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Heart transplantation remains the optimal treatment option for patients with end-stage
heart disease. Growing evidence demonstrates that purinergic signals mediated by purine
nucleotides and nucleosides play vital roles in heart transplantation, especially in the era of
ischemia-reperfusion injury (IRI) and allograft rejection. Purinergic signaling consists of
extracellular nucleotides and nucleosides, ecto-enzymes, and cell surface receptors; it
participates in the regulation of many physiological and pathological processes. During
transplantation, excess adenosine triphosphate (ATP) levels are released from damaged
cells, and driver detrimental inflammatory responses largely via purinergic P2 receptors.
Ecto-nucleosidases sequentially dephosphorylate extracellular ATP to ADP, AMP, and
finally adenosine. Adenosine exerts a cardioprotective effect by its anti-inflammatory,
antiplatelet, and vasodilation properties. This review focused on the role of purinergic
signaling in IRI and rejection after heart transplantation, as well as the clinical applications
and prospects of purinergic signaling.
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INTRODUCTION

Heart transplantation is the ideal therapeutic approach for patients with end-stage heart disease (1),
with the number of heart transplants performed each year continuing to increase globally
throughout the past decade (2). Due to advances in surgical techniques, organ preservation
methods, and application of novel immunosuppressants, tremendous progress has been achieved
in the field of heart transplantation. The International Society of Heart and Lung Transplantation
reported that, currently, more than 6,000 heart transplants are performed worldwide each year (3).
Additionally, according to the latest data from 481 adult heart transplant centers and 210 pediatric
heart transplant centers around the world, the median survival times of adult and child heart
recipients are 12.1 years and 24.5 years, respectively (3–5). However, severe complications, such as
rejection, infection, and post-operative malignancy have severely hindered the development of heart
transplantation as a treatment option, with an annual mortality rate of approximately 3–4% (6).
Furthermore, the heart is more vulnerable to ischemia-reperfusion injury (IRI) than the liver or
kidney, which limits clinical preservation time to 4–6 hours, resulting in a critical shortage of donor
hearts (7). Therefore, a better understanding of the factors that negatively affect heart
transplantation is of utmost importance.

Purinergic signaling is a kind of evolutionarily conserved communication pathway between cells,
and participates in the regulation of many physiological and pathological processes (8, 9). It consists
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of extracellular nucleotides and nucleosides, ecto-enzymes, and
cell surface receptors (10). Recent evidence shows involvement of
these nucleotides and cell surface receptors in both IRI and
rejection in heart transplantation (11). In addition, studies have
indicated that purinergic signaling elements were potential
targets for preventing inflammation and rejection. Specifically,
adenosine plays a significant role in the diagnosis and treatment
of complications following heart transplantation. The strategy of
the study was illustrated in Figure 1. In this review, we
introduced the purinergic signaling molecules, the ecto-
nucleotidases, the purinergic receptors and their role in IRI
and rejection after heart transplantation. Briefly, adenosine
triphosphate (ATP) promotes acute injury and inflammation
after heart transplantation, whereas adenosine has anti-
inflammatory and protective effects in IRI and donor heart
preservation, as well as function on immune cells and promote
tolerance after transplantation. Therefore, balancing ATP and
adenosine using ATP hydrolysis, modulating purinergic
receptors, and increasing adenosine level are promising
strategies for reducing posttransplant inflammation, rejection,
and graft failure and prolonging the graft survival. This review
aimed to present in-depth information on purinergic signaling in
heart transplantation.
PURINERGIC SIGNALING MOLECULES

Extracellular purinergic signaling molecules, consisting of ATP,
adenosine diphosphate (ADP), and adenosine (Figure 2), play
significant roles in the transplantation process. In this process,
ATP is an important priming factor. ATP was first conceived as a
neurotransmitter in 1972 (12); it gradually gained further
acceptance as different receptor subtypes were discovered (13).
Currently, ATP has been shown consistently to be an important
extracellular ligand for autocrine signal transduction, cell-to-cell
communication, and neurotransmission (10). ATP is released
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during cell lysis or by means of specialized ATP release
mechanisms involving exocytosis, transporters (such as ATP-
binding cassette transporter superfamily) or ATP-permeable
channels. Extracellular ATP (eATP) levels are minimal under
normal physiological conditions. However, large amounts of ATP
and ADP are released when cells or tissues are damaged during IRI
or during acute rejection after transplantation. Additionally,
inflammation-induced ATP released by endothelial cells and
platelets overwhelms ATP metabolism. High levels of ATP are
important damage-associated molecular patterns (DAMPs) that
promote chemotaxis and excitation of immune cells within
hours (14). Ecto-nucleosidases rapidly dephosphorylate eATPs
to ADP, adenosine monophosphate (AMP), and finally adenosine
(15–17). Adenosine molecules are transported intracellularly or
extracellularly, once they are synthesized by nucleoside
transporters, including the concentrative nucleoside transporters
(CNTs) and the equilibrative nucleoside transporters (ENTs).
CNTs comprise three members (CNT1-3) and facilitate
adenosine transport against its concentration gradient, both
intracellularly and extracellularly (18). ENTs, including ENT1-4,
which transport adenosine across the cell membrane, depend on
the concentration gradient (19). Adenosine molecules function by
cytoprotection and protect cell damage from ischemia and
hypoxia. Moreover, adenosine is widely used as antiarrhythmic
drugs and an important component of organ preservation
solutions for heart transplantation.
ECTO-NUCLEOTIDASES

Ecto-nucleotidases are indispensable key factors in the process of
purinergic signal transduction. They regulate the hydrolysis of ATP
to ADP, AMP, and adenosine, thereby controlling the balance of
ATP and adenosine (Figure 2). The primary ecto-nucleotidases
involved in regulating the process of ATP hydrolysis to adenosine
include the ecto-nucleoside triphosphate diphosphohydrolase
FIGURE 1 | Schematic diagram of the strategy of the study. The main components of the purinergic signaling includes release of ATP, the hydrolysis of ATP to
adenosine, the ecto-nucleotidases, transporters and purinergic receptors. The purinergic signaling exert immune regulation, vasodilation and antiplatelet functions,
and play pivotal roles in heart preservation, IRI and rejection in heart transplantation (HTx).
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family (E-NTPDases), ecto-5’-nucleotidase (NT5E/CD73), ecto-
nucleotide pyrophosphatases (E-NPPases), adenosine deaminase,
NAD glycohydrolase, CD38/NADase, alkaline phosphatase (AP),
adenylate kinase (AK), and nucleoside diphosphate kinase (10). E-
NTPDases are widely distributed in all tissues and contain eight
members (E-NTPDase1-8). Four E-NTPDases (1–3, 8) are surface-
located; among which, CD39 (NTPDase 1) is the most
representative ecto-nucleotidases for ATP hydrolysis. CD39 is
primarily expressed on lymphocytes and resting vascular
endothelial cells, and its main function is to break down
extracellular ATP into ADP and AMP. CD73, mainly expressed
on follicular dendritic cells (DCs), T lymphocytes, and B
lymphocytes, further catalyzes extracellular AMP into adenosine.
Finally, adenosine can be degraded into inosine by adenosine
deaminase or transported into the cell by a nucleoside transporter
(20–22). Previous studies have revealed that the combination of
CD39 and CD73 converts ATP to adenosine much faster than E-
NTPDase2/CD73 and E-NTPDase8/CD73. Therefore, the theory of
the CD39-adenosinergic axis was proposed (23, 24). In the field of
heart transplantation, CD39 and CD73 are vital regulators of eATP
and adenosine balance, and the shift in the conversion of ATP to
adenosine is important for anti-inflammation, suppression of organ
transplantation rejection, and promotion of graft survival (25).
Zhong et al. (26) engineered CD39/CD73 bifunctional fusion
proteins, which are expected to be a therapeutic agent for
scavenging ATP and producing adenosine for anti-inflammatory
and immunomodulatory functions. E-NPPs have several substrates,
including ATP, ADP, NAD+, and lysophosphatidylcholine (LPC).
Currently seven members (NPP1-7) have been identified, among
which NPP1 and NPP2 were well investigated. NPP1 is mainly
expressed on inflammatory cells, whereas NPP2 is expressed on
Frontiers in Immunology | www.frontiersin.org 3
inflammatory and tumor cells. The main function of NPP2 is to
convert LPC to lysophosphatidic acid (LPA) (27). APs are the only
ectoenzymes that can hydrolyze ATP, ADP, and AMP. Currently,
four APs have been identified, and they are named according to
their tissue distribution characteristics: placental AP (PLAP), germ-
cell AP, intestinal AP (IAP), and the tissue-nonspecific form of AP
(TNAP). TNAP is mainly involved in bone mineralization, and
disturbance of phosphate metabolism in chronic kidney disease
(28, 29). In addition, AK is the critical enzyme responsible for
cellular adenine nucleotide homeostasis through the catalysis of the
reaction 2ADP ↔ ATP + AMP. It is also involved in extracellular
adenine nucleotide metabolism by minimal ecto-expression or
released from cells into the extracellular space (30).
THE PURINERGIC RECEPTORS

Purinergic receptors are distributed widely throughout different
organs, such as the brain, kidney, heart, and blood vessels. Part of
earlier work examining extracellular purinergic signaling was
performed on the cardiac system. Purinergic receptors in the
heart are primarily distributed in the myocardium and coronary
vascular smooth muscle, as well as cardiac adrenergic and
cholinergic nerve terminals (31). ATP binds to purinergic
receptors once they are released into the extracellular space.
Purinergic receptors currently consist of two main families:
adenosine receptors (P1 receptors) and purine nucleotide (ATP
and ADP) receptors (P2 receptors) (Figure 2) (10). P1 receptors
were first characterized and cloned in the early 1990s (32). They
are a class of G-protein-coupled receptors, including A1, A2A,
A2B, and A3 receptors (33). P2 receptors consist of two subtypes:
FIGURE 2 | Schematic diagram of purinergic signaling components, which consist of extracellular nucleotides and nucleosides, ecto-enzymes, and cell surface
receptors. ATP is released from damaged cells or through the Pannexin-1 channel, and then is rapidly dephosphorylated to ADP and AMP by CD39, with AMP
further catalyzed to adenosine by CD73. Purinergic receptors consist of P1 receptors and P2 receptors. P1 receptors bind with adenosine, which consist of A1,
A2A, A2B and A3 receptors. A1Rs and A3Rs are coupled with Gi proteins and inhibit adenylate cyclase, whereas A2ARs and A2BRs coupled with Gs proteins and
stimulate adenylate cyclase. P2 receptors consist of P2X and P2Y receptors, of which, P2XRs bind with ATP only, while P2YRs can bind with ATP, ADP, UTP, and
UDP. Activation of P2XRs increases the concentration of intracellular Ca2+. Activation of P2YRs causes a change in the concentration of intracellular Ca2+ or cAMP.
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the ion-channel receptor P2X and G-protein-coupled receptors
P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and
P2Y14) (34, 35). Generally, eATP induces an inflammatory
response through P2 receptors, such as P2X7 and P2Y2
receptors. Conversely, levels of adenosine rise along with ATP
hydrolysis, which exerts anti-inflammatory functions through P1
receptors such as A2A and A2B receptors (36–38).

P1 receptors contain four receptor subtypes that have been
named by the order of their discovery as A1, A2A, A2B, and A3
receptors. Among these receptors, A1 and A2A receptors are far
more sensitive to adenosine and its agonists than the others, as
the former works in the nanomolar range, whereas the latter
works in the micromolar range (39). P1 receptors are G-protein-
coupled receptors that are composed of two domains—the
extracellular domains (N-terminus) that comprise specific
glycosylation sites and extracellular loops, and the intracellular
domains (C-terminus) with phosphorylation and palmitoylation
sites and intracellular loops (33). A1 and A3 receptors are
coupled with Gi proteins, and inhibit adenylate cyclase.
Conversely, A2A and A2B receptors are coupled with Gs
proteins, and stimulate adenylate cyclase (40). Recent studies
have demonstrated that A1 receptors are involved in renal
fibrosis (41), hepatocyte glucose metabolism (42), cerebral
ischemia-reperfusion-induced cognitive impairment (43), and
chronic heart failure (44). A2A receptor agonists had a protective
effect on IRI in the kidney (45), brain (46), liver (47) and heart
(48). Additionally, A2A receptor agonists were used to inhibit
COVID-19-induced lung inflammation and thrombogenesis
(49). Both A2B and A3 receptors have been reported to have
protective effects on IRI (50–52) and show infarct-sparing effects
in a myocardial infarction model in mice (53). Additionally, A2B
receptors have been identified as biomarkers for lung cancer
diagnosis and prognosis (54), whereas A3 receptors have been
shown to participate in tumorigenesis and chemotherapy
(55, 56).

P2X receptors are ligand-gated receptors and consist of seven
subtypes (P2X1–7) (57). Generally, P2X receptors show a lower
affinity for ATP than P2Y receptors (36). A higher concentration
of ATP is needed to open channels (58). ATP binding with P2X
receptors causes Na+, K+, and Ca2+ cations to flow across the cell
membrane, resulting in specialized functions (59). Low levels of
P2X1 receptors were detected on cardiac myocytes, with P2X1
receptors mainly expressed on vascular smooth muscle, causing
arterial contractions when activated by ATP (60, 61). Additionally,
P2X1 receptors are expressed on platelets, mediating shape
changes, and resulting in aggregation (62). Furthermore, P2X1
receptors have been reported to regulate IL-22 and are involved in
efficient liver regeneration (63). P2X3 and P2X4 receptors are
involved in myocardial ischemic injury and neuropathy in type 2
diabetes (64–67). Whereas few studies have examined P2X5 and
P2X6 receptors, several studies have explored how P2X7 receptors
promote IRI and play an important role in immunity and
inflammation (68).

P2Y receptors are metabotropic receptors that can bind with
ATP, ADP, uridine triphosphate (UTP), and uridine
diphosphate (UDP). Some P2Y receptors (P2Y1, P2Y2, P2Y4,
Frontiers in Immunology | www.frontiersin.org 4
P2Y6, and P2Y11) couple with Gq proteins and activate
phospholipase C-b, leading to an increase in intracellular Ca2+

level; whereas others (P2Y12, P2Y13, and P2Y14) couple with Gi
proteins and inhibit adenylyl cyclase, resulting in a decrease in
cAMP level (69). P2Y receptors play a wide range of regulatory
roles, such as in tumor progression (70), platelet aggregation and
thrombosis (71), immune response (72), obesity and metabolism
(73), pain transmission (74), organ fibrosis (75), and IRI (76).
P2Y receptors have been shown to be activated by DAMPs,
such as ATP and UTP, and recruit surrounding neutrophil
granulocytes to mediate the inflammatory response.
Conversely, P2Y receptors on phagocytes upregulate and help
to clear apoptotic cells (77–79). P2Y receptors are involved in
bacterial, viral, and parasitic infections. Although P2Y12
receptors were reported protective in sepsis; however, other
studies have indicated that P2Y12 receptors induce lung injury
(80–82). Furthermore, P2Y2 receptors have been reported to be
cardioprotective, because activation of P2Y2 receptors causes
reduced inflammation, which, in turn, reduces infarct size and
improves cardiac function (83).

Currently, P2Y receptors that are reportedly involved in
myocardial infarction include P2Y1, P2Y4, P2Y6, P2Y11, and
P2Y13 receptors (82, 84–88). P2Y receptors have been
thoroughly studied in thrombosis, among which, P2Y1 and
P2Y12 receptors expressed on platelets can be activated by
eATP and ADP, leading to the recruitment of platelets to the
thrombus. The P2Y12 receptors are key players in thrombosis,
and inhibition of P2Y12 receptors is widely used as a clinical
thrombosis prevention strategy, with primary preparations, such
as clopidogrel and ticagrelor (89, 90).
EFFECT OF PURINERGIC SIGNALING
ON IRI

IRI is an inevitable event that occurs during heart
transplantation, leading to delayed graft function, rejection,
and decreased graft survival. Donor hearts are particularly
more vulnerable to IRI than livers and kidneys, which can only
be safely preserved for 4–6 hours using principally static cold
storage methods in clinical practice (91). Purinergic signaling
plays a vital role in IRI (Figure 3). During ischemia, cellular ATP
is progressively exhausted and resynthesized via aerobic
metabolism, which produces a lower level of ATP and rapidly
leads to acidosis and necrosis of the myocardium (92). The
resultant low level of cellular ATP cannot maintain cellular ion
and membrane homeostasis, leading to cell death. During
reperfusion, cellular ATP is recovered, accompanied with a
reactive oxygen species burst and Ca2+ overload, causing cell
damage and subsequent release of DAMPs and inflammatory
responses. Extracellular ATP is a ubiquitous and an extremely
efficient DAMP molecule that promotes inflammation following
IRI (93, 94). Extracellular ATP exacerbates detrimental
inflammatory responses largely through purinergic P2
receptors on the surface of immune cells (95). P2X7 receptors
are mostly involved in inflammatory processes among purinergic
April 2022 | Volume 13 | Article 826943
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P2 receptors, which triggers NLRP3 inflammasome activation
and subsequent release of proinflammatory cytokines, such as
IL-1b and IL-18 (96). P2X7 receptors mediate the NLRP3
inflammation pathway, promoting myocardial damage and
cardiac fibrosis, thus leading to impaired cardiac function (97–
100). Whereas ischemia preconditioning or postconditioning by
activation of P2X7 receptors has been reported to be protective in
cardiac IRI, where the cardioprotective effect was facilitated
through the release of sphingosine-I-phosphate and adenosine
via pannexin-1 and the P2X7 receptor-formed channel (101–
103). Contrary to P2X receptors, emerging evidence has revealed
a cardioprotective role of P2Y receptors, which has been
extensively reviewed elsewhere (76). Notably, P2Y12 receptor
antagonists (i.e., antiplatelet agents) have shown promising
myocardial protection independent of platelet antiaggregatory
effects in cardiac IRI and translated clinical studies (104, 105).

The cardioprotective effect of adenosine has long been
recognized, and all four adenosine receptors have been implicated.
Adenosine is used as an additive in blood cardioplegia to induce a
more rapid polarized cardiac arrest via the A1 receptors (106, 107).
A polarized membrane potential during initial reperfusion may
minimize intracellular Ca2+ overload and reduce cardiac IRI. Utilize
of adenosine-lidocaine based cardioplegia or preservation solution
Frontiers in Immunology | www.frontiersin.org 5
showed superior preservatory effect of donation after circulatory
death heart grafts in preclinical models (108–110). Additionally,
adenosine is known to induce vasodilation by binding to A2A and
A2B receptors (111–113). A2A and A2B receptor-induced
vasodilation attenuates myocardial ischemia by increasing
nutrients/oxygen supply and blood flow (114–116). In addition to
vasodilation, A2B receptors contribute to cardioprotection by
stabilizing the rhythm protein Per2 in an HIF‐dependent manner
(114, 117). A1 receptors signaling protects ischemic hearts by
limiting oxidant damage; however, the precise mechanism
underlying A3 receptors-induced cardioprotection remains to be
elucidated (118, 119). The ecto-nucleotidases CD39 and CD73,
which convert ATP to adenosine, have been demonstrated to be
protective in cardiac IRI (120–124). Furthermore, the antiplatelet
effect of CD39 also plays a protective role in cardiac IRI by
preventing thrombosis. A single-chain antibody-CD39 fusion
protein, targeting activated platelets by specifically binding to
activated glycoprotein (GP)IIb/IIIa, holds strong promise for
effective protection from cardiac IRI (125). AK are abundant
phosphotransferase enzymes that catalyze the interconversion of
adenine nucleotides (ATP, ADP, and AMP), and thus regulate the
adenine nucleotide homeostasis in different intracellular
compartments. AK1 deficiency in the heart exacerbates cardiac
FIGURE 3 | Schematic diagram of the role of purinergic signaling in heart transplantation. ATP were released from damaged cells during the transplantation
process. ATP were converted into ADP and AMP by CD39 and then catalyzed to adenosine by CD73. Extracellular ATP and ADP promote inflammatory responses
and exacerbate detrimental rejection and cardiac ischemia reperfusion injury. Whereas, adenosine generally has anti-inflammatory and immunosuppressive
properties, which protect the heart from rejection and ischemia reperfusion injury. Furthermore, the antiplatelet and vasodilatory effects of adenosine attenuate heart
rejection and ischemia reperfusion injury.
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IRI and compromises post-ischemic coronary reflow as a
consequence of reduced adenosine (126, 127). Modest elevation of
AK1 protects the heart against cardiac IRI by underpinning
myocardial adenine nucleotides homeostasis.
EFFECT OF PURINERGIC SIGNALING ON
HEART ALLOGRAFT REJECTION

Allograft rejection, the process by which a recipient’s immune
system recognizes and exerts immune response to the donor
heart, is a major concern post-transplantation. Purinergic
signaling plays a pivotal role in the alloimmune response
(Figure 3), which is a complex process that results from the
interplay among multiple different cell types, including
lymphocytes, monocytes, macrophages, and dendritic cells.
Following transplantation, ATP is rapidly released from
damaged or stressed cells via Panx1 channels, vesicular release,
or cell rupture. eATP acts as a “danger signal” to promote
proliferation and activation of immune cells by binding to
excitatory ATP receptors, including inotropic P2X receptor
and metabotropic P2Y receptor subtypes. Several recent studies
have recognized that eATP accumulation and subsequent
purinergic signaling play significant roles in heart allograft
rejection. Upregulation of P2X7 receptors on graft-infiltrating
lymphocytes have been observed in cardiac‐transplanted
humans and mice, and targeting of the P2X7 receptors with
periodate-oxidized ATP promoted long-term cardiac transplant
survival in murine cardiac transplantation models (128).
Blocking P2X7 receptors signaling by oxidized ATP inhibited
M2 macrophage infiltration, prevented transplant vasculopathy,
and induced long-term heart allograft survival in a murine model
of chronic rejection (129). Although eATP was considered to
promote immune responses and allograft rejection, the
protective effects of ATP receptors on allograft rejection have
been reported. Loss-of-function mutation of P2X7 receptors
disrupted NLR Family Pyrin Domain Containing 3 (NLRP3)-
mediated Th2 programming, leading to excessive Th17
generation and subsequently poor cardiac allograft outcomes
(68). Pharmacologic P2Y11 receptors stimulation protected
heart allograft from ischemia/reperfusion and rejection
injuries, and prolonged cardiac allograft survival (130, 131).

In the extracellular space, ecto-nucleotidase hydrolyzes ATP to
ADP, and subsequently to AMP and adenosine. Adenosine binds to
G protein–coupled P1 receptors, and generally have anti-
inflammatory and immunosuppressive properties. Both CD39
and CD73 have been implicated in modulation of heart allograft
rejection. Overexpression of CD39 or administration of soluble
CD39 improved cardiac xenograft survival with reduced vascular
thrombosis (132–134). In a mouse cardiac transplantation model,
CD73 deficiency in either donors or recipients promoted
inflammatory cascades, resulting in reduced cardiac allograft
survival and vasculopathy development (135). Hu et al. (136)
reported that CD73 expression was critical for mesenchymal-like
endometrial regenerative cell-mediated cardiac allograft protection.
Frontiers in Immunology | www.frontiersin.org 6
CLINICAL APPLICATION AND
PROSPECTS

Studies on the molecular mechanisms of extracellular nucleoside
signals provide several therapeutic targets for human disease.
Any participants of purinergic signaling, such as the main
purines (ATP, ADP, AMP, and adenosine), key enzymes
(CD39 and CD73), and purinergic receptors (four P1
receptors, seven P2X receptors, and eight P2Y receptors) could
be potential targets for human disease treatment. One promising
strategy is to target the release of ATP during damage. For
example, blocking the Panx1 channel can reduce the release of
ATP to limit the downstream inflammatory response and
activation of immune cells. The Panx1 inhibitor carbenoxolone
has been reported to improve islet transplantation outcomes
(137), ameliorate acute pain of rats (138), and reduce brain and
lung IRI (139, 140). However, studies on carbenoxolone in heart
transplantation are currently unavailable. Another well
investigated ATP release inhibitor is clodronate, which is
reported to improve renal IRI (141) and induce skin allograft
tolerance (142). Clodronate has been used for selective
macrophage depletion, with results showing that clodronate
was protective against heart transplant rejection (143). Another
approach is to increase ATP degradation in addition to reducing
ATP release. Hence, targeting CD39 and CD73 has a promising
future, considering that CD39 and CD73 are two of the most
important enzymes for ATP hydrolysis. Targeting CD39 exhibits
anti-inflammatory and anti-thrombolytic effects, and treatment
with soluble CD39 prolongs the survival of heart transplant by
preventing thrombosis (20, 134, 144). Furthermore, the
expression of CD73 increases anti-inflammatory cytokine
levels, leading to endometrial regenerative cell-induced
inhibition of cardiac allograft rejection (136). Moreover,
purinergic receptors are potential therapeutic targets. For
example, stimulating the P2Y11 receptors in mice has been
shown to protect heart transplants from IRI and decrease
immune rejection response (131). Targeting P2Y12 receptors is
one of the most well-studied strategies for its critical role in
antithrombosis. Several P2Y12 receptors antagonists, such as
clopidogrel, ticlopidine, prasugrel, ticagrelor, and cangrelor, have
been widely used in clinical applications (70, 145, 146).

Another promising strategy is to increase the level of circulating
adenosine with exogenous adenosine or to selectively activate
adenosine receptors, considering that adenosine plays a significant
role in heart transplantation (Table 1). First, adenosine is an
essential component of the University of Wisconsin solution
(UW) and Institut Georges Lopez-1 (IGL-1) preservation
solutions. Researchers have reported that the adenosine-
containing Histidine-tryptophan-ketoglutarate (HTK) preservation
solution has a better protective effect on myocardium than the
standard HTK preservation solution, which prevents myocardial
cell swelling and necrosis by reducing oxidative and nitrosative
stress (147). Pre-treatment with adenosine prolongs donor heart
storage and protects heart grafts from IRI (148, 149). Second,
adenosine is a common antiarrhythmic drug, and low dose
adenosine protects the transplanted heart from post-
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transplantation arrhythmias (150). Furthermore, a prospective
clinical study was conducted to investigate the safety and efficacy
of adenosine in supraventricular tachycardia after heart
transplantation and the results showed that low doses of
adenosine convert supraventricular tachycardia to a sinus rhythm
of <140 beats/minute (NCT02462941) (151). Moreover, adenosine
has been used in the diagnosis of coronary artery vasculopathy
(CAV), a common complication after heart transplantation.
Adenosine stress perfusion cardiac magnetic resonance imaging
(MRI) is a safe and noninvasive method for the diagnosis of CAV
after heart transplantation (152, 153). Adenosine or adenosine
receptor agonist was used in several clinical trials as a vasodilator
for stress echo in a stress MRI (NCT03231371, NCT03102125,
NCT02597543, and NCT05081115). Other drugs targeting
adenosine receptors have been investigated. For example, the
partial adenosine A1 receptor agonist neladenoson bialanate has
been commonly used in chronic heart failure treatment (154, 155).
Adenosine A2A receptor agonist CGS21680 reduces the
inflammatory response of lung transplantation (156, 157) and
liver transplantation (47). It can as well significantly reduce the
infarct area of isolated perfused mouse hearts (48).
CONCLUSIONS

In this review, purinergic signaling and its role in IRI and cardiac
allograft rejection, as well as clinical applications and prospects
were discussed. ATP plays significant roles in inflammation and
allograft rejection, whereas adenosine shows anti-inflammatory
capabilities and the ability to induce immune tolerance.
Balancing ATP and adenosine signaling pathways will be a key
factor in regulating immune rejection or immune tolerance, as
well as maintaining the long-term survival of heart transplants.
Frontiers in Immunology | www.frontiersin.org 7
Currently, several therapeutic strategies targeting purinergic
signaling, such as reducing ATP release or raising levels of
adenosine, are available. However, current knowledge on the
role of purinergic signaling receptors in heart transplantation
remains insufficient. Further studies are required to investigate
the maintenance of ATP and adenosine signaling balance, as well
as better short- and long-term survival outcomes in patients who
underwent heart transplantation.
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