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Background: Stemness refers to the capacities of self-renewal and repopulation, which
contributes to the progression, relapse, and drug resistance of colorectal cancer (CRC).
Mounting evidence has established the links between cancer stemness and intratumoral
heterogeneity across cancer. Currently, the intertumoral heterogeneity of cancer
stemness remains elusive in CRC.

Methods: This study enrolled four CRC datasets, two immunotherapy datasets, and a
clinical in-house cohort. Non-negative matrix factorization (NMF) was performed to
decipher the heterogeneity of cancer stemness. Multiple machine learning algorithms
were applied to develop a nine-gene stemness cluster predictor. The clinical outcomes,
multi-omics landscape, potential mechanisms, and immune features of the stemness
clusters were further explored.

Results: Based on 26 published stemness signatures derived by alternative approaches,
we decipher two heterogeneous clusters, low stemness cluster 1 (C1) and high stemness
cluster 2 (C2). C2 possessed a higher proportion of advanced tumors and displayed
worse overall survival and relapse-free survival compared with C1. The MSI-H and CMS1
tumors tended to enrich in C1, and the mesenchymal subtype CMS4 was the prevalent
subtype of C2. Subsequently, we developed a nine-gene stemness cluster predictor,
which robustly validated and reproduced our stemness clusters in three independent
datasets and an in-house cohort. C1 also displayed a generally superior mutational
burden, and C2 possessed a higher burden of copy number deletion. Further
investigations suggested that C1 enriched numerous proliferation-related biological
processes and abundant immune infiltration, while C2 was significantly associated with
mesenchyme development and differentiation. Given results derived from three algorithms
and two immunotherapeutic cohorts, we observed C1 could benefit more from
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immunotherapy. For patients with C2, we constructed a ridge regression model and
further identified nine latent therapeutic agents, which might improve their clinical

outcomes.

Conclusions: This study proposed two stemness clusters with stratified prognosis,
multi-omics landscape, potential mechanisms, and treatment options. Current work not
only provided new insights into the heterogeneity of cancer stemness, but also shed light
on optimizing decision-making in immunotherapy and chemotherapy.

Keywords: stemness, colorectal cancer, multi-omics, machine learning, immunity

INTRODUCTION

In 2020, approximately 1,880,000 new cases worldwide are
diagnosed with colorectal cancer (CRC), resulting in around
910,000 deaths (1). Although the clinical outcomes of CRC
patients have improved with the development and
diversification of cancer treatment, tumor relapse and
metastasis remain the leading causes of death for CRC (2).
Recently, the high heterogeneity and molecular complexity of
CRC have become evident (2-4). For example, patients with
KRAS mutation are resistant to cetuximab and have a strong
potential for tumor relapse (5). TTN and OBSCN commutation
suggests favorable prognosis and abundant immune infiltration
in CRC (6). Based on eight extracted mutational signatures, our
team has previously proposed two heterogenous subtypes with
distinct clinical outcomes and molecular alterations (7). Overall,
the diverse clinical outcomes may be directly or indirectly
mirrored at the molecular and cellular level of the
heterogenous tumor microenvironment. Over the past decade,
the tremendous advancement in next-generation sequencing has
brought deciphering codes for tumor heterogeneity (3, 4, 8), and
it is promising to generate new insights and develop more
effective tools for clinical management.

Elegant studies have indicated that a few tumor cells could
present stem cell-like features, termed cancer stem cells (CSCs)
(9). Stemness refers to the capacities of self-renewal and
repopulation, which contributes to tumor progression, relapse,
and drug resistance (10, 11). As is well known, 5-Fluorouracil
based chemotherapy is the first line option for CRC, which could
eliminate the residual cancer cells after surgery for some patients
(12). Of note, relapse after chemotherapy remains the obstacle to
improving clinical outcomes of CRC patients, a critical
mechanism is that 5-Fluorouracil elevates CRC stemness by
activating TP53-mediated WNT signaling pathway (13).
Previous studies also reported that some molecules could
overcome or promote stemness (5, 14-17), which could further
lead to shifts in biological behavior and heterogeneity of
clinical outcomes.

Mounting evidence have established the links between cancer
stemness and intratumoral heterogeneity across cancer (2, 9, 10,
18), and a theory believes cancer stemness is the origin of
intratumoral heterogeneity and plasticity (19). Currently, the
intertumoral heterogeneity of cancer stemness remains elusive in
CRC. A pan-cancer study has established a one-class logistic

regression model (OCLRM) to measure two stemness indices
from transcriptomic and epigenetic data in bulk samples (11).
However, the prediction of OCLRM is not reliable in CRC, as
cancer stemness increases, patients have better prognosis and
tumor stage, which violates common sense and might derive
from the overfitting of supervised machine learning model (20).

This study aimed to investigate the associations between
intertumoral heterogeneity and cancer stemness. Based on 26
published stemness signatures derived by alternative approaches,
unsupervised clustering was performed to identify heterogeneous
stemness clusters in clinical samples. We further characterized
the clinical outcomes, multi-omics landscape, potential
mechanisms, and immune features of the stemness clusters.
The stemness clusters also exhibited different response rates to
immunotherapy. In addition, using large-scale drug screening
and molecular data, nine potential agents were identified for high
stemness cluster to improve current therapeutic strategies
in CRC.

MATERIAL AND METHOD
RNA-Sequencing Cohort

The Cancer Genome Atlas Colon Adenocarcinoma and Rectal
Adenocarcinoma (TCGA-CRC) included 616 eligible CRC
patients who underwent primary curative resection.
Transcriptome profiling data (HTSeq-Counts), somatic
mutation data (VarScan2), copy number variation (CNV) data
(Masked Copy Number Segment), and clinical data were
retrieved from the TCGA portal (https://portal.gdc.cancer.gov).
The raw count expression was transformed into transcripts per
kilobase million (TPM).

Microarray Cohorts

Three CRC microarrays (based on the GPL570 platform) were
collected from the GEO database, including GSE39582 (n =585),
GSE87211 (n =363), and GSE39084 (n =70). The raw expression
data were processed and normalized using the robust multiarray
average (RMA) algorithm implemented in the Affy package. The
survival data were generated from the series matrix files.

In-House Cohort
A total of 72 CRC patients who underwent primary curative
resection at the First Affiliated Hospital (Zhengzhou University,
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Henan, China) were enrolled. All patients gave written informed
consent, and none of the patients received any preoperative
chemotherapy or radiotherapy. The detailed baseline was
illustrated in Table S1. This project was approved by the
Ethics Committee Board of The First Affiliated Hospital of
Zhengzhou University. Quantitative real-time PCR (qRT-PCR)
was performed to quantify the expression level of several key
genes. The primer sequences were shown in Table S2. See
Supplementary Material for details.

Immunotherapy Cohorts

Two cohorts (including GSE35640 and IMvigor 210) with both
expression data and immunotherapeutic information were also
enrolled. The GSE35640 includes 56 patients with metastatic
melanoma based on the GPL570 platform and the IMvigor 210
dataset includes 298 patients with metastatic urothelial cancer based
on the Illumina sequencing platform. The raw expression data of
GSE35640 were normalized by RMA approach and the IMvigor 210
dataset was processed via the IMvigor210CoreBiologies package. The
therapeutic benefit was assessed via the RECIST vl.1 standard,
complete response (CR)/partial response (PR) and stable disease
(SD)/progressive disease (PD) were considered as responder and
non-responder, respectively.

Cancer Cell Line Data

The RNA sequencing expression data (TPM normalized) for
1019 cell lines were achieved from the Cancer Cell Line
Encyclopedia (https://sites.broadinstitute.org/ccle). Drug
sensitivity information of cell lines was obtained from two
pharmacogenomic datasets, CTRP and PRISM, which provide
large-scale drug screening and molecular data across hundreds of
cancer cell lines. The area under the dose-response curve (AUC)
values is a measure of drug sensitivity. For a specific drug, the
lower the AUC value, the higher the sensitivity. Cell lines derived
from hematopoietic and lymphoid tissues were removed. Drugs
with more than 80% of non-missing data were retained, and then
K-nearest neighbor using a Euclidean metric was applied for
missing data imputation.

Stemness Signatures

The StemChecker webserver (http://stemchecker.sysbiolab.eu)
curated 26 published stemness signatures (Homo sapiens)
derived by alternative approaches, such as expression profiles,
computationally derived, literature curation, transcription factor
target genes, and RNAi screen methods (21). In the TCGA-CRC
dataset, we employed gene set variation analysis (GSVA) to
measure the enriched abundance of each sample across the 26
stemness signatures.

Non-Negative Matrix Factorization

To identify heterogeneous stemness subtypes in CRC, we
performed non-negative matrix factorization (NMF) on the
stemness score data to decipher the enrichment pattern of
stemness signatures (22). Because the NMF algorithm prohibits
negative elements within the matrix, we further normalize data
with the min-max scaling, which could rescale the range of
features to scale the range in [0, 1]. In the NMF framework

implemented in the NMF package, we used the number of runs
to perform = 100, method = “lee”, and potential factorization
ranks = 2-9. To determine the optimal rank, the cophenetic
coefficient and silhouette statistic were utilized to evaluate the
stability of factorization. The first rank for which the cophenetic
coefficient starts decreasing was generally defined as the optimal
rank (22). The silhouette statistic quantifies how similar a sample
is to its own cluster relative to other clusters, a high silhouette
indicates that the sample is well matched to its own cluster and
poorly matched to neighboring clusters (23). The principal
component analysis (PCA) algorithm further assessed the
robustness of clusters according to the two-dimension
spatial distribution.

Multiple Machine Learning Algorithms
Derived the Stemness Cluster Predictor
The 616 patients from the TCGA-CRC dataset were randomly
divided into training (70%, n =432) and testing (30%, n =184)
datasets using createDataPartition function implemented in the
caret package. Subsequently, the stemness cluster predictor was
developed according to the following pipeline:

(1) The receiver operating characteristic (ROC) curves were
utilized to select genes with the area under the ROC curve
(AUC) greater than 0.65 for predicting stemness clusters.

(2) In the training dataset, four machine learning algorithms,
including least absolute shrinkage and selection operator
(LASSO) regression, support vector machine (SVM),
random forest (RF), and extreme gradient boosting
(XGBoost), were conducted to further identify the key
genes with important information for the stemness clusters.

(3) Furthermore, the overlap genes determined by the four
algorithms were subject to the logistic regression analysis
for establishing the stemness cluster predictor.

(4) The performance of our stemness cluster predictor was
validated in the internal testing dataset, three external
validation datasets (including GSE39582, GSE87211, and
GSE39084), and an in-house dataset (QRT-PCR).

Multi-Omics Landscape of the

Stemness Clusters

To delineate the multi-omics landscape of the stemness clusters,
we integratively analyzed the mutation and CNV data in the
TCGA-CRC dataset. According to the previous studies (6, 24),
genes with the top 20 mutational frequency were defined as the
frequently mutated genes (FMGs), and genes with the top 15
amplification (AMP) or homozygous deletion (Homdel) were
defined as the frequently AMP or Homdel genes (FAGs/FHGs).
The tumor mutation burden (TMB), single-nucleotide
polymorphism (SNP), and insertion and deletion (Indel) were
defined as the numbers of total mutations, single-nucleotide
mutations, insertion and/or deletion of nucleotides into the
DNA sequence, respectively. To quantify the genomic
alteration in the stemness clusters, we calculated the fraction of
genome alteration (FGA), fraction of genome gained (FGG), and
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fraction of genome lost (FGL), defined as the ratio of total CNV/
gain/lost bases to all bases, respectively. In addition, based on the
recurrently altered regions derived from the GISTIC 2.0 pipeline,
the burdens with copy number changes at the focal and arm
levels were quantified.

Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) is a bioinformatics
algorithm that transforms information from gene-level into
pathway-level. A total of 21338 gene sets included gene
ontology (GO), Kyoto encyclopedia of genes and genomes
(KEGG), and hallmark information from the Molecular
Signatures Database (MSigDB) resource (version 7.4,
h.all.v7.4.symbols.gmt, c2.all.v7.4.entrez.gmt, and
c5.all.v7.4.entrez.gmt). All genes were sorted by the descending
log,-transformation fold change (log,FC) between the two
stemness clusters, and then the clusterProfiler package was
performed for GSEA analysis. Gene terms with false discovery
rate (FDR) <0.001 were enriched in the stemness clusters.

Tumor Microenvironment Profiles

The Microenvironment Cell Populations-counter (MCP-
counter) approach was utilized to quantify the absolute
infiltration abundance of eight immune and two stromal cell
subpopulations from the transcriptomic profiles of TCGA-CRC
(25). The expression patterns of 27 immune checkpoint
molecules between the two stemness clusters were further
explored (26-29).

Assessment of Immunotherapeutic
Efficacy

According to the expression profiles of each sample from the
TCGA-CRC dataset, we evaluated the immunotherapeutic
efficacy between the two stemness clusters via three distinct
algorithms, including Tumor Immune Dysfunction and
Exclusion (TIDE), T-cell-inflamed gene-expression profile
(GEP), and subclass mapping (SubMap). A high TIDE score
suggests a worse immunotherapeutic efficacy, while a high T-
cell-inflamed GEP indicates an increasing tendency to benefit
from PD-1 blockade (30, 31). The SubMap was performed to
measure the expression similarity between the two stemness
clusters and immunotherapeutic groups with different
responses (32).

Potential Therapeutic Agents

Two pharmacogenomic datasets, CTRP and PRISM, provide
large-scale drug screening and transcriptomic profiles across
hundreds of cancer cell lines, which makes it possible to
precisely predict drug response in clinical tissues (33). For
drug response prediction, the ridge regression model
implemented in the pRRophetic package was performed to
assess drug response of clinical tissues (34). The predictive
model was trained on transcriptomic profiles and drug
sensitivity data of cancer cell lines using the 10-fold cross-
validation, allowing the estimation of drug response in the
TCGA-CRC dataset. Subsequently, differential analysis between

the stemness clusters for drug sensitivity was performed to
identify potential therapeutic agents.

Statistical Analysis

All data processing, visualization, and statistical analysis were
performed in the R 4.0.5 software. Kolmogorov-Smirnov test
detected data normality. T-test or Wilcox-test were performed to
compare quantitative variables, while Chi-square test was used to
compare qualitative variables. Kaplan-Meier survival analysis
was performed via the survival package. The consensus
molecular subtype (CMS) information of each sample was
obtained from the CMSclassifier package. Based on the
previous published six classification systems, Guinney et al.
proposed four CMS subtypes with distinguishing traits, for
example, CMS1 was characterized with hypermutated,
microsatellite unstable and strong immune activation (35). The
PROC package was applied to plot the ROC curves. A two-sided
P <0.05 was considered statistically significant. Microsatellite
instability-high (MSI-H) CRC refers to tumors with a high
degree instability due to the dysfunction of mismatch
repair genes.

RESULTS

Identification of Two Robust Stemness
Clusters in CRC

According to the abundance of 26 published stemness signatures
calculated using the GSVA framework, the NMF approach was
performed to detect the factorization rank. The consensus
matrices demonstrated stable and excellent discrimination at
rank = 2 (Figure 1A). The cophenetic coefficient started
decreasing at rank = 2, which indicated the optimal rank is 2
(Figure 1B). Samples within two clusters were also well matched
to their own cluster compared with another cluster according to
the high silhouette statistics (Figure 1C). In addition, PCA
further displayed the separable two-dimension spatial
distribution of two clusters (Figure 1D). Thus, we eventually
identified two robust stemness clusters. As shown in Figure 1E,
cluster 2 (C2) possessed significantly higher stemness abundance
compared with cluster 1 (C1), which suggested an enhanced
cancer stemness and more poor-differentiated tumors in C2.

Stemness Cluster 2 Had Worse Prognosis
and Clinical Features

The Kaplan-Meier survival analysis suggested C2 displayed
unfavorable overall survival (OS) and relapse-free survival
(RES) (P <0.05, Figures 1F, G). The mortality and relapse rate
in C2 was dramatically higher than C1 (P <0.05, Figure 1H). The
tumor stage of C2 tended to be progressive (P <0.05, Figure 1H).
In addition, C1 possessed a higher proportion of MSI-H tumors,
which was reported to have better clinical outcomes and higher
infiltrating lymphocytes (P <0.05, Figure 1H). Based on the CMS
information inferred from the CMSclassifier package, we
observed that a higher proportion of CMS1 in Cl and of
CMS$4 in C2 (P <0.05, Figure 1H).
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Construction and Validation of a Stemness
Cluster Predictor

To reproduce our subtype in other cohorts, we tried to construct
a stemness cluster predictor. First, four machine learning
algorithms were performed with 247 genes with AUC >0.65, to
identify the key genes with important information for the
stemness clusters. A total of 70, 82, 99, and 105 were
determined via LASSO, SVM, XGBoost, and RF, respectively
(Figure 2A). The ROC analyses exhibited that the four
algorithms possessed excellent performance in feature

Yes mNo LI 1\ MSI-H mMSS C1 mC2 mC3 mC4

FIGURE 1 | Non-negative matrix factorization (NMF) identified two stemness clusters with heterogeneous prognosis and clinical features. (A) The consensus map of
NMF clustering results in the TCGA-CRC dataset. (B) The first rank (= 2) for which the cophenetic coefficient starts decreasing was generally defined as the optimal
rank. (C) The silhouette statistic of two stemness clusters. (D) The principal component analysis (PCA) algorithm displayed the two-dimension spatial distribution of
two clusters. (E) Heatmap demonstrated C2 possessed significantly higher stemness abundance compared with C1. (F, G) Kaplan-Meier curves of OS (F) and RFS
(G) according to the stemness clusters. (H) Distributions of clinical features between two clusters.

selection, with AUCs of >0.99 and >0.95 for the TCGA
training and testing sets, respectively (Figure 2B). In total,
nine key genes were shared by the four algorithms. As shown
in Figure S1, GFPT1, PTMAP9, MOGATS3, and DPM3 enriched
in C1, while S100A12, PGM5, FUT6, SEMA3C, and ADAM33
overexpressed in C2. These suggested GFPT1, PTMAPY,
MOGATS3, and DPM3 might indicate a lower stemness, while
S100A12, PGM5, FUT6, SEMA3C, and ADAM33 were
associated with a higher stemness in CRC. In addition, we
further assessed the prognostic value of these nine genes. In
line with the stemness predictions, GFPT1, PTMAP9, MOGAT3,
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FIGURE 2 | Construction of the stemness cluster predictor. (A) Venn diagram identified nine key stemness subtype specific genes that were shared by four feature
selection algorithms. (B) The performances of four machine-learning algorithms for feature selection were evaluated in the training and testing sets. (C, D) The
confusion matrices and ROC curves of the stemness clusters predictor in the training (C) and testing (D) sets.

and DPM3 prolonged OS, while S100A12, PGMS5, FUTS,
SEMA3C, and ADAM33 suggested a dismal OS (Figure S2).
Based on the expression profiles of the nine genes, we fitted a
logistic regression model for predicting the stemness clusters.
Further analyses demonstrated that the stemness cluster
predictor could precisely distinguish C1 and C2, with a
sensitivity of 0.983, a specificity of 0.965, an accuracy of 0.974,
and an AUC of 0.996 in the training set (Figure 2C). Likewise,
the predictor also displayed an excellent performance in the
testing set, with a sensitivity of 0.939, a specificity of 0.907, an
accuracy of 0.924, and an AUC of 0.965 (Figure 2D).

To further explore the clinical application value of the
stemness cluster predictor in clinical samples, we also enrolled
three independent datasets and a clinical in-house cohort (qRT-
PCR data) to verify its performance. Using the stemness cluster
predictor, CRC patients from different cohorts were categorized

into C1 or C2. As illustrated in Figures 3A-D, the proportions of
each subtype were similar across the different cohorts. Consistent
with the prior results, C2 possessed significantly dismal OS and
RFS compared with C1 (Figures 3E-H), which validated the
performance and reproduction of the stemness clusters in
clinical samples.

Multi-Omics Landscape of Two

Stemness Clusters

As illustrated in Figure 4A, we delineated the mutational
landscape of 20 FMGs in two stemness clusters. Overall, Cl1
exhibited significantly higher mutational frequency than C2 in
most FMGs, such as TP53, SYNEI, MUCI6, and PIK3CA
(Figure 4B). Notably, APC, TTN, and KRAS mutations were
not statistically significant between the two clusters (Figure 4B).
In line with the mutational profiles of these FMGs, Cl1 also
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showed generally superior burden including TMB, SNPs, and
Indels (P <0.0001, Figures 4C-E). Furthermore, we
characterized the CNV status of 30 FAGs/FHGs between the
two clusters. Interestingly, C1 displayed a significantly higher
CNV rate for 15 FAGs, but no clear differences for 15 FHGs
compared with C2 (Figure 4F). Subsequently, we further
measured the overall genomic alteration in bases, fragments,
and chromosome arms between the two clusters (Figures 4G,
H). There were no differences in FGA, FGG, arm gain and focal
gain, which suggested two clusters behaved similarly in terms of
copy number amplification (Figures 4G, H). For another, C2
displayed a higher burden of copy number deletion at the level of
bases, fragments, and chromosome arms (Figures 4G, H). Taken
together, C1 was mutation-driven, while C2 was copy number
deletion-driven.

Underlying Biological Pathways of Two
Stemness Clusters

To explore the latent biological behavior of each stemness
cluster, we performed GSEA analysis on GO annotation and
KEGG pathways. GSEA-GO illustrated that Cl1 was
characterized by proliferation-related processes (e.g., cell cycle
DNA replication), while C2 significantly enriched abundant
functions associated with mesenchyme development and
differentiation (e.g., mesenchyme development) (Figure 5A).
Likewise, GSEA-KEGG pathways displayed similar results in
two clusters (Figure 5B). Additionally, further cancer hallmarks
analysis revealed a proliferation-related pathway, MYC targets v2
was significantly unregulated in C1, while C2, as a subtype with
high stemness characteristics, was enriched for multiple
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oncogenic pathways, such as epithelial mesenchymal transition,
angiogenesis, myogenesis, and apical junction (Figure 5C).

Distinct Microenvironment Patterns
Between the Two Stemness Clusters

The MCP-counter algorithm was utilized to quantify the absolute
infiltration abundance of eight immune and two stromal cell
subpopulations from the transcriptomic profiles. As displayed in
Figure 5D, Cl1 behaved as the immune-hot subtype, and was
characterized by abundant infiltration of microenvironment cells,
such as T cells, cytotoxic lymphocytes, B lineage, nature killer cells,
monocytic lineage, myeloid dendritic cells, neutrophils,
endothelial cells, and fibroblasts (P <0.05, Figure S3).
Furthermore, Cl also had predominantly higher expression

levels of immune checkpoint molecules relative to C2, such as
PD-1, PD-L1, and CTLA-4 (Figure 5D and Figure $3). The
distinct microenvironment patterns between the two stemness
clusters might explain their clinical outcomes and hint at the
application prospect of precision immunotherapy.

Stemness Cluster 1 Possessed Better
Immunotherapeutic Efficacy

To further assess the immunotherapeutic efficacy between the
two stemness clusters, we applied three different algorithms to
quantify the response differences. In this study, C1 presented a
higher level of T-cell-inflamed GEP, suggesting activated
immune status and elevated response to immune checkpoint
inhibitor (ICI) treatment (P <0.0001, Figure 6A). TIDE analysis
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FIGURE 5 | Underlying biological pathways and distinct microenvironment patterns of two stemness clusters. (A-C). GO (A), KEGG (B), and cancer halmark (C) of
gene set enrichment analysis (GSEA) according to the stemness clusters. (D). The immune cell infiltrations and immune checkpoint profiles of two clusters.

revealed C1 also had a stronger potential of tumor immune
evasion and worse immunotherapeutic efficacy (P <0.0001,
Figure 6A). In the SubMap framework, C1 demonstrated the
similar expression patterns with the group responding to PD-LI
inhibitors (Figure 6B). Subsequently, we utilized two
immunotherapy cohorts with both expression data and
immunotherapeutic information, to further investigate the
immunotherapeutic value of two stemness clusters in clinical
samples. Using our stemness cluster predictor, we divided these
clinical samples into two stemness clusters (Figure S4 and
Figure 6C). Notably, C1 possessed a significantly superior
proportion of responders than C2 in GSE35640 and IMvigor
210 datasets (P <0.05, Figures 6D, E).

Identification of Potential Therapeutic
Agents for Stemness Cluster 2

Based on the large-scale drug sensitivity and expression data
from the CTRP and PRISM databases, we developed a ridge
regression model via the pRRophetic package to predict the
response of numerous drugs. Afterwards, this model was
utilized to estimate drug sensitivity in the TCGA-CRC dataset.
To identify potential therapeutic agents for C2, we performed the
differential drug response analysis between the two stemness
clusters. Ultimately, nine drugs with the thresholds of FDR <0.05
and log,FC >0.15 were considered candidate agents for C2,
namely BI-2356, CR-1-31B, Dolastatin-10, Ispinesib, KX2-391,
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stemness cluster predictor, CRC patients from IMvigor 210 were categorized into C1 or C2. (D, E) Distributions of responders and nonresponders between two
clusters in GSE35640 and IMvigor 210 datasets. (F) Identification of nine potential therapeutic agents for C2.

Leptomycin B, Paclitaxel, SB-743921, and SR-II-138A
(Figure 6F). All these agents demonstrated lower estimated
AUC values in C2, which suggested the great potential to
develop several promising compounds for C2.

DISCUSSION

This study systematically established the links between the
intertumoral heterogeneity and cancer stemness. Unlike
previous studies (9, 11), we retrieved a total of 26 published
stemness signatures derived by alternative approaches (21).
GSVA was performed to estimate the enrichment abundance
of each signature, which generally avoided unbalanced bias of
large-scale data. Subsequently, an unsupervised clustering

method, NMF, was utilized to detect heterogeneous stemness
clusters in 616 bulk samples of the TCGA dataset. Eventually,
two clusters were identified with the aid of multiple
measurement indexes. In brief, C2 possessed significantly
higher stemness abundance compared with CI, which
suggested an enhanced cancer stemness trait for C2. Thus, we
referred to Cl as “low stemness subtype” and C2 as “high
stemness subtype”. Further prognostic and clinical analysis
revealed that C2 possessed dismal prognosis and more
advanced tumors, which were in line with the properties of
high stemness tumors (5, 19).

The two stemness clusters presented distinct genomic
alterations in multi-omics levels. Whether tumor stemness and
molecular variation occur successively or whether the two are in
a dynamic interactive process needs to be further demonstrated.
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From a global perspective, C1 displayed significantly higher of
TMB, SNPs, and Indels, while C2 had superior copy number
deletion at the level of bases, fragments, and chromosome arms,
suggesting that C1 was mutation-driven and C2 was copy
number deletion-driven. The high burden of copy number
deletion was reported to be correlated with immune evasion,
high proliferation trait, and worse prognosis (36). In this study,
malignant phenotype C2 also showed numerous proliferation-
related pathways and less immune infiltration. C1 referred to the
low stemness subtype with the improved clinical outcomes,
displayed predominant mutations in multiple oncogenes and
tumor suppressors, such as TP53, SYNEI, MUCI6, and PIK3CA.
The high mutational load tends to produce more neoantigens,
which could further induce the proliferation and activation of T
cell to eliminate tumor cells (37). Correspondingly, C1 belonged
to the “immune-hot” subtype with the abundant enrichment of
various immune cells and immune checkpoint molecules. In
addition, MSI-H tumors are broadly reported to be associated
with stronger cytolytic activity and better immunotherapeutic
response, were also enriched in Cl. Based on the CMS
information inferred from the CMSclassifier package, we
observed that a higher proportion of CMSI in C1 and of
CMS$4 in C2. As is well known, CMS1 and CMS4 belong to
the microsatellite instability immune subtype and mesenchymal
subtype, respectively (35). Taken together, these results indicated
that C1 had a great potential to benefit from immunotherapy
relative to C2.

Subsequently, three different algorithms, including T-cell-
inflamed GEP, TIDE, and SubMap analysis, were performed to
evaluate assess the immunotherapeutic efficacy between the two
stemness clusters. Consistently, C1 was more prone to generate
efficacy from immunotherapy. To further investigate the
immunotherapeutic value of two stemness clusters in clinical
samples, we enrolled two immunotherapy cohorts with both
expression data and immunotherapeutic information. As previously
described, C1 possessed a significantly superior proportion of
responders than C2 in two cohorts. Thus, our stemness clusters
provided novel insight into precise immunotherapy.

As mentioned above, C2 belongs to the high stemness subtype
with worse prognosis, thus, more treatments are needed to
improve its clinical outcomes. To bridge this gap, we
developed a ridge regression model using the large-scale drug
sensitivity and expression data. Ultimately, this model identified
nine potential therapeutic agents for C2, including BI-2356, CR-
1-31B, Dolastatin-10, Ispinesib, KX2-391, Leptomycin B,
Paclitaxel, SB-743921, and SR-II-138A. All these agents
demonstrated significantly higher sensitivity in C2, which
suggested the great potential to develop several promising
compounds for C2. Dolastatin-10, a pentapeptide isolated from
the marine mollusk Dolabella Auricularia with latent antitumor
properties, could effectively induce tumor apoptosis (38).
Bousquet et al. have reported that Dolastatin-10 could inhibit
oncogenic KRAS and hypoxia-inducible factors pathways in CRC
(39). Leptomycin B serves as a potent and specific inhibitor of
nuclear export that promotes G1 cell cycle arrest in tumor cells
(40). Paclitaxel, a natural flavonoid, interacts with cell cycle

modulators and leads to cell cycle arrest by activating the Wnt/
[-catenin signaling pathway (41). Although CRC cells are prone
to be resistant to Paclitaxel (42), C2 could be a sensitive subtype.
Given the above, these drugs or combination therapies could
enhance the treatment efficiency, which brought more effective
treatment strategies to improve the clinical outcomes of C2.
Current works shed new light on delivering precision medicine
for CRC.

To the best of our knowledge, this is the first and most
comprehensive study to date identifying the heterogeneous
stemness clusters according to the large-scale data. To
reproduce our subtype in other cohorts, we developed a
stemness cluster predictor consisting of nine genes via four
machine learning algorithms. The stemness cluster predictor
remained excellent performance in the training and testing
sets. To further translate the stemness cluster predictor into
clinical settings, three independent datasets and a clinical in-
house cohort (qRT-PCR data) were utilized to verify its
performance. Using the stemness cluster predictor, the
proportions of each subtype were similar across the different
cohorts. In parallel, C2 possessed significantly dismal OS and
RFS compared with C1, which validated and reproduced the
stemness clusters in clinical samples. Although the stemness
cluster was promising, some limitations should be
acknowledged. First, all samples enrolled in this study were
retrospective, and prospective studies are further needed to
confirm our conclusions. Second, the validation dataset lacked
multi-omics data to explore differences in genomic alterations
between the two stemness clusters in different populations.
Third, the dynamic interactive process between the stemness
clusters and multi-omics alterations needs to be further explored.
Fourth, the immunotherapeutic efficacy was evaluated by
bioinformatics algorithms and non-CRC clinical samples,
which might not accurately reflect the difference in
immunotherapy response between the two stemness clusters,
and further investigation should be conducted.

In conclusion, this study established the links between the
intertumoral heterogeneity and cancer stemness in CRC. We
proposed two stemness clusters with distinct clinical outcomes,
multi-omics landscape, biological mechanisms, and immune
features of the stemness clusters. C1 was more sensitive to
immunotherapy relative to C2. For patients with C2, our study
provided latent therapeutic drugs to them, which might improve
their clinical outcomes. Overall, this study has not only provided
new insights into the heterogeneity of cancer stemness, but also
thrown light on optimizing decision-making in immunotherapy
and chemotherapy for CRC patients.
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