells and media were carefully removed from
the top of the insert, and the migration or invasion inserts were
placed into a clean well. The cells were then fixed in 4%
paraformaldehyde and stained with 0.2% crystal violet. After
wiping out upper cells in the insert, the cells which grew through
the porous membrane were photographed by an inverted light
microscope (x100). The relative numbers of migrating and
invasive cells were counted by using Image] software.

Analysis of the Response

to Immunotherapy

To demonstrate the efficacy of immunotherapy, we integrated
two datasets (GSE78220 and GSE91061) of patients with
melanoma who had received anti-PD-1 therapy, and only
therapy-naive patients further analyzed. The submap tool (29)
was used to predict responsiveness to immunotherapy
depending on EIF3B expression.

ELISA for TGF-B1 Level

Cells were firstly seed at 1x10°/well in 12-well plate and the
supernatant was collected at 48h. The amount of TGF-f1 in
supernatant of EIF3B knockdown cells and scramble control cells
were determined by ELISA specific for human TGF-B1(R&D
Systems Inc., Minneapolis, MN, USA). The assay was performed
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following the manufacturer’s instruction. Optical density at 450
nm was measured and the final concentration of TGF-B1 (pg/ml)
was calculated according to standard protein curve.

Development and Validation of the Ulcer-
Immunity Related Prognostic Model

Firstly, Multiclass DESeq2 was used to identify 1744 cluster-
specific altered genes with an FDR-adjusted P value of < 0.01.
Secondly, Univariate cox analysis was performed for the 1744
genes and identify 709 genes with prognostic value in the TCGA
SKCM dataset. Thirdly, LASSO (least absolute shrinkage and
selection operator) logistic regression with 10-fold cross-
validation was used to further reduce candidate genes using
the ‘glmnet’ R package (37). Then, multivariate cox analysis (38)
was used to further screen genes using the Cox multivariate
proportional hazard regression model with a stepwise method
(both). The risk score was calculated using the following formula:
Risk score = 0.278xEI24 + 0.166xHEYL - 0.09xIFIT3 -
0.18xSNTB1 - 0.115xCSF1R. The risk score for each patient in
the TCGA data set and the validation data set was calculated
according to this formula. Patients were classified into high-risk
and low-risk groups based on the median cut-off for risk scores.
Survival analysis was performed using the ‘survival’ R package to
assess differences in OS between high- and low-risk groups. To
measure the specificity and sensitivity of the prognostic
capability of this model, we calculated the area under the curve
(AUC) using the R ‘timeRoc’ package (39).

Statistical Analysis

Kaplan-Meier curve and log-rank test were used to evaluate
differences in survival rate between the groups. Univariate and
multivariate Cox regression analyses were used to determine
prognostic factors. Pearson and Spearman correlation analyses
were performed for calculating the correlation coefficient. The
unpaired Student’s ¢-test and Mann-Whitney U-test were used for
normally and non-normally distributed variables, respectively, so
as to compare the two groups. To compare more than two groups,
one-way analysis of variance (ANOVA) and Kruskal-Wallis
test were applied as parametric and non-parametric methods,
respectively. Chi-square and Fisher’s exact tests were used
to examine differentially mutated genes and differential
copy number gains and losses. The R ‘Maftools’ package
(28) aided OncoPrint generation. The R ‘ggplot2’ (40)
and ‘ComplexHeatmap’ packages (41) were used for data
visualization. All survival curves were generated using the R
‘survival’ (42) and ‘survminer’ (43) packages. Statistical analysis
was performed using the R software, and values represent mean +
standard deviation (SD). P < 0.05 indicated statistical significance.

RESULTS

Identification of Ulcer-Immunity-Related
Prognostic DEGs

First, we explored TCGA-SKCM dataset; Table S1 details
pertaining to the clinical characteristics of TCGA cohort. In

case of TCGA database, patients with ulceration had worse
prognosis than those with non-ulceration (Figure 1A). Tumor
samples consist of cancer and many non-tumor cells, such as
infiltrating immune and stromal cells, as well as other non-
cellular components, which crosstalk with each other and
ultimately promote cancer progression (44). For TCGA-SKCM
patients, immune cell infiltration was measured via ssGSEA
using previously published immune cell signatures. The SKCM
samples in TCGA were divided into two groups (high and low
immunity) depending on the degree of immune cell infiltration
(Supplementary Figure 1). As with previous reports, the high
immune cell infiltration group was associated with better overall
survival (OS) than that the low immune cell infiltration group
(Figure 1B). Based on our clinical-related data, patients were
further divided into three groups: “ulcer_low-immunity,”
“nonulcer_high-immunity,” and “others.” Survival analyses
showed significant differences between the “ulcer_low-
immunity” and “nonulcer_high-immunity” groups (P = 0.0014;
Figure 1C). Further, DESeq2 was used to identify ulcer-
immunity-related DEGs on comparing the “ulcer_low-
immunity” and “nonulcer_high-immunity” groups. Overall,
158 genes with a Benjamini and Hochberg-corrected P value <
0.05 and fold change > 2 were identified as primary DEGs
(Figure 1D). We used these genes and OS data available in
TCGA-SKCM dataset to perform a survival analysis using the
univariate Cox proportional hazards model, and 53 genes were
identified as ulcer-immunity-related DEGs. We used the R
‘ConsensusClusterPlus’ package for consistent clustering of
genes in TCGA-SKCM dataset, and category identification
based on the 53 ulcer-immunity-related DEGs was performed.
Using the unsupervised clustering method, three different
clusters were finally identified: 177 cases in Cluster 1, 200 in
Cluster 2, and 90 in Cluster 3 (Figure 1E and Supplementary
Figures 2A, B). The survival analysis revealed that Cluster 3 had
the worst prognosis in comparison to the other clusters
(Figure 1F). Previous study had shown that TCGA-SKCM
sample can be further divided into three molecular subtypes,
including ‘immune’, ‘keratin’ and ‘MITF-low’ (45). Furthermore,
Alexander Bagaev et al. establish a classifier based on cancer
microenvironment and classify tumor samples into four subtypes
termed as (1) immune-enriched, fibrotic (IE/F); (2) immune-
enriched, non-fibrotic (IE); (3) fibrotic (F); and (4) immune-
depleted (D) (46). Interestingly, we found that the proportion of
patients with low immune infiltration is highest in cluster 3
(51.2%) and most of the samples in cluster3 were defined as
ulceration (78.6%). Moreover, most of the samples in cluster3
were defined as the keratin subtype (79.1%) and immune-
depleted subtype (47.7%, Supplementary Figures 2E-H).
Multiclass DESeq2 was used to identify cluster-specific
upregulated genes with an FDR-adjusted P value of < 0.05.
Three GEO datasets with usable OS data and clinical
information (GSE65904, GSE19234, and GSE59455; Table S1)
were combined into one metacohort. The three clusters were
validated in the merged GEO cohort using the NTP algorithm
(FDR < 0.05). Cluster 3 was still associated with the worst
prognosis (Supplementary Figures 2C, D).
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FIGURE 1 | Identification of ulcer-immune-related prognostic DEGs in SKCM. (A) Kaplan—-Meier analysis showing the association between ulceration and SKCM
patient overall survival (OS) in TCGA cohorts. (B) Kaplan-Meier analysis showing the association between immune infiltration and SKCM patient overall survival (OS)
in TCGA cohorts. (C) Kaplan-Meier plot of overall survival (OS) for TCGA SKCM patients in nonulcer-high_immunity and ulcer-low_immunity groups. (D) Differential
gene (DEGs) between nonulcer-high_immunity and ulcer-low_immunity groups. (E) Consensus clustering shows that 3 clusters are the most stable clusters.

(F) Kaplan-Meier plot of overall survival (OS) for the three subtypes in TCGA SKCM cohort.

Functional Annotation and

Multiomics Analysis

To uncover the activation of the signaling pathways in each
subtype, we performed GSVA and calculated the enrichment
score for KEGG signaling pathways with MSigDB v7.4. We then
selected a total of 30 most representative Cluster 1-3 gene sets
and created a heatmap showing specific gene sets for each
subtype (Figure 2A). As evident from the heatmap, in
comparison with Clusters 1 and 2, Cluster 3 was characterized

by the lack of signals related to the immune system and immune
cells. To analyze mutations in each subtype, we created a
waterfall chart to depict the top 20 significantly mutated genes
(SMGs) in the three clusters (Figure 2C and Supplementary
Figures 3A, B). This chart showed that 50% SMGs (TTN,
MUCI16, BRAF, PCLO, DNAH5, DNAH7, ADGRV1, LRP1B,
ANKS3, and CSMD1) were shared by Clusters 1-3. Clusters 1 and
3, but not Cluster 2, shared the top three SMGs: FLG (35% and
28%, respectively), XIRP2 (34% and 34%, respectively),
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andCSMD3 (33% and 26%, respectively). Clusters 2 and 3, but
not Cluster 1, also shared the top three SMGs: MGAM (38% and
30%, respectively), HYDIN (34% and 30%, respectively), and
USH2A (34% and 32%, respectively). Moreover, Cluster 3
showed four unique top SMGs: FAT4 (33%), FAM135B (28%),
ZFHX4 (26%), and MUC17 (24%). In a recent prospective study,
higher tumor mutation burden (TMB) was found to be
associated with a better response to immunotherapy (47). The
tumor mutations in Cluster 2 samples were slightly higher than
those in Cluster 1 samples, and the severity of TMB in Cluster 1
and 2 samples was higher than that in Cluster 3 samples

(Figure 2B). We then used GISTIC to analyze data related to
somatic CNAs to identify areas that were repeatedly amplified
and deleted among Clusters 1-3, and found an obvious similarity
among chromosomal aberrations in the three clusters
(Figure 3A and Supplementary Figure 4A). The similarity
between Clusters 2 and 3 was stronger than that between
Clusters 1 and 3. In total, 29 focal deletion and 17 focal
amplification peaks were detected in Cluster 3, while 41 and 44
focal loss and 43 and 49 focal gain peaks were detected in
Clusters 1 and 2, respectively (Figure 3B and Supplementary
Figures 4B, C). Next, we examined the frequency of
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FIGURE 3 | Copy number variation (CNV) analysis of SKCM subtypes. (A) The frequency of chromosomal aberrations is shown for the different subtypes. Copy
number amplification or deletion is shown in red or blue respectively. (B) GISTIC 2.0 analysis showing the amplifications and deletions in Cluster3. Chromosomal
locations of peaks of significantly gains (red) and losses (blue) are shown. The g-value, which indicates statistical significance, is displayed at the bottom of graph.
Areas with g-values< 0.25 (green lines) are considered significantly altered. The locations of the peak regions of highest copy number change and the known
immune checkpoint genes within these peaks are indicated.

amplification or deletion for immune checkpoint genes in each
subtype. Many immune checkpoint genes were deleted in Cluster
3 (PD-1, GZMA, CD276, CCL5, and VTCNI1), while several were
amplified in Cluster 1 (CD4, CD274, CD276, and HLA gene
family) and Cluster 2 (CD274 and PDCD1LG2; Figure 3B and
Supplementary Figures 4B, C).

Immune Landscape of Patients With
Melanoma in Different Clusters

Our data indicated that Cluster 3 was negatively associated with
immune-related pathways and mainly immune-depleted subtype.

We investigated the heterogeneity of immune cell infiltration in
the three clusters based on the EPIC, MCPcounter, Quantiseg,
and CIBERSORT algorithms. Tumor-infiltrating immune cells in
467 TCGA melanoma patients was showed in the heatmap
(Figure 4). B cells infiltration in Cluster 3 showed a
significantly decrease according to all the four algorithms;
further, according to three algorithms, macrophages and CD8+
T cells infiltration in Cluster 3 was significantly lower.
Collectively, these results revealed that Cluster 3 had a different
immune phenotype than Clusters 1 and 2, with Cluster 3 showing
less immune cell infiltration and less immune activation.
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FIGURE 4 | Immune landscape of melanoma patients within different clusters. Heatmap representing the differences in immune cell infiltration between different
subtypes based on EPIC, MCPcounter, Quantiseq, and Cibersort algorithms. The Kruskal-Wallis test was used to compare the statistical differences. “*” indicates
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Differences in Inmune-Related Genes and
Response to Anti-PD-1/L1 Immunotherapy
We investigated the expression of HLA family genes and
immune checkpoint markers among the three subtypes in
TCGA and GEO datasets. In case of HLA family genes, the
expression levels of HLA-DQA2, HLA-DOB, HLA-DOA, and
HLA-DMB in Cluster 3 of TCGA dataset were less than the other
two clusters; there was no significant difference (ANOVA test,
P < 0.05) in the expression level of other HLA family genes

among the three clusters (Figure 5A). However, in the GEO
dataset (GSE65904 + GSE19234 + GSE59455), all HLA family
genes, except HLA-G, HLA-DQB2, exhibited downregulated
expression levels (ANOVA, P < 0.05) in Cluster 3 relative to
the other two clusters (Figure 5C). We then assessed immune
checkpoint markers associated with antigen presentation, cell
surface receptors, co-inhibition, ligands, and cell adhesion. In
comparison with Clusters 1 and 2, Cluster 3 in TCGA dataset
showed reduced expression of all immune checkpoint markers,
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FIGURE 5 | The difference of immune-related gene and response of anti-PD-1/L1 immunotherapy in the SKCM subtypes. Boxplots showing the differences in the
expression of immune-related genes and immune checkpoint genes between different subtypes in TCGA cohort (A, B) and GEO cohorts (C, D) The Anova test was
used to compare the statistical differences. “*” indicates p-value < 0.05, “**” indicates p-value < 0.01, “**” indicates p-value < 0.001, N.S indicates not significant

(p > 0.05). (E) The percentage of patients with response to anti-PD-1 immunotherapy in different subtypes. SD, stable disease; PD, progressive disease; CR, complete
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except GZMB, TNF, CCL5, and CXCR3. Besides, in the GEO
dataset, Cluster 3 showed reduced expression of all immune
checkpoint markers (Figures 5B, D). Furthermore, we combined
GSE78220 and GSE91061 with available response to
immunotherapy and used the specific gene of three clusters for
analyses with the NTP algorithm to predict the subtypes in the
two GEO datasets (FDR < 0.05; Supplementary Figure 5C). We
also grouped the treatment response into a binary model and
found that the percentage of patients with stable/progressive
disease group in Cluster 3 was higher than the other two
clusters (Figure 5E).

EIF3B as a Cluster 3-Specific Hub Gene
and Its Role in Melanoma Progression

In comparison with Clusters 1 and 2, Cluster 3 showed the worst
prognosis and responsiveness to immunotherapy. According to
our results, Cluster 3 can be used as an independent prognostic
factor in both TCGA and GEO databases (Table S2). We then
aimed to identify a hub gene in Cluster 3 with a key role in
melanoma progression. To discover the main genes responsible
for SKCM growth, CRISPR-based genome-wide loss-of-function
screening was employed (DepMap, https://depmap.org/portal/
download/), and 648 genes in the SKCM cell line were found to
be important for survival. Among these 648 candidate genes, 60
were specific to Cluster 3 (Figure 6A). Supplementary Figures
5A, B shows the expression levels of these 60 genes in all three
clusters. We then explored the PPI network based on these 60
Cluster 3-specific genes and the top 10 genes in the network were
screened as hub genes by radiality method (35). (Supplementary
Figure 5D). Survival analysis revealed that among these top 10
genes, only EIF3B had prognostic significance both in TCGA and
GEO databases; higher expression level of EIF3B was associated
with worse prognosis in patients with melanoma (Figures 6B, C).
We also found that Cluster 3 showed the highest expression of
EIF3B (Figures 6D, E). EIF3B has been previously reported to play
a vital role in the progression of several types of cancers (17, 18,
48), but its effectiveness in melanoma remains to be reported. To
further study the effects of EIF3B on the biofunction of melanoma
cells in vitro, we constructed stable knockdown A375 and SK-
MEL-28 cell lines that expressed EIF3B-specific siRNAs
(Figure 6F). As showed in Figures 7A-D, the results of
transwell migration assay and invasion assay showed that the
relative number ratios of migrating and invasive cells were
significantly decreased in EIF3B knockdown cells compared with
si-NC cells. It indicated that EIF3B knockdown could suppress
migration and invasion abilities in A375 and SK-MEL-28 cells.

High Expression of EIF3B Was Correlated
With Low Immune Cell Infiltration and
Could Predict the Clinical Benefits of
Immune Checkpoint Blockade

To explore EIF3B-associated biological functions in melanoma,
we performed GSVA using TCGA-SKCM dataset. High
expression of EIF3B was associated with significantly
downregulated immune-related pathways, such as the T cell
receptor pathway, B cell receptor pathway, antigen processing

and presentation, and leukocyte transendothelial migration
(Figure 8A). Based on these finding, we believe that EIF3B
plays a key role in the immune response in melanoma. We
used the Spearman order correlation method to detect the
correlation between immune system cells and EIF3B in TCGA
dataset. EIF3B expression was found to be negatively correlated
with immune cell levels, including those of effector cells, in
immunotherapy (Figure 8B). Furthermore, we investigated the
correlation between seven immune checkpoint markers (LAG3,
PD-1, CD8A, GZMB, CTLA-4, BTLA, and IFNG) and EIF3B
expression in TCGA and GEO datasets, and found that EIF3B
expression was negatively correlated with all of them in both
datasets (Figure 8C and Supplementary Figure 6A). These
results suggested that high expression of EIF3B leads
to deficient proinflammatory immune cell infiltration and
might predict a worse response to immunotherapy. We then
performed submap analyses to evaluate the response of
melanoma patients with high and low EIF3B expression
to anti-PD-1 immunotherapy. Interestingly, patients with
low EIF3B expression showed partial response to anti-PD-1
immunotherapy (Figure 8D). The effectiveness of cancer
immunotherapy is highly dependent on the development and
activation of the steps in the cancer immunity cycle (49).
Therefore, we further analyzed the correlation between EIF3B
expression and anti-cancer immunity cycle and found EIF3B
expression was negatively correlated with all the steps in the cycle
(Supplementary Figure 6B). Furthermore, the ELISA results
showed that the concentration of TGF-B1 in supernatant was
significantly decreased in EIF3B knockdown cells compared with
si-NC cells (Figures 7E, F). These results suggested that EIF3B
plays a suppressive role in melanoma immune response
and immunotherapy.

Construction of the Ulcer-Immunity
Related Prognostic Model

We firstly performed Lasso logistic regression and stepwise
multivariate cox analysis to constructed a prognostic model
based on cluster specific altered genes with prognostic value in
the TCGA SKCM dataset (Supplementary Figures 7A, B). The
risk score was calculated as follows: Risk score = 0.278xEI24 +
0.166xHEYL - 0.09xIFIT3 - 0.18x SNTBI1 - 0.115xCSFIR. Then,
patients in TCGA dataset were divided in high- and low-risk
groups based on their risk score. We found that the expression of
EIF3B was higher in high-risk groups (Supplementary Figure
8A) and the patients in cluster3 had a higher risk score
(Supplementary Figures 8B, C). Kaplan-Meier survival
analysis was performed on the training and testing datasets to
assess the predictive power of our ulcer-immunity related
signatures. In the TCGA dataset, high-risk patients exhibited
worse OS compared to low-risk patients (P < 0.001, Figure 9A).
A similar result was observed in the testing datasets (GSE65904,
GSE54467, GSE59455) (Figures 9B, C and Supplementary
Figure 8D). Meantime, time-dependent AUC and AUC at 1, 2,
3, and 5 years suggested that the ulcer-immunity related score
had a significant value in predicting the OS of melanoma
patients in the TCGA and GEO datasets (Figures 9D-F and
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Supplementary Figures 8E-I). To examine the combined
prognostic value of all training and testing datasets, we
performed a prognostic meta-analysis. Results showed that the
ulcer-immunity related score was a significant risk factor for
overall survival of patients with melanoma (combined HR = 2.08,
95% CI = 1.73-2.51, P < 0.0001, Figure 9G). Furthermore,
we calculated the risk score of the patients in GSE78220 and
GSE91061 datasets with available response to immunotherapy,
and it was found that the percentage of stable/progressive
disease in high-risk patients was higher than that in low-risk
patients (Figure 9H).

DISCUSSION

Recent research has enhanced our understanding of the
biological and molecular characteristics of melanoma.
However, the demand for clinically relevant classification of
melanoma to guide treatment options remains to be met.
Considering that there exists strong evidence regarding the
importance of ulceration and immune checkpoint inhibitors in
the prognosis of melanoma, we identified a prognostic model
based on ulceration and immune related genes, providing clues
for prognosis prediction of melanoma.
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Ulceration has been recognized as a significant prognostic
factor related to increased risk for recurrence and mortality in
melanoma. Balch et al. and Andrea Maurichi et al. reported a
significant effect of ulceration concerning overall survival or
disease-free survival for melanoma patients (9, 50). Moreover,
immune cell infiltration is an independent predictor of overall
survival in melanoma (51). In the previous clinical study, it was
proved that melanoma patients with a pronounced tumor-
infiltrating lymphocyte grade had an excellent prognosis (4). In
our study, we also found that patients with ulceration and low
immunity had worse overall survival than those without
ulceration in TCGA cohort. Furthermore, it was proved that
CD8+ T cells was lower in patients with an ulcerated melanoma
and tended to correlate with longer overall survival (14).

However, an ulcer-immunity related prognostic model in
melanoma has not yet been studied.

Based on the effects of ulceration and immune cell infiltration
in melanoma, we inferred that a combination of ulceration and
immune related genes could be applied to establish a prognostic
model which can provide predictive value in melanoma. In the
TCGA cohort, we identified 53 ulcer-immunity prognostic genes
between the “ulcer_low-immunity” and “nonulcer_high-
immunity” groups, and revealed three ulcer-immunity related
subtypes in melanoma. Of them, Cluster 3 showed the worst
prognosis both in TCGA and GEO datasets, which suggesting
that the identified ulcer-immunity prognostic DEGs can be used
to establish clinically relevant classification of melanoma. In
addition, we also found that Cluster 3 lacked immune-related
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FIGURE 8 | High expression of EIF3B correlates with low immune cells infiltration and predict the clinical benefit of ICB. (A) Top twenty enriched pathways in
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PD-1, CD8A, GZMB CTLA4, BTLA and IFNG levels in TCGA SKCM dataset. The Pearson correlation test was used to calculate the correlation coefficients.

(D) The submap analysis shows that the lower EIF3B group in the GEO cohort is more sensitive to anti-pd-1 treatment. P-values were obtained after being

signaling pathways, including B cell receptor signaling
pathway, complement and coagulation cascades, leukocyte
transendothelial migration, natural killer cell mediated
cytotoxicity and so on. These immune-related signaling
pathways are important features in predicting prognosis and
related to cancer progression, immunotherapy response and
recurrence (52-55).

Tumor mutation burden (TMB) is another useful biomarker
for measuring the number of mutations in a cancer and for
identification of patients that will benefit from immunotherapy

(47). The more mutations, the more neo-antigens and the higher
the chances that one or more of those autologous neoantigens
will develop immunogenicity and trigger a T cell response (56).
In our study, it was showed that Cluster 3 had the lowest TMB
compared to the other subtypes in the TCGA cohort, indicating
that patients in Cluster 3 could have the weaker responsiveness
to immunotherapy compared to Cluster 1 and 2. In addition, the
expression levels of immune checkpoint and immune-related
genes are reportedly related to the response of melanoma to
checkpoint blockade immunotherapy. We further explored that
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in each subtype, only Cluster 3 had loss of immune checkpoint
genes including VICNI, PD-1, GZMA, CD276 and CCL5. This
suggested that patients in Cluster 3 may have a stronger
immunosuppressive effect and may be more refractory
to immunotherapy.

The tumor microenvironment is a complex network of
interactions between tumor cells, immune cells and stromal
cells (57). It has proved that immune infiltration is statistically
correlated with more favorable prognosis (4). In melanoma, the
high intensity of melanoma-infiltrating CD8+ T cells (58) and B

cells (59, 60) are associated with positive clinical outcome of
immunotherapy-treated patients. In our study, we measured
immune cell composition in each subtype and found that
Cluster 3 showed less immune cell infiltration, including T and
B cells, which could be considered as non-inflamed tumor
subtype. Given the strong evidential basis that loss of human
leukocyte antigen (HLA) gene, encoding cell surface antigen-
presenting proteins, plays an essential role in tumor immune
escape and may contribute to immunotherapy resistance (61).
And the activation of immune checkpoints mechanism in
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cancers plays an important role in suppressing the anti-tumor
immune response (7, 62, 63). Therefore, we identified the
expression of immune checkpoint markers and HLA family
genes in each subtype. It was found that only Cluster 3 showed
reduced expression of immune checkpoint markers and HLA
family genes in TCGA and GEO cohorts. Besides, we used the
NTP algorithm to predict the response of each subtype of
immunotherapy and found that Cluster 3 included a greater
proportion of non-responders to PD-1 immunotherapy,
although there was no statistical difference. The lack of
statistical difference could be due to the small sample size.
Therefore, combined with the characteristics in each subtype, it
could be confirmed that Cluster 3 can serve as an independent
prognostic factor in both TCGA and GEO datasets. Moreover,
we constructed a prognostic model based on these three clusters
specific altered gene. We established and verified a prognostic
risk signature using five ulcer-immunity related genes (CSF1R,
EI24, HEYL, IFIT3, SNTB1). This study had the advantage of
assessing the performance of the ulcer-immunity related risk
score model as it has been validated in four independent datasets.
Time-dependent AUC showed that ulcer-immunity related risk
score had a good accuracy in predicting the OS in TCGA and
four GEO datasets. Taken together, these results indicated that
ulcer-immunity related prognostic model could have clinical
applications in melanoma.

To explore a potential therapeutic drug target in Cluster 3, we
identified Cluster 3 specific genes with an influence on melanoma
progression. These specific genes were then intersected with
candidate genes pivotal for melanoma cell growth in the CRISPR
screening data from the DepMap database. Among these intersected
genes, the top 10 hub genes were selected for OS analysis in TCGA
and GEO databases. We thus found that only EIF3B expression was
significantly correlated with OS in both databases. High EIF3B
expression is associated with the development of various cancers,
such as gastric cancer, prostate cancer, and osteosarcoma. Wang et al.
(17),and Ma et al. (18) proved that upregulation of EIF3B promoted
tumor occurrence and metastasis/colonization. Choi et al. found that
EIF3B was essential for osteosarcoma growth via regulating
TNFRSF21 expression (64). However, its role in melanoma
remains unclear. This prompted us to further investigate the role
of EIF3B in melanoma progression.

Our in vitro experiments revealed that EIF3B knockdown
significantly inhibited the migration and invasion of melanoma
cells. We further found that EIF3B expression was associated with
decreased immune-related pathways and lesser immune cell
infiltration. Moreover, EIF3B expression was negatively correlated
with some immune checkpoint genes, such as PD-1, GZMB, and
CTLA4, which may provide essential information for the
development of certain drugs. Recent studies have found that
TGF-B1 is essential for immunosuppression in the tumor
microenvironment and it also plays an important role in poor
response to cancer immunotherapy (65, 66). In our study, we
found that the level of TGF-P1 in supernatant was significantly
decreased after EIF3B knockdown. These findings suggest that
EIF3B could play an important role in melanoma immunotherapy
response. In addition, submap analyses supported that low EIF3B

expression was correlated with partial response to anti-PD1 therapy,
and correlation analyses showed that EIF3B expression was
negatively correlated with the steps in the cancer immunity cycle.
To summarize, as the hub gene in Cluster 3, EIF3B was found to
promote melanoma invasion and progression, which also potentially
explains the immunosuppressive characteristic of Cluster 3. As with
all studies, even this study has some limitations. First, we did not
distinguish between primary and metastatic melanoma when
establishing our prognostic model. Second, the signaling pathways
and molecular mechanisms underlying the role of EIF3B in the
regulation of melanoma progression demand further elucidation.
Thirdly, in this study, we only focus on studying EIF3B at RNA level,
so it would be interesting to study its prognostic role at protein level
in the future. Finally, the relationship between EIF3B and its
immunosuppressive role in melanoma needs to be further studied
in in vivo models.

In conclusion, we developed and verified ulcer-immunity related
prognostic model which provides predictive value in melanoma.
Further, we verified the potential role of EIF3B in the OS of patients
with melanoma and response to immunotherapy. We believe that
our ulcer-immunity related prognostic model can widen our
understanding of the biology of melanoma and prognosis
prediction and that EIF3B can act as a promising therapeutic
drug target in melanoma treatment.
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Supplementary Figure 1 | Immune landscape of melanoma. Unsupervised
clustering of 467 patients from the TCGA cohort (n = 467) using ssGSEA and
ESTIMATE analysis based on 24 reported immune cell signatures. ImmuneScore,
StromalScore, ESTIMATEScore, TumorPurity, clark level, gender, metastasis, as well as
survival status were annotated in the lower panel. Euclidean distance and Ward linkage
were used to implement unsupervised hierarchical clustering. Two distinct immune
infiltration clusters, here termed as high infiltration and low infiltration, were identified.

Supplementary Figure 2 | Define the stable cluster of concensus clustering and
validate it from GEO datasets. (A, B) The cumulative density functions (CDF) was
established for a range from 2 to 6 consensus clusters. The delta curve represents
CDF progression graph and shows the relative change in the area under the CDF
curve. (C) Predicted classification of merged GEO cohorts RNA-Seq data was
performed using the TCGA-derived cluster specific upregulated genes and Nearest
Template Prediction (NTP) algorithm. (D) Kaplan—Meier plot of overall survival (OS)
for the three subtypes in merged GEO cohort. (E) The percentage of patients with
different cancer microenvironment subtypes in different cluster. (F) The percentage
of patients with different TCGA melanoma subtypes in different cluster. (G) The
percentage of patients with different immune infiltration in different cluster. (H) The
percentage of patients with ulceration in different cluster. D, immune-depleted; F,
fibrotic; IE, immune-enriched, non-fibrotic; IE/F, immune-enriched, fibrotic.

Supplementary Figure 3 | mutation analysis of SKCM subtypes. (A) The
waterfall plot showing the top 20 mutated gene of Cluster1. (B) The waterfall plot
showing the top 20 mutated gene of Cluster2. Each column represents a single
patient. The upper barplot showed the total tumor mutation burden (TMB), The
number on the right shows the mutation frequency of each gene. The bar graph on
the right shows the proportion of each mutation type.

Supplementary Figure 4 | Copy number variation (CNV) analysis of SKCM
subtypes. (A) The differences in gistic score among the three subtypes. Copy
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