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Dipeptidyl-peptidase IV (DPP4), originally identified as an aminopeptidase in 1960s, is an
ubiquitously expressed protease presented as either a membrane-bound or soluble form.
DPP4 cleaves dipeptide off from the N-terminal of its substrates, altering the bioactivity of
its substrates. Subsequent studies reveal that DPP4 is also involved in various cellular
processes by directly binding to a number of ligands, including adenosine deaminase,
CD45, fibronectin, plasminogen, and caveolin-1. In recent years, many novel functions of
DPP4, such as promoting fibrosis and mediating virus entry, have been discovered. Due
to its implication in fibrotic response and immunoregulation, increasing studies are
focusing on the potential role of DPP4 in inflammatory disorders. As a moonlighting
protein, DPP4 possesses multiple functions in different types of cells, including both
enzymatic and non-enzymatic functions. However, most of the review articles on the role
of DPP4 in autoimmune disease were focused on the association between DPP4
enzymatic inhibitors and the risk of autoimmune disease. An updated comprehensive
summary of DPP4’s immunoregulatory actions including both enzymatic dependent and
independent functions is needed. In this article, we will review the recent advances of
DPP4 in immune regulation and autoimmune rheumatic disease.

Keywords: autoimmune, autoinflammatory, DPP4, inflammation, dipeptidyl peptidase
INTRODUCTION

Dipeptidyl-peptidase IV (DPP4), also known as CD26, was first discovered as a protease in 1966 (1).
DPP4 is mainly expressed on the cell surface, forming a homodimer. It is widely expressed on
epithelial cells in various tissues (kidney, bile ducts, liver, lung and intestine), some endothelia cells,
leukocyte subsets and fibroblasts (2, 3). The full length of human DPP4 is 766 amino acids (AA),
including a short 6-AA cytoplasmic tail, a 22-AA transmembrane hydrophobic segment, and a 738-
AA extracellular portion (2, 4, 5). In addition to the membrane-bound form, DPP4 can also be
cleaved off from the cell membrane and released into plasma and other body fluids, forming a
soluble form that lacks cytoplasmic domain and transmembrane domain. Since the catalytic domain
is located in the extracellular portion, soluble DPP4 maintains the enzymatic activity (2).

The substrates of DPP4 have a unique feature of amino acid sequence: with alanine or proline as
the preferred residue at the second amino acid. The substrates of DPP4 are categorized into incretin
peptides, chemokines and cytokines, and neuropeptides. By cleaving X-Pro or X-Ala dipeptides off
org March 2022 | Volume 13 | Article 8308631
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from the N-terminal, DPP4 regulates the biological function of
its substrates. For example, DPP4 converts glucagon-like
peptide-1 (GLP-1) (7–36) and (7-37) into inactive forms GLP-
1(9-36) and GLP-1(9-37), which are unable to bind GLP-1
receptor and induce insulin release from pancreatic b cells (6).

Later studies identified DPP4 as the adenosine deaminase
(ADA) binding protein. By transducing costimulatory signal in T
cells upon stimulation with ADA, DPP4 is considered as a T cell
activation marker (7). In 2013, DPP4 was discovered as an entry
receptor for Middle East Respiratory Syndrome Coronavirus
(MERS-CoV) (8). By binding to spike protein on the surface of
MERS-CoV, DPP4 expressed on the epithelial cells in respiratory
systemmediates the entry of the virus into the host cell (9–11). In
addition, DPP4 had also been identified as a co-receptor for
human immunodeficiency virus (12). However, later studies
indicate that CCR5 is the major co-receptor for the entry of
human immunodeficiency virus into CD4+ T cells (13, 14) The
selective expression of CCR5 on DPP4+ T cell subsets may
partially explain the association between HIV infection and
DPP4 expression (15). A recent study identified a novel
implication of DPP4 in scarring and wound healing (16). The
author discovered a subpopulation of fibroblast expressing DPP4
is responsible for the bulk of connective tissue deposition in
dermal scars. Inhibition of DPP4 reduced scar formation in a
mouse model of wound healing. Another study reported that a
mesenchymal progenitor cell population expressing DPP4
displayed a highly proliferative and multipotent phenotype and
regulated the differentiation of adipocytes (17).

Autoimmune diseases are a group of chronic disorders
characterized by autoimmune-mediated damage in multiple
systems. Elevation of diverse inflammatory cytokines or
chemokines, along with activation of multiple immune cells,
could be observed in patients with autoimmune disease. In a
number of autoimmune diseases, such as systemic sclerosis and
IgG4-related disease, fibrosis also plays a critical role in their
pathogenesis. With its involvement in immune regulation and
fibrosis, DPP4 may have a pivotal implication in the
development of autoimmune disease. Clinical evidence has
suggested an association between the use of DPP4 enzymatic
inhibitors and several autoimmune disorders, which is
summarized by Zhao group and Sahoo group in 2014 and
2021 respectively (18, 19). While DPP4 has been considered a
Frontiers in Immunology | www.frontiersin.org 2
moonlighting protein due to its multifunctional features in
different types of cells, an updated comprehensive summary of
DPP4’s immunoregulatory actions including both enzymatic
dependent and independent functions is needed. This review
focuses on emerging evidence of DPP4 in immune regulation
and attempts to build a bridge between DPP4 and
autoimmune diseases.
THE ROLE OF DPP4 IN IMMUNE SYSTEM

DPP4 is expressed in many types of immune cells, including T
cells, B cells, natural killer cells (NKs), dendritic cells (DCs), and
macrophages (Table 1) (36). The expression level of DPP4 is also
associated with the activation status of immune cells. Both
enzymatic dependent and independent functions of DPP4 are
involved in the regulation of immune function (Figure 1).

T Cells
The expression of DPP4 in T cells is variable in different
subpopulation and tightly regulated by the level of cell
activation (37). Previous research suggested that both Th1 and
Th2 express DPP4 on the surface, whereas Th1 cells express
significant higher amount of DPP4 than Th2 cells (20). Flow
cytometry analysis of DPP4 expression in different CD4+ T
helper subsets shows that the expression of DPP4 is highest in
Th17 compared to Th1 and Th2 (22). On the contrary, DPP4
expression is low on Treg cells and has been regarded as a
negative regulator of Treg function (38). In CD8+ T cells, by
providing co-stimulatory signal, DPP4 represents a specific
marker of successful memory development (25, 26).

During the thymus maturation, DPP4 is considered as a
maker of differential regulation of human lymphocytes
activation (39). DPP4-deficient animal models show decreased
number of overall lymphocytes and decreased proportion of
CD4+T cells and memory T cells, while naïve T cells relatively
increase (27, 40, 41).

In in vitro studies , inhibit ion of DPP4 induced
immunosuppressive cytokine TGF-b, but decreased production
of proinflammatory cytokines including IL-2, IL-6, and IFN-g
(41–43). There was a debate that DPP4 only exerts T cells
activation function via its enzymatic activity (44, 45). However,
TABLE 1 | The expression and function of DPP4 in immune cells.

Expression DPP4 Function References

CD4+ T cells
Th1 High expression Co-stimulation (20)
Th2 Relative low expression Elevated DPP4 expression was associated with the production of Th2 cytokines (20, 21)
Th17 High expression Co-stimulation, correlated with Th17 cytokine production (22, 23)
Treg Low expression (24)

CD8+ T cells High/negative expression Co-stimulation (25, 26)
B cells Low expression Co-stimulation, promote DNA synthesis, Ig production, and Ig isotype switching (27, 28)
DCs Positive expression Modulate adenosine concentration by DPP4/ADA interaction, recruit Th1 (29, 30)
NK Low expression Co-stimulation, maintain cytotoxicity (31, 32)
Macrophage Positive expression Regulatie M1/M2 macrophage polarization (33, 34)
Fibroblast Specific subpopulation Activation marker (16, 35)
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later studies confirmed that DPP4 may also promotes T cell
activation and proliferation by enzymatic independent actions.
DCs, as most potent antigen-presenting cells(APCs), are pivotal
in directing activation and differentiation of naïve T cells (46,
47). DPP4 and some adenosine receptors, including A1R, A2AR
and A2BR, serve as binding proteins for extracellular ADA (48).
Ecto-ADA anchored on DC surface through A2BR and DPP4 on
T cells compose a ternary complex and potentiates Th1-like cell
activation and high production levels of Th1 cytokines such as
IFN-g, IL-6 and TNF-a, but without affecting Th2 cytokine
production (49). Another study reported that A2AR can also
compose similar ternary complex (50). Direct interaction of
DPP4 on T cell with ADA or its activating antibody results in
the recruitment of CD45 in lipid raft, forming a signaling
complex. The DPP4/CD45 complex then enhances the
phosphorylation of downstream CD3-z, p56lck, and zap-70,
providing co-stimulatory signal for T cell activation (51, 52).
Additionally, DPP4 on T cells interacts may also directly interact
with caveolin-1 on APCs. This interaction triggers CARMA1-
mediated nuclear factor (NF)-kB activation and its downstream
signaling, resulting in T cells proliferation in a TCR/CD3-
dependent manner (53). Co-stimulatory blockade of DPP4 by
Frontiers in Immunology | www.frontiersin.org 3
DPP4 deletion or pharmacological inhibition results in a
significant reduction of IL-17 and IL-21 cytokines from CD4+
T cells, suggesting a critical role of DPP4 in Th17 activation (23).

B Cells
DPP4 is expressed at a very lower level (less than 2%) in
unstimulated CD20+ B cells, but significantly upregulated to
around 50% through specific stimuli [including St. aureus and
pokeweed mitogen(PWM)]. This result suggests a potential
involvement of DPP4 in B cells activation (28). Incubation
with DPP4 inhibitors suppress DNA synthesis and IgM
secretion by B cells in a dose-dependent manner (28). In
supporting this, DPP4 knockout mice, displayed a markedly
decreased production of IgG after immunization by PWM. The
decreased production of IL-4 and IL-2, delayed IFN-g secretion
in sera possibly contribute to the decreased Immunoglobulin
production and impaired immunoglobulin isotype switching to
IgG1, IgG2a and IgE (27). DPP4 is expressed in some B cell
chronic lymphocytic leukemia cell linage and associated with the
prognosis (54). In conclusion, DPP4 may serve as an activation
marker for B cells, although its exact role in B cell biology is still
not completely understood.
FIGURE 1 | Immunoregulatory function of DPP4: enzymatic and non-enzymatic functions of DPP4 in immune cells and fibroblast are shown. DC, dendritic cell;
DPP4, dipeptidyl peptidase-4; IgG, immunoglobulin G; IgM, immunoglobulin M; KLK5, kallikrein-related peptidase 5; sDPP4, soluble DPP4; Th1, type 1 helper T cell;
Th17, type 17 helper T cell.
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NKs
A serial of studies revealed that DPP4 might be a characteristic
surface marker of NKs. In normal condition, NKs express DPP4
at a low frequency, but is dramatically increased to 30% after IL-2
stimulation (31, 55, 56). Researchers utilized peripheral blood
CD16+CD56+ NK cell to confirm that DPP4 could be induced by
IL-2, IL-15 or IL-12, and regarded as a potential activation
marker for NK cells (57). DPP4 is able to induce protein
tyrosine phosphorylation and elicit a CD16-dependent lytic
response in NKs (58). In addition, DPP4 was reported to
sustain NK cytotoxicity against lung cancer (6, 32).

DCs
The expression of DPP4 on DC was first detected on a restricted
subpopulation in afferent lymph nodes (29).Flow cytometry
analysis further suggested DPP4 was expressed at high levels
on cDCs (59–61). Moreover, the expression of DPP4 on DCs was
higher in visceral adipose tissue (VAT) from obese mice and
humans compared with lean controls (30). During in vitro DCs
differentiation, a significant increase in DPP4 expression was
detected, suggesting a link between DPP4 expression and
maturation of DCs (30). DPP4 positive DCs contribute to
adaptive immunity, especially Th1-like responses. On one
hand, DPP4 expressed on DC confers the ability to modify the
macrophage-derived chemokines, which may attract Th1 cells
(29). On the other hand, DPP4 modulates adenosine
concentration and inflammation in the microenvironment of
VAT by binding to ADA (30).

Macrophages
DPP4 expression is also detected on macrophages from visceral
adipose tissue in both high fat diet-induced and genetically obese
mice, and the expression increased with functional maturation of
macrophages (30). A long-term DPP4 inhibition reduced
inflammation in VAT via downregulating proinflammatory
genes in adipose tissue macrophages, and prevented monocyte
migration and actin polymerization (33). Likewise, DPP4
inhibitions by alogliptin (62) and shRNA silencing (63)
suppressed macrophages infiltration and accumulation. Like in
DCs, DPP4 expression on macrophage was able to promote T-
cell proliferation via modulating adenosine concentrations in
micro-environment (30).

Enzymatic Degradation of
Immunoregulating Small Molecules
As discussed above, DPP4 is able to process a number of
cytokines and chemokines by cleavage of N-terminal dipeptides.

Stromal cell-derived factor-1 (SDF-1), also as known as
CXCL12, is a chemoattractant for T cells, hematopoietic
progenitor cells, and adipose-derived regenerative cells (64–
66). SDF-1 can be proteolytic cleaved by DPP4 and converted
into CXCL12(3-68) (67). CXCL12(3-68) failed to induce
CXCR4-mediated b-arrestin recruitment and downstream
activation of IP3, Akt or ERK1/2, and thus losing its
chemoattractant properties to lymphocytes. Co-administration
of DPP4 inhibitor sitagliptin significantly enhanced the ability of
Frontiers in Immunology | www.frontiersin.org 4
intact SDF-1, but not CXCL12(3-68), to induce intra-articular
lymphocyte infiltration (67). In addition to inactivating SDF-1,
DPP4 also regulates SDF-1-mediated lymphocyte migration
through direct interaction with its receptor CXCR4. DPP4
binds to CXCR4 on T lymphocytes and SDF-1 is able to
induce the internalization of CXCR4/DPP4 complex.
Interestingly, internalized CXCR4 is rapidly recycled back to
the plasma membrane while DPP4 is clustered in intracellular
vesicles, suggesting a self-regulatory mechanism of SDF-1 in
reducing DPP4-dependendt inactivation (68). Other chemokines
identified to be truncated by DPP4 include IP10, MIP, MIG, I-
TAC, MDC, RANTES, etc. (Table 2).

Other cytokines degraded by DPP4 include fibroblast growth
factor 2 (FGF2), IL-3, granulocyte-macrophage colony
stimulating factor (GM-CSF), granulocyte colony stimulating
factor (G-CSF), IL-3, and erythropoietin (EPO) (79–81). Many
interleukin family members such as IL-2/-5/-10/-13/-17/-22/-
23/-27/-28 also possess potential cleavage site of DPP4 (80).
However, further biochemical and biological studies are needed
to identify whether the putative DPP4 truncation sites are true
truncation sites for those peptides.
THE ROLE OF DPP4 IN FIBROSIS

Fibroblasts are spindle-shaped cells responsible for the synthesis
of extracellular matrix and collagen in connective tissue (85, 86).
Although fibroblasts are not conventional immune cells, they
play an important role in immune regulation and autoimmune
disease. Fibroblasts may also act as an antigen present cell to
promote proliferation, activation, and recruitment of adaptive
immune cells via both direct cell-to-cell interaction and secretion
of cytokines (87, 88). The expression of DPP4 was found to at a
high level in capsule fibroblasts compared to medulla fibroblasts
in the thymus of mice, suggesting that DPP4 may serve as a
segregate marker to distinguish different fibroblast subsets (35).
Fibroblasts are center actor in fibrosis and wound healing (16,
89). SFRP2/DPP4 define a major fibroblast population in human
skin (90). The expression of DPP4 allows isolation of a
fibrogenic, scar forming lineage and inhibition of DPP4
reduces cutaneous scarring during wound healing (16).
Another study suggested that the expression of DPP4 in the
skin fibroblast was upregulated in patients with systemic sclerosis
compared with that of healthy individuals. DPP4 regulates TGF-
b-induced fibroblast activation in skin fibrosis and DPP4
characterizes an activated population of fibroblasts
characterized by the expression of collagen and myofibroblast
markers. Genetic deletion or pharmacologic inhibition of DPP4
in fibroblasts suppressed their proliferation, migration, and
collagen production (91). Hui-Chun Ku et al. reported that
DPP4 activated dermal fibroblasts via PAR2 and downstream
NF-kB/SMAD signaling (92). Expression of DPP4 was increased
in the thickening peritoneum of chlorhexidine gluconate-
induced peritoneal fibrosis model of rats. Increased expression
of DPP4 in diabetes was found to promote epithelial-
mesenchymal transition and peritoneal fibrosis, which could be
March 2022 | Volume 13 | Article 830863
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relieved by pharmacological or genetic inactivation of DPP4 (93).
Moreover, DPP4 binding to extracellular matrix proteins (such
as collagen and fibronectin) and extracellular matrix degrading
enzymes (such as plasminogen and streptokinase) probably
contributes to cells spreading and metastasis (5, 94, 95).
Streptokinase, plasminogen and its metabolite plasmin bind to
cysteine-rich region of DPP4, resulting in a rapid increase of
intracellular Ca2+ response and subsequent activation of
fibroblast (5, 96). The binding of DPP4 with plasminogen also
regulates the homeostasis of extracellular matrix by promoting
the secretion of matrix metalloproteinases and conversion of
plasminogen to plasmin (97). In addition, production of plasmin
is able to degrade BP180, an autoantigen found in autoimmune
skin disease bullous pemphigoid. Therefore, DPP4 may be
involved in the maintaining of BP180 immunotolerance and
the prevention of BP autoantibody production (98).
THE ROLE OF DPP4 IN
AUTOIMMUNE DISEASE

DPP4 in Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic progressive autoimmune
disease causing pain, swelling, stiffness and loss of function of
joints. Although the exact cause and pathogenesis are unclear, it’s
a consensus that T cell activation plays an important role in the
initiation and maintaining of inflammation in RA (99). Various
Frontiers in Immunology | www.frontiersin.org 5
factors involved in T cell activation, including CD28, CD40,
CTLA4, ILRA/IL2, IL-21, have been found to increase in RA
(100). As an activation marker of T cells, DPP4 has received
increasing attention in RA. Serum DPP4 concentration is
significantly decreased in patients with RA compared to the
control group (101), and this decrease is inversely correlated to
disease activity (102). However, DPP4 expression on the surface
of circulating lymphocytes and monocytes showed no significant
differences between early RA patients and healthy controls (102,
103). Another study suggested that DPP4 expression on
peripheral blood CD4+ T cells was higher in active RA
compared to inactive RA and controls. However, its expression
on synovial fluid T cells from RA was lower than that from
osteoarthritis patients (104). The decrease of DPP4 activity also
occurs in synovial fluids, fluid mononuclear cells (FMNC) and
synovial membrane in RA compared with osteoarthritis (105–
107). Interestingly, Anti-DPP4 autoantibodies have been
observed in RA patients and may be used as a biomarker for
early diagnosis of RA (108), which suggests that DPP4 may
contributes to the immunopathology of RA.

SDF-1, a substrate of DPP4, is thought to play a central role in
inflammatory cell recruitment via interacting with its receptor
CXCR4. In murine model of antigen-induced arthritis, DPP4
deficiency resulted in preservation of serum active SDF-1 and
enhanced infiltration of CXCR4-positive inflammatory cells in
arthritic joints (109). The plasma level of DPP4 was lower than
that in osteoarthritis and negatively correlated with plasma
inflammation marker C-reactive protein (109). The level of
TABLE 2 | Summary of DPP4 substrates.

Peptide N-terminus Species Functional change after truncation Physiological Function References

Chemokines and cytokines
CXCL9(Mig) TP↓VVRK… Human Reduce activity Lymphocyte chemotaxis (69)
CXCL10 (IP-10) VP↓LSRT Human Reduce activity Lymphocyte chemotaxis (69, 70)
CXCL11(I-TAC) FP↓MFKR Human Reduce activity Lymphocyte chemotaxis (69, 71)
CXCL12(SDF-
1a)

KP↓VSLS… Human Reduce activity Lymphocyte chemotaxis (67, 69)

CCL2(MCP-1) QP↓DAV… Human Increase activity Angiogenesis (72)
CCL3(MIP-1a) AP↓YGA… Murine Increase activity Monocyte chemotaxis (34)
CCL3L1(LD78b) AP↓LAAD… Human Affinity alteration Monocyte chemotaxis (73, 74)
CCL5(RANTES) SP↓YSSD… Human Reduce activity Macrophage CSF (75)
CCL11(Eotaxin) GP↓ASV… Human Reduce activity Eosinophil chemotaxis (69, 76)
CCL22(MDC) GP↓YG↓AN Human Reduce activity Lymphocyte chemotaxis (77, 78)
Cytokines
IL-3 AP↓MTQ… Human Reduce activity Cell proliferation (79)
GM-CSF AP↓ARS… Human Reduce activity Cell proliferation (79)
G-CSF AT↓PLG… Human Reduce activity Cell proliferation (79)
EPO AT↓PLG… Human Reduce activity Cell proliferation (79)
FGF2 PA↓LPE… Human loss nuclear localization signal Inhibition in vitro lead to metastatic potential of prostate cancer

cells
(80, 81)

Incretin hormones
GLP-1 HA↓EGTFTSD- Human Inactivation Postprandial insulin response (82)
GLP-2 HA↓DG↓SF… Human Inactivation Glucose control (82)
GIP YA↓EGTF… Human Inactivation Postprandial insulin response (82)
PACAP HS↓EG↓IF… Human Inactivation Neural regulation of islet (82)
GRP VP↓LP↓AG… Human Inactivation Neural regulation of islet (82)
Neuropeptides
Neuropeptide Y YP↓SKPDNPG Human Affinity alteration inhibit exocrine pancreas function, feeding (83)
Peptide YY YP↓IKPEAPG Human Affinity alteration Multiple function in renal, digestive system and food intake (84)
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SDF-1 was inversely correlated with the number of DPP4+ T
cells in synovial fluids from patients with RA (105). Since the
synovial level of SDF-1 was strongly correlated with the disease
activity score (DAS28 CRP) and inflammation markers (serum
C-reactive protein and IL-6) (109, 110), the decrease of synovial
DPP4 in RA may lead to synovial inflammation via SDF-1/
CXCR4 axis. These results indicate a critical role of DPP4/SDF1/
CXCR4 in synovial inflammation in RA.

A recent study indicates that exogenous DPP4 or
overexpression of DPP4 in synovial fibroblasts reduced the
production of proinflammatory cytokines such as IL-1b, IL-6
and IL-3 from fibroblasts (111). Bone erosion is a severe
consequence in RA progression. In a recent study, DPP4 was
found to be highly expressed in osteoclast and its expression was
suppressed by an anti-resorptive agent denosumab, suggesting
that osteoclast-derived DPP4 may be an important link between
energy metabolism and bone remodeling (112). It is shown that
the invasion of synovial fibroblasts into cartilage was enhanced
by the inhibition of DPP4 in a mouse model of RA (113).
However, in a streptozotocin-induced diabetic model of rat,
DPP4 inhibitor was shown to attenuate the bone loss and
improve mechanical bone strength, probably through reducing
CTX-I-dependent bone resorption (114).

Clinical observation on patients prescribed with DPP4
inhibitors may offer critical information on role of DPP4
enzymatic activities in RA. DPP4 inhibitors-associated newly
onset RA cases have been reported by several groups (115–117).
However, larger-scale population studies failed to identify an
association between RA and DPP4i utilization compared to other
antidiabetic therapies (118–121). Future randomized controlled
trials are required to investigate the exact effects of DPP4
enzymatic inhibition on the development of RA.

DPP4 in Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is a chronic multi-system
autoimmune disease with many patients presenting with a
characteristic butterfly rash (erythematous rash over the cheeks
and bridge of the nose). Since most patients present high titers of
autoreactive antibodies and disease activity is correlated with
autoantibody titers, SLE used to be considered as an adaptive
immune system disorder (122).

Serum DPP4 activities were significantly decreased in mice
with lupus erythematosus-like syndrome compared to healthy
mice, indicating a potential involvement of DPP4 in the
pathogenesis of SLE (4). Likewise, clinical evidences
demonstrate lower levels of DPP4 in the serum and peripheral
blood mononuclear cells of SLE patients compared to health
controls (4, 123, 124). Wong et al. reported that surface
expression of DPP4 on CD4+ T cell and invariant natural
killer T (iNKT) lymphocytes were reduced in SLE patients,
accompanied with reduced circulating iNKT and elevated Th1
response (125). DPP4 mRNA expression analysis via qPCR
showed 3.6-fold higher in SLE group than in the healthy
control group, whereas no significant correlation with disease
activity (50).

Recent population-cohort studies from Taiwan and Korea
showed that DPP4 inhibitors was associated with a reduced risk
Frontiers in Immunology | www.frontiersin.org 6
of SLE (126, 127). However, high-level clinical evidence on the
relation between DPP4 inhibition and SLE is limited.

DPP4 in Systemic Sclerosis
Systemic Sclerosis (SSc), also known as scleroderma, is another
severe autoimmune disease characterized by diffuse cutaneous
and visceral fibrosis (128). Early research reported an increase in
both absolute number and percentage of peripheral blood
CD4+DPP4+T in scleroderma patients, and the levels of DPP4
expression in T cells correlated with disease activity (129).
Circulating soluble DPP4 was also significantly decreased in
SSc patients, compared to controls (101). Compared to limited
cutaneous SSc, the soluble DPP4 levels further reduced in diffuse
cutaneous SSc (130), which supports the hypothesis that DPP4
activity is associated with fibrosis progress in SSc.

Myofibroblasts are main collagen-producing cells in tissue
fibrosis (131). In SSc skin, myofibroblasts contribute to tissue
tension and skin/joint contractures (132, 133). As discussed
above, DPP4 is critical for the activation of fibroblast. DPP4-
positive fibroblasts express a high level of profibrotic genes
including collagen-1, collagen-3, and fibronectin (134).
Additionally, stimulation with recombinant human DPP4
promotes the production of fibronectin in lung fibroblast,
suggesting a role of DPP4 in fibroblast activation and tissue
remodeling (135). A recent study discovered that DPP4-
expressing fibroblasts are responsible for collagen deposition in
dermal scars and inhibition of DPP4 reduced scar formation in a
mouse model of wound healing (16). The following studies
demonstrated that SFRP2/DPP4 fibroblast subpopulation is the
progenitor of fibrogenic fibroblasts in SSc skin (136) and DPP4
activated NF-kB and SMAD signaling through PAR2, leading to
the activation of dermal fibroblasts (92).

Utilization of DPP4 inhibitors sitagliptin and vildagliptin in
murine model of bleomycin-induced skin fibrosis showed a
marked anti-fibrotic effect as evidenced by ameliorated dermal
thickness, hydroxyproline content, and accumulation of
myofibroblasts through suppressing TGF-b-induced ERK
signaling pathway (91). Vildagliptin also effectively attenuated
fibrosis and inflammation in bleomycin-induced lung fibrosis
(137). Although animal studies have suggested a prospective
application of DPP4 inhibitors in SSc, there are limited clinical
trials investigating the role of DPP4 inhibitors in patients
with SSc.

DPP4 in Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) is a typical autoimmune-
mediated digestive system disease including Crohn’s disease
(CD) and ulcerative colitis (UC). Although there are differences
between CD and UC, they both are characterized by chronic
relapsing progressive process and multi-organ involvement in
later stage. The serum DPP4 level and enzymatic activity in
patients with IBD were decreased significantly compared to
healthy control or patients with remissive conditions, and the
extent of decrease was correlated with disease activity (138–141).
In addition, responders to treatments had a higher serum DPP4
level compared to nonresponders (139). DPP4 activity in the fecal
was found to reduce in active UC patients, but increase in CD
March 2022 | Volume 13 | Article 830863
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patients, when compared to remitters (142). These results suggest
that DPP4 activity is a potential biomarker for monitoring IBD
activity and therapeutic response (143). A model of TNBS-
induced colitis in DPP4-/- mice showed higher serum levels of
neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and IL-
6, which are all substrates of DPP4, compared to C57BL/6 mice.
The levels of VIP and IL-6 in the colon and brain tissues were also
increased in DPP4-/- mice during the acute inflammation phase of
colitis. IL-10 in the brain was found to reduce in wild-type mice,
but increase in DPP4-/- mice, suggesting a potential role of DPP4
in regulating neuroimmune response in colitis development (144).
In dextran sulfate sodium (DSS)-induced colitis, DPP4-/- mice
showed increased CD8+ T cells and NKT cells in the spleen, as
well as increased macrophage infiltration and enhanced
expression of NF-kB p65 subunit in colon mucosa (145),.
Additionally, GLP-1 and GLP-2 promote the repair of injured
intestinal epithelia and regulate T cell differentiation and
functions, and those functions are inhibited by DPP4 enzymatic
cleavage (146, 147). The protective effect of DPP4 inhibitors on
IBD has been observed in animal studies. DSS-induced colitis in
mice was improved by administration of DPP4 inhibitor ER-
319711, as demonstrated by less colon shortening and weight loss
(148). Likewise, anagliptin treatment also facilitates the restoration
of intestinal mucosal damage in DSS-induced colitis in C57BL/6
mice (149). However, clinical evidence about the effect of DPP4
inhibitor on IBD is limited and inconsistent. A cross-sectional
study observed an increased risk of several autoimmune diseases
including Crohn’s disease, Hashimoto’s thyroiditis, and Psoriasis
in patients on DPP4 inhibition therapy (150). Abrahami et al. also
reported an association between the use of DPP4 inhibitor and
increased risk of IBD (hazard ratio 1.75, 95% confidence interval
1.22 to 2.49) (151). Nevertheless, another real-world investigation
of 895,747 patients on either DPP4 inhibition therapy or other
anti-diabetic treatment suggested that the use of DPP4 inhibitors
was not associated with increased IBD risk (152). A meta-analysis
involving 16 individual studies also reported a non-significant
increase in the risk of IBD after exposure to DPP4 inhibitor when
using a random-effects model (Relative risk 1.52; 95% confidence
interval 0.72 to 3.24). However, this finding was driven by the
inclusion of a large study and further surveillance on this effect is
warranted (153).

DPP4 in Autoimmune Diabetes
Type 1 diabetes mellitus (T1DM), also known as autoimmune
diabetes, is characterized by immune-mediated destruction of
pancreatic b cells and insufficiency of insulin secretion in early
ages (154). SerumDPP4 activity was found to increase in patients
with T1DM and the elevation is correlated with duration of
diabetes (155–157). Although DPP4i has been used as either
mono-therapy or combined therapy for T2DM over a decade,
there is limited evidence supporting its application in T1DM.
The effect of DPP4 inhibition on lowering HbA1c in patients
with T1DM was not consistent in clinical trials (158–161).

Despite inconsistent findings in clinical investigations, the
role of DPP4 in T1DM progression and inflammatory process
has received sufficient attention in preclinical studies.
Imbalanced Th1/Th2 and Th17/Treg responses are important
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features of T1DM. DPP4 inhibition leads to decreased Th1
response, increase of Th2 cytokines, and restoration of Treg/
Th17 imbalance (98). GLP-1, a substrate of DPP4, was reported
to possess anti-inflammatory property in pancreas and adipose
tissue by reducing the production of inflammatory cytokines and
infiltration of immune cells (162). Therefore, the inhibition of
DPP4 contribute to anti-inflammatory process in pancreatic. In
NOD mice trial treated with DPP4 inhibitor MK0431, the
survival of islet graft was prolonged, accompanied by a
decreased migration of CD4+ T cells into pancreas through a
pathway involving cAMP/PKA/Rac1 activation (163). In another
T1DM mouse model induced by low-dose streptozotocin,
sitagliptin not only reduced blood glucose level, but also
improved inflammation in pancreas by increas ing
CD4+CD25hiFoxp3+ T cells and reducing inflammatory cells
(such as CD11b+ cells and CD4+CD26+ T cells) (164).
Therefore, preclinical studies indicate that DPP4 inhibition
may improve T1DM through mechanisms involving both
incretin effect and anti-inflammatory action.

DPP4 in Other Autoimmune Diseases
In addition to diseases mentioned above, involvement of DPP4
in other autoimmune diseases are displayed in Table 3. However,
given the lower incidence of certain autoimmune disease, limited
evidences are accessible. Case reports and retrospective studies of
DPP4i utilization in T2DM patients demonstrated an association
between the use of DPP4i and bullous pemphigoid, a severe
autoimmune skin disease (18, 173–177). Importantly, DPP4i-
induced bullous pemphigoid does not remit fully after
withdrawal of DPP4i, suggesting that DPP4i induces and
aggravate the process of bullous pemphigoid rather than a
reversible side effect of DPP4i (18). Although the exact
mechanisms underlying DPP4i-associated bullous pemphigoid
is currently unclear, the breakdown of immunotolerance of
BP180, the major autoantigen of bullous pemphigoid, might be
a key reason. As mentioned above, DPP4 is involved in the
immunotolerance of BP180 by regulating the conversion of
plasminogen to plasmin that is responsible for the degradation
of BP180 (98). A case-control study found that salivary DPP4
activity was increased in the patients with Sjögren’s syndrome
(SS), and there was a positive correlation between DPP4 activity
and MMP9 level (166). A serial of studies reported that DPP4 is
associated with chondrocyte physiology and inhibition of DPP4
suppresses the degradation of ECM, which is considered to help
the amelioration of osteoarthritis (169, 178, 179). In addition,
DPP4 inhibition was also reported to improve psoriasis (172),
probably by inhibiting T cell activation (171). Collectively,
further animal and clinical studies are required to identify the
exact role of DPP4 in the development of autoimmune diseases.
DISCUSSION

This review discusses the role of DPP4 in immune system and its
role in pathogenesis of different autoimmune diseases.
Apparently, the expression of DPP4 is significantly affected in
different autoimmune conditions. However, DPP4 is not a
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specific marker of any autoimmune disease, as its ubiquitous
expression limits the potential of DPP4 as a precise biomarker. In
addition to autoimmune disease, immune cell-derived DPP4
may also other disease conditions such as type 2 diabetes.
Studies have demonstrated that immune cells, especially
circulating CD4+ T helper cells, are important source of
plasma DPP4 activity which is responsible for postprandial
glucose intolerance in patients with type 2 diabetes (180, 181).
In patients with type 2 diabetes, kallikrein-related peptidase 5, an
enzyme responsible for the shedding of DPP4 from cell
membrane, was induced in CD4+ T cells, suggesting that
immune cell-derived DPP4 is responsible for reduced incretin
effect in diabetes patients (180). Experimental and clinical
investigations suggest that DPP4 may play a dual role in the
pathogenesis of autoimmune diseases and the inhibition of DPP4
results distinct outcome in different disease condition. A possible
reason is that DPP4, as a moonlighting protein, possesses diverse
functions including enzymatic degradation of various substrates
and enzymatic independent interaction with many ligands. In
addition, while DPP4 is widely expressed in many types of cells,
DPP4 expression in different cell population may also have
distinct functions. To dissect the exact role of DPP4 in
autoimmune diseases, future efforts may focus on the role of
Frontiers in Immunology | www.frontiersin.org 8
DPP4 in different types of cells, the temporal and spatial
characteristics of DPP4 expression (especially in different
stages of disease), unrecognized ligands for DPP4, and
strategies targeting the non-enzymatic activity of DPP4. Taken
together, DPP4 is a promising target of autoimmune diseases
although its exact mechanisms in these conditions
remain elucidated.
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Chalecka A, Jarmuż-Szymczak M, et al. The Prognostic Significance of
Surface Dipeptidylpeptidase IV (CD26) Expression in B-Cell Chronic
Lymphocytic Leukemia. Leuk Res (2016) 47:166–71. doi: 10.1016/
j.leukres.2016.06.002

55. Biuling F, Tonevitskii ̧ AG, Kiuster U, Anzorge S. Study of Dipeptidyl
Peptidase IV as a Surface Marker of Human Natural Killer Cells. Biull
Eksp Biol Med (1990) 110(10):411–3.

56. Yamabe T, Takakura K, Sugie K, Kitaoka Y, Takeda S, Okubo Y, et al.
Induction of the 2B9 Antigen/Dipeptidyl Peptidase IV/CD26 on Human
Natural Killer Cells by IL-2, IL-12 or IL-15. Immunology (1997) 91(1):151–8.
doi: 10.1046/j.1365-2567.1997.00230.x

57. Buhling F, Reinhold D, Lendeckel U, Faust J, Neubert K, Ansorge S. CD26 is
Involved in Regulation of Cytokine Production in Natural Killer Cells. Adv
Exp Med Biol (1997) 421:141–7. doi: 10.1007/978-1-4757-9613-1_18

58. Madueno JA, Muñoz E, Blazquez V, Gonzalez R, Aparicio P, Peña J. The
CD26 Antigen is Coupled to Protein Tyrosine Phosphorylation and
Implicated in CD16-Mediated Lysis in Natural Killer Cells. Scand J
Immunol (1993) 37(4):425–9. doi: 10.1111/j.1365-3083.1993.tb03313.x

59. Schutz F, Hackstein H. Identification of Novel Dendritic Cell Subset Markers
in Human Blood. Biochem Biophys Res Commun (2014) 443(2):453–7.
doi: 10.1016/j.bbrc.2013.11.112

60. Nakano H, Moran TP, Nakano K, Gerrish KE, Bortner CD, Cook DN.
Complement Receptor C5aR1/CD88 and Dipeptidyl Peptidase-4/CD26
Define Distinct Hematopoietic Lineages of Dendritic Cells. J Immunol
(2015) 194(8):3808–19. doi: 10.4049/jimmunol.1402195

61. Talker SC, Baumann A, Barut GT, Keller I, Bruggmann R, Summerfield A.
Precise Delineation and Transcriptional Characterization of Bovine Blood
Dendritic-Cell and Monocyte Subsets. Front Immunol (2018) 9:2505.
doi: 10.3389/fimmu.2018.02505

62. Ikedo T, Minami M, Kataoka H, Hayashi K, Nagata M, Fujikawa R, et al.
Dipeptidyl Peptidase-4 Inhibitor Anagliptin Prevents Intracranial Aneurysm
Growth by Suppressing Macrophage Infiltration and Activation. J Am Heart
Assoc (2017) 6(6):e004777. doi: 10.1161/JAHA.116.004777

63. Ghorpade DS, Ozcan L, Zheng Z, Nicoloro SM, Shen Y, Chen E, et al.
Hepatocyte-Secreted DPP4 in Obesity Promotes Adipose Inflammation and
Insulin Resistance. Nature (2018) 555(7698):673–7. doi: 10.1038/
nature26138
Frontiers in Immunology | www.frontiersin.org 10
64. Zaruba MM, Franz WM. Role of the SDF-1-CXCR4 Axis in Stem Cell-Based
Therapies for Ischemic Cardiomyopathy. Expert Opin Biol Ther (2010) 10
(3):321–35. doi: 10.1517/14712590903460286

65. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC. The Chemokine
SDF-1 is a Chemoattractant for Human CD34+ Hematopoietic Progenitor
Cells and Provides a New Mechanism to Explain the Mobilization of CD34+
Progenitors to Peripheral Blood. J Exp Med (1997) 185(1):111–20.
doi: 10.1084/jem.185.1.111

66. Kondo K, Shintani S, Shibata R, Murakami H, Murakami R, Imaizumi M,
et al. Implantation of Adipose-Derived Regenerative Cells Enhances
Ischemia-Induced Angiogenesis. Arterioscler Thromb Vasc Biol (2009) 29
(1):61–6. doi: 10.1161/ATVBAHA.108.166496

67. Janssens R, Mortier A, Boff D, Ruytinx P, Gouwy M, Vantilt B, et al.
Truncation of CXCL12 by CD26 Reduces its CXC Chemokine Receptor 4-
and Atypical Chemokine Receptor 3-Dependent Activity on Endothelial
Cells and Lymphocytes. Biochem Pharmacol (2017) 132:92–101.
doi: 10.1016/j.bcp.2017.03.009

68. Herrera C, Morimoto C, Blanco J, Mallol J, Arenzana F, Lluis C, et al.
Comodulation of CXCR4 and CD26 in Human Lymphocytes. J Biol Chem
(2001) 276(22):19532–9. doi: 10.1074/jbc.M004586200

69. Proost P, Schutyser E, Menten P, Struyf S, Wuyts A, Opdenakker G, et al.
Amino-Terminal Truncation of CXCR3 Agonists Impairs Receptor
Signaling and Lymphocyte Chemotaxis, While Preserving Antiangiogenic
Properties. Blood (2001) 98(13):3554–61. doi: 10.1182/blood.V98.13.3554

70. Barreira da Silva R, Yatim N, Fiette L, Ingersoll MA, Albert ML.
Dipeptidylpeptidase 4 Inhibition Enhances Lymphocyte Trafficking,
Improving Both Natural ly Occurring Tumor Immunity and
Immunotherapy. Nat Immunol (2015) 16(8):850–8. doi: 10.1038/ni.3201

71. Hollande C, Boussier J, Ziai J, Nozawa T, Bondet V, Phung W, et al.
Inhibition of the Dipeptidyl Peptidase DPP4 (CD26) Reveals IL-33-
Dependent Eosinophil-Mediated Control of Tumor Growth. Nat Immunol
(2019) 20(3):257–64. doi: 10.1038/s41590-019-0321-5

72. Qin CJ, Zhao LH, Zhou X, Zhang HL, Wen W, Tang L, et al. Inhibition of
Dipeptidyl Peptidase IV Prevents High Fat Diet-Induced Liver Cancer
Angiogenesis by Downregulating Chemokine Ligand 2. Cancer Lett (2018)
420:26–37. doi: 10.1016/j.canlet.2018.01.064

73. Proost P, Menten P, Struyf S, Schutyser E, De Meester I, Van Damme J.
Cleavage by CD26/dipeptidyl Peptidase IV Converts the Chemokine
LD78beta Into a Most Efficient Monocyte Attractant and CCR1 Agonist.
Blood (2000) 96(5):1674–80. doi: 10.1182/blood.V96.5.1674

74. Struyf S, Menten P, Lenaerts JP, Put W, D'Haese A, De Clercq E, et al.
Diverging Binding Capacities of Natural LD78beta Isoforms of Macrophage
Inflammatory Protein-1alpha to the CC Chemokine Receptors 1, 3 and 5
Affect Their Anti-HIV-1 Activity and Chemotactic Potencies for
Neutrophils and Eosinophils. Eur J Immunol (2001) 31(7):2170–8.
doi: 10.1002/1521-4141(200107)31:7<2170::AID-IMMU2170>3.0.CO;2-D

75. Oravecz T, Pall M, Roderiquez G, Gorrell MD, Ditto M, Nguyen NY, et al.
Regulation of the Receptor Specificity and Function of the Chemokine
RANTES (Regulated on Activation, Normal T Cell Expressed and
Secreted) by Dipeptidyl Peptidase IV (CD26)-Mediated Cleavage. J Exp
Med (1997) 186(11):1865–72. doi: 10.1084/jem.186.11.1865

76. Struyf S, Proost P, Schols D, De Clercq E, Opdenakker G, Lenaerts JP, et al.
CD26/dipeptidyl-Peptidase IV Down-Regulates the Eosinophil Chemotactic
Potency, But Not the Anti-HIV Activity of Human Eotaxin by Affecting its
InteractionWith CCChemokine Receptor 3. J Immunol (1999) 162(8):4903–9.

77. Proost P, Struyf S, Schols D, Opdenakker G, Sozzani S, Allavena P, et al.
Truncation of Macrophage-Derived Chemokine by CD26/dipeptidyl-
Peptidase IV Beyond its Predicted Cleavage Site Affects Chemotactic
Activity and CC Chemokine Receptor 4 Interaction. J Biol Chem (1999)
274(7):3988–93. doi: 10.1074/jbc.274.7.3988

78. Struyf S, Proost P, Sozzani S, Mantovani A, Wuyts A, De Clercq E, et al.
Enhanced Anti-HIV-1 Activity and Altered Chemotactic Potency of NH2-
Terminally Processed Macrophage-Derived Chemokine (MDC) Imply an
Additional MDC Receptor. J Immunol (1998) 161(6):2672–5.

79. Broxmeyer HE, Hoggatt J, O'Leary HA, Mantel C, Chitteti BR, Cooper S,
et al. Dipeptidylpeptidase 4 Negatively Regulates Colony-Stimulating Factor
Activity and Stress Hematopoiesis. Nat Med (2012) 18(12):1786–96.
doi: 10.1038/nm.2991
March 2022 | Volume 13 | Article 830863

https://doi.org/10.1111/j.1600-065X.1998.tb01570.x
https://doi.org/10.1038/32588
https://doi.org/10.1126/science.290.5489.92
https://doi.org/10.1124/mol.59.1.127
https://doi.org/10.1073/pnas.0501050102
https://doi.org/10.22631/rr.2018.69997.1045
https://doi.org/10.1073/pnas.211439098
https://doi.org/10.1074/jbc.M609157200
https://doi.org/10.1074/jbc.M609157200
https://doi.org/10.1016/j.leukres.2016.06.002
https://doi.org/10.1016/j.leukres.2016.06.002
https://doi.org/10.1046/j.1365-2567.1997.00230.x
https://doi.org/10.1007/978-1-4757-9613-1_18
https://doi.org/10.1111/j.1365-3083.1993.tb03313.x
https://doi.org/10.1016/j.bbrc.2013.11.112
https://doi.org/10.4049/jimmunol.1402195
https://doi.org/10.3389/fimmu.2018.02505
https://doi.org/10.1161/JAHA.116.004777
https://doi.org/10.1038/nature26138
https://doi.org/10.1038/nature26138
https://doi.org/10.1517/14712590903460286
https://doi.org/10.1084/jem.185.1.111
https://doi.org/10.1161/ATVBAHA.108.166496
https://doi.org/10.1016/j.bcp.2017.03.009
https://doi.org/10.1074/jbc.M004586200
https://doi.org/10.1182/blood.V98.13.3554
https://doi.org/10.1038/ni.3201
https://doi.org/10.1038/s41590-019-0321-5
https://doi.org/10.1016/j.canlet.2018.01.064
https://doi.org/10.1182/blood.V96.5.1674
https://doi.org/10.1002/1521-4141(200107)31:7%3C2170::AID-IMMU2170%3E3.0.CO;2-D
https://doi.org/10.1084/jem.186.11.1865
https://doi.org/10.1074/jbc.274.7.3988
https://doi.org/10.1038/nm.2991
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Huang et al. DPP4 in Autoimmune Disease
80. Ou X, O’Leary HA, Broxmeyer HE. Implications of DPP4 Modification of
Proteins That Regulate Stem/Progenitor and More Mature Cell Types. Blood
(2013) 122(2):161–9. doi: 10.1182/blood-2013-02-487470

81. Wesley UV, McGroarty M, Homoyouni A. Dipeptidyl Peptidase Inhibits
Malignant Phenotype of Prostate Cancer Cells by Blocking Basic Fibroblast
Growth Factor Signaling Pathway. Cancer Res (2005) 65(4):1325–34.
doi: 10.1158/0008-5472.CAN-04-1852

82. Ahrén B, Hughes TE. Inhibition of Dipeptidyl Peptidase-4 Augments Insulin
Secretion in Response to Exogenously Administered Glucagon-Like Peptide-
1, Glucose-Dependent Insulinotropic Polypeptide, Pituitary Adenylate
Cyclase-Activating Polypeptide, and Gastrin-Releasing Peptide in Mice.
Endocrinology (2005) 146(4):2055–9. doi: 10.1210/en.2004-1174

83. Frerker N, Wagner L, Wolf R, Heiser U, Hoffmann T, Rahfeld JU, et al.
Neuropeptide Y (NPY) Cleaving Enzymes: Structural and Functional
Homologues of Dipeptidyl Peptidase 4. Peptides (2007) 28(2):257–68.
doi: 10.1016/j.peptides.2006.09.027

84. Unniappan S, McIntosh CH, Demuth HU, Heiser U, Wolf R, Kieffer TJ.
Effects of Dipeptidyl Peptidase IV on the Satiety Actions of Peptide YY.
Diabetologia (2006) 49(8):1915–23. doi: 10.1007/s00125-006-0310-8

85. Manuguerra-Gagne R, Boulos PR, Ammar A, Leblond FA, Krosl G, Pichette
V, et al. Transplantation of Mesenchymal Stem Cells Promotes Tissue
Regeneration in a Glaucoma Model Through Laser-Induced Paracrine
Factor Secretion and Progenitor Cell Recruitment. Stem Cells (2013) 31
(6):1136–48. doi: 10.1002/stem.1364

86. Kalluri R, Zeisberg M. Fibroblasts in Cancer. Nat Rev Cancer (2006) 6
(5):392–401. doi: 10.1038/nrc1877

87. Carmona-Rivera C, Carlucci PM, Moore E, Lingampalli N, Uchtenhagen H,
James E, et al. Synovial Fibroblast-Neutrophil Interactions Promote
Pathogenic Adaptive Immunity in Rheumatoid Arthritis. Sci Immunol
(2017) 2(10):eaag3358. doi: 10.1126/sciimmunol.aag3358

88. Tran CN, Davis MJ, Tesmer LA, Endres JL, Motyl CD, Smuda C, et al.
Presentation of Arthritogenic Peptide to Antigen-Specific T Cells by
Fibroblast-Like Synoviocytes. Arthritis Rheum (2007) 56(5):1497–506.
doi: 10.1002/art.22573

89. Henderson NC, Rieder F, Wynn TA. Fibrosis: From Mechanisms to
Medicines. Nature (2020) 587(7835):555–66. doi: 10.1038/s41586-020-2938-9

90. Tabib T, Morse C, Wang T, Chen W, Lafyatis R. SFRP2/DPP4 and FMO1/
LSP1 Define Major Fibroblast Populations in Human Skin. J Invest Dermatol
(2018) 138(4):802–10. doi: 10.1016/j.jid.2017.09.045

91. Soare A, Györfi HA, Matei AE, Dees C, Rauber S, Wohlfahrt T, et al.
Dipeptidylpeptidase 4 as a Marker of Activated Fibroblasts and a Potential
Target for the Treatment of Fibrosis in Systemic Sclerosis. Arthritis
Rheumatol (2020) 72(1):137–49. doi: 10.1002/art.41058

92. Lee SY, Wu ST, Liang YJ, Su MJ, Huang CW, Jao YH, et al. Soluble
Dipeptidyl Peptidase-4 Induces Fibroblast Activation Through Proteinase-
Activated Receptor-2. Front Pharmacol (2020) 11:552818. doi: 10.3389/
fphar.2020.552818

93. Li YC, Sung PH, Yang YH, Chiang JY, Yip HK, Yang CC. Dipeptidyl
Peptidase 4 Promotes Peritoneal Fibrosis and its Inhibitions Prevent Failure
of Peritoneal Dialysis. Commun Biol (2021) 4(1):144. doi: 10.1038/s42003-
021-01652-x

94. Löster K, Zeilinger K, Schuppan D, Reutter W. The Cysteine-Rich Region of
Dipeptidyl Peptidase IV (CD 26) is the Collagen-Binding Site. Biochem
Biophys Res Commun (1995) 217(1):341–8. doi: 10.1006/bbrc.1995.2782

95. Cheng HC, Abdel-Ghany M, Pauli BU. A Novel Consensus Motif in
Fibronectin Mediates Dipeptidyl Peptidase IV Adhesion and Metastasis.
J Biol Chem (2003) 278(27):24600–7. doi: 10.1074/jbc.M303424200

96. Gonzalez-Gronow M, Kaczowka S, Gawdi G, Pizzo SV. Dipeptidyl Peptidase
IV (DPP IV/CD26) is a Cell-Surface Plasminogen Receptor. Front Biosci
(2008) 13:1610–8. doi: 10.2741/2785

97. Gonzalez-Gronow M, Kaczowka S, Gawdi G, Pizzo SV. Interaction of
Plasminogen With Dipeptidyl Peptidase IV Initiates a Signal Transduction
Mechanism Which Regulates Expression of Matrix Metalloproteinase-9 by
Prostate Cancer Cells. Biochem J (2001) 355(Pt 2):397–407. doi: 10.1042/
bj3550397

98. Shao S , Xu Q, Yu X, Pan R, Chen Y. Dipeptidyl Peptidase 4 Inhibitors and
Their Potential Immune Modulatory Functions. Pharmacol Ther (2020)
209:107503. doi: 10.1016/j.pharmthera.2020.107503
Frontiers in Immunology | www.frontiersin.org 11
99. Panayi GS, Lanchbury JS, Kingsley GH. The Importance of the T Cell in
Initiating and Maintaining the Chronic Synovitis of Rheumatoid Arthritis.
Arthritis Rheum (1992) 35(7):729–35. doi: 10.1002/art.1780350702

100. McInnes IB, Schett G. The Pathogenesis of Rheumatoid Arthritis. N Engl J
Med (2011) 365(23):2205–19. doi: 10.1056/NEJMra1004965

101. Sinnathurai P, Lau W, Vieira de Ribeiro AJ, Bachovchin WW, Englert H,
Howe G, et al. Circulating Fibroblast Activation Protein and Dipeptidyl
Peptidase 4 in Rheumatoid Arthritis and Systemic Sclerosis. Int J Rheum Dis
(2018) 21(11):1915–23. doi: 10.1111/1756-185X.13031

102. Cordero OJ, Salgado FJ, Mera-Varela A, Nogueira M. Serum Interleukin-12,
Interleukin-15, Soluble CD26, and Adenosine Deaminase in Patients With
Rheumatoid Arthritis. Rheumatol Int (2001) 21(2):69–74. doi: 10.1007/
s002960100134

103. Grujic M, Matic IZ, Crnogorac MD, Velickovic AD, Kolundzija B, Cordero
OJ, et al. Activity and Expression of Dipeptidyl Peptidase IV on Peripheral
Blood Mononuclear Cells in Patients With Early Steroid and Disease
Modifying Antirheumatic Drugs Naive Rheumatoid Arthritis. Clin Chem
Lab Med (2017) 55(1):73–81. doi: 10.1515/cclm-2015-1279

104. Muscat C, Bertotto A, Agea E, Bistoni O, Ercolani R, Tognellini R, et al.
Expression and Functional Role of 1F7 (CD26) Antigen on Peripheral Blood
and Synovial Fluid T Cells in Rheumatoid Arthritis Patients. Clin Exp
Immunol (1994) 98(2):252–6. doi: 10.1111/j.1365-2249.1994.tb06134.x

105. Sromova L, Mareckova H, Sedova L, Balaziova E, Sedo A. Dipeptidyl
Peptidase-IV in Synovial Fluid and in Synovial Fluid Mononuclear Cells of
Patients With Rheumatoid Arthritis. Clin Chim Acta (2010) 411(15-
16):1046–50. doi: 10.1016/j.cca.2010.03.034

106. Buljevic S, Detel D, Pucar LB, Mihelic R, Madarevic T, Sestan B, et al. Levels
of Dipeptidyl Peptidase IV/CD26 Substrates Neuropeptide Y and Vasoactive
Intestinal Peptide in Rheumatoid Arthritis Patients. Rheumatol Int (2013) 33
(11):2867–74. doi: 10.1007/s00296-013-2823-z

107. Kamori M, Hagihara M, Nagatsu T, Iwata H, Miura T. Activities of
Dipeptidyl Peptidase II, Dipeptidyl Peptidase IV, Prolyl Endopeptidase,
and Collagenase-Like Peptidase in Synovial Membrane From Patients
With Rheumatoid Arthritis and Osteoarthritis. Biochem Med Metab Biol
(1991) 45(2):154–60. doi: 10.1016/0885-4505(91)90016-E

108. Cordero OJ, Varela-Calviño R, López-González T, Grujic M, Juranic Z,
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Patients With Systemic Lupus Erythematosus. Clin Exp Rheumatol (1992) 10
(4):381–5.

124. Kobayashi H, Hosono O, Mimori T, Kawasaki H, Dang NH, Tanaka H, et al.
Reduction of Serum Soluble CD26/dipeptidyl Peptidase IV Enzyme Activity
and its Correlation With Disease Activity in Systemic Lupus Erythematosus.
J Rheumatol (2002) 29(9):1858–66.

125. Wong PT, Wong CK, Tam LS, Li EK, Chen DP, Lam CW. Decreased
Expression of T Lymphocyte Co-Stimulatory Molecule CD26 on Invariant
Natural Killer T Cells in Systemic Lupus Erythematosus. Immunol Invest
(2009) 38(5):350–64. doi: 10.1080/08820130902770003

126. Seong JM, Yee J, Gwak HS. Dipeptidyl Peptidase-4 Inhibitors Lower the Risk
of Autoimmune Disease in Patients With Type 2 Diabetes Mellitus: A
Nationwide Population-Based Cohort Study. Br J Clin Pharmacol (2019)
85(8):1719–27. doi: 10.1111/bcp.13955

127. Chen YC, Chen TH, Sun CC, Chen JY, Chang SS, Yeung L, et al. Dipeptidyl
Peptidase-4 Inhibitors and the Risks of Autoimmune Diseases in Type 2
Diabetes Mellitus Patients in Taiwan: A Nationwide Population-Based
Cohort Study. Acta Diabetol (2020) 57(10):1181–92. doi: 10.1007/s00592-
020-01533-5

128. Denton CP, Khanna D. Systemic Sclerosis. Lancet (2017) 390(10103):1685–
99. doi: 10.1016/S0140-6736(17)30933-9

129. Fiocco U, Rosada M, Cozzi L, Ortolani C, De Silvestro G, Ruffatti A, et al.
Early Phenotypic Activation of Circulating Helper Memory T Cells in
Scleroderma: Correlation With Disease Activity. Ann Rheum Dis (1993) 52
(4):272–7. doi: 10.1136/ard.52.4.272

130. Tamaki Z, Kubo M, Yazawa N, Mimura Y, Ashida R, Tomita M, et al. Serum
Levels of Soluble CD26 in Patients With Scleroderma. J Dermatol Sci (2008)
52(1):67–9. doi: 10.1016/j.jdermsci.2008.05.004

131. Hinz B. Myofibroblasts. Exp Eye Res (2016) 142:56–70. doi: 10.1016/
j.exer.2015.07.009

132. Kissin EY, Merkel PA, Lafyatis R. Myofibroblasts and Hyalinized Collagen as
Markers of Skin Disease in Systemic Sclerosis. Arthritis Rheum (2006) 54
(11):3655–60. doi: 10.1002/art.22186

133. Ziemek J, Man A, Hinchcliff M, Varga J, Simms RW, Lafyatis R. The
Relationship Between Skin Symptoms and the Scleroderma Modification
of the Health Assessment Questionnaire, the Modified Rodnan Skin Score,
and Skin Pathology in Patients With Systemic Sclerosis. Rheumatol (Oxford)
(2016) 55(5):911–7. doi: 10.1093/rheumatology/kew003

134. Xin Y, Wang X, Zhu M, Qu M, Bogari M, Lin L, et al. Expansion of CD26
Positive Fibroblast Population Promotes Keloid Progression. Exp Cell Res
(2017) 356(1):104–13. doi: 10.1016/j.yexcr.2017.04.021

135. Shiobara T, Chibana K, Watanabe T, Arai R, Horigane Y, Nakamura Y, et al.
Dipeptidyl Peptidase-4 is Highly Expressed in Bronchial Epithelial Cells of
Untreated Asthma and it Increases Cell Proliferation Along With
Fibronectin Production in Airway Constitutive Cells. Respir Res (2016)
17:28. doi: 10.1186/s12931-016-0342-7
Frontiers in Immunology | www.frontiersin.org 12
136. Tabib T, Huang M, Morse N, Papazoglou A, Behera R, Jia M, et al.
Myofibroblast Transcriptome Indicates SFRP2(hi) Fibroblast Progenitors
in Systemic Sclerosis Skin. Nat Commun (2021) 12(1):4384. doi: 10.1038/
s41467-021-24607-6

137. Liu Y, Qi Y. Vildagliptin, a CD26/DPP4 Inhibitor, Ameliorates Bleomycin-
Induced Pulmonary Fibrosis via Regulating the Extracellular Matrix. Int
Immunopharmacol (2020) 87:106774. doi: 10.1016/j.intimp.2020.106774

138. Hildebrandt M, Rose M, Rüter J, Salama A, Mönnikes H, Klapp BF.
Dipeptidyl Peptidase IV (DP IV, CD26) in Patients With Inflammatory
Bowel Disease. Scand J Gastroenterol (2001) 36(10):1067–72. doi: 10.1080/
003655201750422675

139. Pinto-Lopes P, Afonso J, Pinto-Lopes R, Rocha C, Lago P, Gonçalves R, et al.
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