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Due to the complex mechanisms affecting anti-tumor immune response, a single biomarker
is insufficient to identify patients who will benefit from immune checkpoint inhibitors (ICIs)
treatment. Therefore, a comprehensive predictive model is urgently required to predict the
response to ICIs. A total of 162 non-small-cell lung cancer (NSCLC) patients undergoing
ICIs treatment from three independent cohorts were enrolled and used as training and test
cohorts (training cohort = 69, test cohort1 = 72, test cohort2 = 21). Eight genomic markers
were extracted or calculated for each patient. Ten machine learning classifiers, such as the
gaussian process classifier, random forest, and support vector machine (SVM), were
evaluated. Three genomic biomarkers, namely tumor mutation burden, intratumoral
heterogeneity, and loss of heterozygosity in human leukocyte antigen were screened out,
and the SVM_poly method was adopted to construct a durable clinical benefit (DCB)
prediction model. Compared with a single biomarker, the DCB multi-feature model exhibits
better predictive value with the area under the curve values equal to 0.77 and 0.78 for test
cohort1 and cohort2, respectively. The patients predicted to have DCB showed improved
median progression-free survival (mPFS) and median overall survival (mOS) than those
predicted to have non-durable clinical benefit.

Keywords: immune checkpoint inhibitors, durable responses, multi-feature model, genetic biomarkers, non-small
cell lung cancer, cancer immunity and immunotherapy
1 INTRODUCTION

Lung cancer is one of the most commonly diagnosed malignant tumors, the majority of which are non-
small-cell lung cancers (NSCLCs) (1). Among all cancer types, the incidence andmortality of lung cancer
are ranked second and first, respectively (2). Immune checkpoint inhibitors (ICIs), including anti-
cytotoxic T lymphocyte-associated antigen-4 (CTLA4) and anti-programmed cell death protein 1
(PD-1)/programmed death-ligand 1 (PD-L1), have dramatically altered the treatment landscape of
org April 2022 | Volume 13 | Article 8296341
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NSCLC (3–8). However, only a small subset of patients benefit from
ICIs treatment, and some may even suffer from immune-related
adverse events, requiring treatment discontinuation (9–12).
Therefore, identification of more effective predictive biomarkers
that can guide the treatment decision making with ICIs is
significantly important and urgent.

Multiple clinical trials have verified that both PD-L1 expression
level and tumor mutation burden (TMB) can predict the efficacy of
ICIs in NSCLC (13–18). Recently, several novel genome-related
biomarkers such as intratumoral heterogeneity (ITH), tumor
neoantigen burden (TNB), loss of heterozygosity in human
leukocyte antigen (HLA LOH), and HLA-I evolutionary divergence
(HED), have been demonstrated to be associatedwith response to ICIs
in patients (19–23). These single indicators can distinguish responders
fromnon-responders to a certain extent, although their sensitivity and
accuracy need to be further improved. For instance, some NSCLC
patients with high TMB cannot benefit from immunotherapy (24).

Our objective was to construct a robust predictive model to
predict durable response to ICIs in NSCLC patients based on
multiple genomic features, and to assess its potential for clinical
decision-making guidance in cancer treatment with ICIs.
2 MATERIALS AND METHODS

2.1 Study Cohorts
Genomic and clinical data of 69 and72NSCLCpatientsundergoing
ICIs treatments were obtained frompublished cohorts, of which 69
NSCLC patients were used as the training cohort and 72 NSCLC
patients were used as the test cohort1 (19, 25).

To further evaluate the accuracy and effectiveness of the multi-
feature model, 21 patients treated with ICIs, collected from January
2018 toMay2020,wereenrolled in this studyandusedas test cohort2.

Durable clinical benefit (DCB)wasdefined as complete response
(CR), partial response (PR), or stable disease (SD) that lasted for ≥
24 weeks, and non-durable benefit (NDB) was defined as
progressive disease (PD) or SD that lasted for < 24 weeks.

Among the 162NSCLCpatients included in this study, 69% (111/
162) were lung adenocarcinoma. The number of patients with DCB
and NDBwas 61 and 101, respectively. Detailed clinical information
of patients is summarized in Supplementary Tables 1–3.

In addition, genomic and clinical data of 120 melanoma patients
undergoing ICIs treatments were obtained from published cohort to
further evaluate the accuracy and effectiveness of the multi-feature
model (26). The patients with CR or PR were 55, and the patients
with PD were 65. DCB was defined as CR and PR, and NDB was
defined as PD. Detailed clinical information of patients is
summarized in Supplementary Table 4.

2.2 Next-Generation Sequencing (NGS)
and Mutation Analysis
Genomic profiling was performed on tumor tissues and matched
peripheral blood samples. First, we used the GeneReadDNA
FFPE kit (Qiagen) and Qiagen DNA blood mini kit (Qiagen) to
extract DNA from tumor specimens and blood, respectively.
Then, the extracted DNA was amplified, purified, and analyzed
using an NGS panel (YuceOne™ Plus, Yucebio, China).
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Sequencing reads with > 10% N rate and/or > 10% bases with a
quality score < 20 were filtered using SOAPnuke (Version 1.5.6)
(27). Somatic singlenucleotidevariants and insertions anddeletions
(indels) were detected using VarScan (Version 2.4) (28). Next, an
in-house method was applied to filter possible false-positive
mutations. Finally, SnpEff (Version 4.3) was used to functionally
annotate the mutations detected in the tumor samples (29).

2.3 Evaluation of Genomic Biomarkers
2.3.1 Evaluation of Tumor Mutation Burden
TMB was determined as the number of all nonsynonymous
mutations and indels per megabase of the genome examined, and
the cut-off value for TMB-high and TMB-low was defined as the
median TMB.

2.3.2 Evaluation of HLA Typing, HED, and Somatic
HLA Loss
HLA typing of the paired peripheral blood and tumor samples was
performed from whole-exome sequencing data using
POLYSOLVER (v1.0) (30) and OptyType (v1.3.2) (31). A scoring
algorithm was then used to integrate the results that were used for
further analysis (32). HED was calculated as previously described
(33). The mean HED of patients was calculated as the mean of
divergences at HLA_A, HLA_B, and HLA_C, and the
bioinformatic tool LOHHLA with the default program settings
was used to determine their maintenance or loss in the tumor (21).

2.3.3 Evaluation of TNB
All nonsynonymous mutations and indels were translated into 21-
mer peptide sequences using in-house software centered on the
mutated amino acid. Then, the 21-mer peptide was used to create a
9- to11-merpeptidevia a slidingwindowapproach for theprediction
ofMHCclass I bindingaffinity.Next,NetMHCpan(v3.0)wasused to
predict the binding strength of the mutated peptides to patient-
specificHLA alleles (34). A peptide with predicted binding affinity to
anyHLAallelewith an IC50<500nMwas selected. If several selected
peptides were generated from the samemutation, they were counted
as one neoantigen. TNB was determined as the number of putative
neoantigens per megabase of the genome.

2.3.4 Calculation of Copy Number Variants (CNV) and ITH
CNVs were called using CNVkit (v0.8.1) to compare the exome-
wide profile between tumors and matched peripheral blood (35).
Allele-specific copy number and tumor purity were assessed
using the ascatNgs (v3.1.0). PyClone (v0.13.0) was used to
infer the cancer cell fraction (CCF) of mutations in tumors.
ITH was calculated using a previously developed method (19).

2.4 Construction of the Multi-Feature Model
Ten classifiers, including K-Nearest Neighbors (KNN), Logistic
Regression (LR), RandomForest (RF), Gradient BoostingClassifier
(GBC),DecisionTreeClassifier (DTC),ExtraTreeClassifier (ETC),
Gaussian Process Classifier (GPC), support vectormachine (SVM)
_poly, SVM_rbf, and SVM_liner, were evaluated to construct a
multi-feature model with three genomic biomarkers to predict the
efficacy of ICIs in the training cohort. The GridSearchCV and
cross_val_score packages in Sklearn (version 0.24.1.) were used to
April 2022 | Volume 13 | Article 829634
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iteratively optimize the RF, GBC, andDTC algorithms. The default
parameters were adopted for the other algorithms. The predicted
efficacy of these algorithms was calculated using the area under the
receiver operating characteristic (ROC) curve. In addition, we
evaluated the accuracy, specificity, sensitivity, positive predictive
value, and negative predictive value of these algorithms in the
training cohort.

2.5 Statistical Methods
An ROC curve was generated to evaluate diagnostic accuracy and the
area under the curve was calculated to measure the discriminatory
ability of potential biomarkers. Progression-free survival (PFS) was
analyzed using the Kaplan–Meier method and log-rank test.
3 RESULTS

3.1 Single Biomarker Has Limited Ability to
Distinguish the Responders From the
Non-Responders
To evaluate the predictive ability of a single biomarker for ICIs
response, eight genomic biomarkers (TMB, TNB, ITH, HLA LOH,
HED, HED_A, HED_B and HED_C) were analyzed, respectively.
First, we winsorized and normalized the data in the training cohort
(Supplementary Figure 1). The receiver operating characteristic
(ROC) curves of the individual biomarkers were plotted and their
predictive ability wasmeasured using the area under the curve (AUC)
Frontiers in Immunology | www.frontiersin.org 3
value. As shown in Figures 1A–H, the accuracy and effectiveness of
TMB, TNB, and ITH (AUC = 0.70, 0.67, and 0.68, respectively) were
higher than those of HLA LOH, HED, HED_A, HED_B, and
HED_C (AUC = 0.58, 0.51, 0.54, 0.51, and 0.49, respectively);
however, none of these values exceeded 0.7, suggesting that a single
biomarker was not effective enough to precisely distinguish
responders from non-responders treated with ICIs.

3.2 Feature Selection and Model Evaluation
Due to the limited predictive ability of a single biomarker, the
predictive ability of the multi-feature model was further
investigated and the detailed processes were shown in Figure 2A.

To avoid model overfitting, cross-validated recursive feature
elimination was applied to select features from eight biomarkers
(TMB, TNB, ITH, HLA LOH, HED, HED_A, HED_B, and HED_C).
AsshowninFigure2BandTable1, threeof them,TMB,ITH,andHLA
LOH,were screened to predict the efficacy of ICIs in the training cohort.

Based on the three selected features, the efficacy of different
algorithms (KNN, LR, SVM_rbf, SVM_ linear, SVM_poly, RF,
GBC, DTC, ETC, and GPC) were evaluated and compared.
The best-performing hyperparameters were determined by 10-fold
cross-validation in the training cohort. As shown in Figure 2C and
Table 2, the top four algorithms for accuracy were GPC, DTC,
SVM_rbf, and SVM_poly, while the top four algorithms for variance
were KNN, SVM_rbf, SVM_poly, and GPC. After comprehensive
consideration of the accuracy and variance, the GPC, SVM_rbf, and
SVM_poly algorithms were selected for further analysis.
A B C D

E F G H

FIGURE 1 | Single biomarker has limited ability to distinguish the responders from the non-responders. ROC curves for TMB (A), TNB (B), ITH (C), HLA LOH (D),
HED (E), HED_A (F), HED_B (G), and HED_C (H) in the training cohort. TMB, tumor mutation burden; ITH, intratumoral heterogeneity; HLA LOH, loss of
heterozygosity in human leukocyte antigen; HFD, HLA-I evolutionary divergence; ROC, receiver operating characteristic.
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3.3 Algorithm Selection for Multi-Feature
Model Construction
The algorithms of GPC, SVM_rbf, and SVM_poly were next
assessed by their ability to predict the efficacy of patients with
ICIs in the training cohort and test cohort1. As shown in
Figures 3A, B, the AUC values of GPC, SVM_rbf, and
SVM_poly algorithms were higher than those predicted by a
single biomarker. Moreover, compared with the GPC and
SVM_rbf algorithms, the SVM_poly algorithm was stabler in
the training cohort and test cohort1, and thus was more suitable
to be selected to construct the multi-feature model.

Next, the median progression-free survival (mPFS) and
median overall survival (mOS) in the training cohort and test
cohort1 were analyzed with the multi-feature model. The
results showed that patients who were predicted to have
Frontiers in Immunology | www.frontiersin.org 4
durable clinical benefit (pDCB) had longer mPFS and mOS
than those predicted to have no durable benefit (pNDB)
(Figures 3C–E).
3.4 Validation of the Multi-Feature Model
in Patients Enrolled in Test Cohort2
Twenty-one NSCLC patients treated with ICIs enrolled in this
study were used for further validation of the multi-feature
model. Consistent with the above results, the AUC value
predicted by the multi-feature model was higher than those
predicted by single biomarker (Figure 4A). Furthermore, the
mPFS of the pDCB subgroup was significantly longer than that
of the pNDB subgroup (Figure 4B). In conclusion, the multi-
feature model is able to distinguish pDCB from pNDB.
A

B C

FIGURE 2 | Feature combination selection and performance evaluation. (A) Workflow of the study. (B) Feature combination selection with 10-fold cross-validation.
(C) Comparison of the efficacy of different algorithms in the training cohort with the selected features. KNN, K-nearest neighbors; LR, logistic regression; RF, random
forest; GBC, gradient boosting classifier; DTC, decision tree classifier; ETC, extra tree classifier; GPC, Gaussian process classifier; SVM, support vector machine.
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4 DISCUSSION

ICIs have achieved great success in the treatment of NSCLC, and
several biomarkers have been developed to help clinicians make
treatment choices; however, the predictive accuracy of these
biomarkers is finite (24, 36). In this study, a comprehensive
analysis of NSCLC samples was carried out to investigate the role
of a multi-feature model composed of TMB, ITH, and HLA LOH
in determining the response to ICIs. Our study showed that the
accuracy of this multi-feature model was higher than that of any
single biomarker, and the mPFS and mOS of pDCB patients were
longer than those of pNDB patients predicted by the multi-
feature model. Finally, whole-exome sequencing data from 21
NSCLC patients treated with ICIs were applied to further
validate the model, and the same results were obtained.

Several studies have integrated multiple indicators to predict the
efficacy of ICIs in NSCLC patients. Shi et al. integrated genomic
profiling, TMB, and the expression level of PD-L1 to predict the
efficacy of ICIs and reported that KMT2C/KRAS/TP53 co-mutation
could serve as a biomarker to identify the best responders to ICIs
therapy; however, the percentage of durable clinical benefit was only
about 50% (37). Lin et al. also constructed a comprehensive predictive
classifier model based on epidermal growth factor receptor and AT‐
TABLE 2 | List of the accuracy and variance of different algorithms with 10-fold
cross-validation in the training cohort.

Algorithm Accuracy Variance

KNN 0.66 0.08
LR 0.68 0.13
SVM_rbf 0.70 0.08
SVM_linear 0.66 0.12
SVM_poly 0.69 0.09
RF 0.67 0.11
GBC 0.67 0.13
DTC 0.70 0.14
ETC 0.65 0.16
GPC 0.72 0.10
A B

C D E

FIGURE 3 | Algorithm selection for multi-feature model construction. (A) ROC curves for SVM_poly, SVM_rbf, GPC, TMB, ITH, and HLA LOH in the training cohort.
(B) ROC curves for SVM_poly, SVM_rbf, GPC, TMB, ITH, and HLA LOH in test cohort1. (C) Kaplan–Meier curves of PFS comparing pDCB with pNDB in the training
cohort. (D) Kaplan–Meier curves of PFS comparing pDCB with pNDB in test cohort1. (E) Kaplan–Meier curves of OS comparing pDCB with pNDB in test cohort1.
pDCB, patients predicted to have durable clinical benefit; pNDB, patients predicted to have no durable benefit; PFS, progression-free survival; OS, overall survival.
TABLE 1 | List of the optimal combination from eight features.

Biomarker Feature Selection Ranking

TMB True 1
ITH True 1
HLA LOH True 1
HED_C False 2
TNB False 3
HED_B False 4
HED_A False 5
HED False 6
April 2022 | Volume 13 | Article 829634
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rich interactiondomain1Bstatus, smokinghistory, treatment type,and
PD-L1 score and found that patients with low-risk scores showed
improvedPFScompared to thosewithhigh-risk scores,while theAUC
value of 6-month PFSwas only 0.75 (38). In addition, these prediction
models requiredmultiple detection techniques, such as targeted panel
sequencing and IHC of PD-L1, which need more tumor samples and
costs. Therefore, in terms of the availability of clinical samples and the
costs of treatment, we hoped that multiple features could be obtained
throughonedetection technology.Targetedpanel sequencinghasbeen
demonstrated in clinical application. As the costs of sequencing
decreased, the clinical application of targeted panel sequencing
gradually increased. More importantly, from targeted panel
sequencing, multiple genomic features could be analyzed.
Therefore, the multi-feature model based on genomic markers
was developed. In our study, the AUC values of the multi-feature
model in the training cohort, test cohort1 and test cohort2 were
0. 82, 0.77, and 0.78, respectively, which proved that ourmodel is
more effective in predicting the efficacy of NSCLC patients
treated with ICIs. In order to further expand the application of
this model, the predictive ability of this model in melanoma was
also analyzed. As shown in Figure S2, the AUC value was 0.6,
which indicated that themodelmay be unsuitable formelanoma.

In summary,wehave constructedamulti-featuremodel that can
effectively predict the efficacy of NSCLC patients treated with ICIs,
which can help in clinical decision-making. In addition, patients
with pDCB could be considered as more suitable candidates for
treatment with ICIs. Ongoing intense work, especially prospective
large cohorts, is needed to further validate and optimize ourmodel.
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Supplementary Figure 1 | Data winsorization and normalization in the training
cohort. (A) Data of HED, HED_A, HED_B, HED_C, TMB, ITH and TNB before
winsorization. (B) Data of HED, HED_A, HED_B, HED_C, TMB, ITH and TNB
after winsorization. (C) Data of HED, HED_A, HED_B, HED_C, TMB, ITH and TNB
after normalization.

Supplementary Figure 2 | ROC curves for multi-feature model, TMB, ITH, and
HLA LOH in cohort of melanoma.
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FIGURE 4 | The multi-feature model could effectively predict response to ICIs treatment in test cohort2. (A) ROC curves for multi-feature model, TMB, ITH, and HLA
LOH in test cohort2. (B) Kaplan–Meier curves of PFS comparing pDCB with pNDB in test cohort2.
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