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Immunoproteomics has emerged as a versatile tool for analyzing the antibody repertoire in
various disease contexts. Until recently, characterization of antibody molecules in
biological fluids was limited to bulk serology, which identifies clinically relevant features
of polyclonal antibody responses. The past decade, however, has seen the rise of mass-
spectrometry-enabled proteomics methods that have allowed profiling of the antibody
response at the molecular level, with the disease-specific serological repertoire elucidated
in unprecedented detail. In this review, we present an up-to-date survey of insights into the
disease-specific immunological repertoire by examining how quantitative proteomics-
based approaches have shed light on the humoral immune response to infection and
vaccination in pathogenic illnesses, the molecular basis of autoimmune disease, and the
tumor-specific repertoire in cancer. We address limitations of this technology with a focus
on emerging potential solutions and discuss the promise of high-resolution
immunoproteomics in therapeutic discovery and novel vaccine design.
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INTRODUCTION

The discovery of a substance in serum with the ability to protect against disease dates back to Emil
von Behring and Shibasaburo Kitasato (1); just a year later, Paul Ehrlich made the first reference to
‘Antikörper’, or antibodies, in an 1891 report (2). No less important in retrospect was Karl
Landsteiner’s discovery 50 years later that antisera contain specificities to multiple antigens (3);
this may be viewed as the discovery of an antibody repertoire. The serological repertoire is
comprised of a diverse combination of immunoglobulins secreted by B cells in various
compartments including peripheral blood, bone marrow, and mucosal sites (4, 5). From initial
exposures to exogenous and endogenous (in the case of cancer and autoimmune disease) antigens,
the antibody repertoire is established and constantly reshaped through subsequent exposures to a
multitude of different antigens during one’s lifetime (6, 7).

Characterization of serum antibodies has traditionally relied on serological assays that determine
the total abundance, binding specificity, and neutralizing activity of polyclonal antibodies using
various techniques, including enzyme-linked immunosorbent assays (ELISA) as well as
neutralization and immunofluorescence assays (8, 9). Though serology remains essential in the
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present-day study of antibody responses (10) and gives critical
insights into the global immune repertoire, it does not inform on
the traits of individual constituent antibody molecules. More
recently, single B cell sequencing has allowed recombinant
expression and characterization of monoclonal antibodies
(mAbs), leading to functional delineation of antibody
responses at the single-mAb level and discovery of numerous
mAbs with potent therapeutic activity (11). However, as some B
cells do not secrete antibodies, B-cell-based studies are often
unable to accurately determine the relative abundance of each
identified mAb, or its relevance to serological protection. As
protective antibody molecules that circulate in blood or coat
mucosal surfaces are the key correlate of humoral immunity to
various diseases (12), proteomic studies of abundant
immunoglobulins are critical to in-depth analysis of the
antibody landscape.

Over the last two decades, mass spectrometry (MS) has found
increasing use in the analysis of complex protein samples (13);
more recently, it has been applied to profiling of polyclonal
antibody mixtures, giving rise to next-generation serology (14–
17). The proteomic deconvolution of antigen-specific serum
antibody mixtures, pioneered by the Georgiou group, is known
as Ig-Seq (14, 15, 18) (Figure 1). This method has allowed
identification, quantification, and longitudinal tracking of
antibody lineages at the molecular level. Ig-Seq is a bottom-up
proteomic approach involving affinity purification of antibodies
against a target antigen, followed by analysis via a liquid-
chromatography-tandem-MS (LC-MS/MS) system. Generated
peptide spectra are then matched to a sequence database (19),
often constructed by high-throughput B cell sequencing [BCR-
Seq, reviewed in (20–22)] to identify serum antibodies and
enable their subsequent recombinant expression as mAbs for
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further functional study (15, 23–25). Technical advances and
challenges in mass-spectrometry based antibody sequencing,
from sample preparation to computational pipelines, have been
recently reviewed comprehensively by Greiff and colleagues (26).
In this mini review, we present a survey of the various
pathologies explored to date using antibody mass spectrometry,
highlighting unique insights into the characteristics of the disease-
specific immune repertoire and the therapeutic molecules or
strategies which may arise from these studies. We emphasize the
implications of disease-specific insights in combating infectious
disease, autoimmunity, and cancer.
APPLICATIONS OF IG-SEQ TO
STUDY DISEASE

Infectious Disease
Influenza
In 1947, a seminal study observed that university students
infected with influenza, who had been previously vaccinated
against a different influenza strain, had higher serum antibody
titers against the original vaccine strain than the infecting strain
(27); this serologic phenomenon was later described by the
authors as ‘original antigenic sin’ (28). Numerous studies have
since demonstrated that the antibody repertoire generated from
early exposure to influenza is ‘imprinted’ on the immune system.
This set of antibodies persists in circulation and exerts a major
influence on the nature of the antibody response upon
subsequent exposure (27, 29–33). Despite mounting evidence
of immune imprinting in the context of influenza, precise
understanding of how these pre-existing antibodies can
FIGURE 1 | Quantitative and qualitative profiling of antibody repertoires using the Ig-Seq pipeline. Antibodies sampled from biological fluids are subject to affinity
purification against an antigen of interest and profiled by mass spectrometry (top pathway). A donor-specific reference database generated from BCR-Seq (bottom
pathway) is used to match peptide spectra with antibody sequences. Relative antibody abundances are profiled in detail and can be tracked longitudinally. Ig-Seq
enables detailed longitudinal profiling of antibody repertoires (1), identification of convergent responses (2), functional characterization of antibody specificity (3) and
affinity (4), as well as delineation of the in vitro neutralization (5) and in vivo protection (6) conferred by abundant antibodies. Insights from the repertoire’s behavior
after antigenic exposure, and the protective features of expressed mAbs, inform the design of diagnostics, vaccination strategies, and therapeutics.
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influence the elicitation of new antibodies has been impeded by
the inability to identify pre-existing antibodies using bulk
serological assays. Lee et al. addressed this gap by using Ig-Seq
to quantitatively interrogate the serological repertoire of young
adults before and after seasonal influenza vaccination to
differentiate between pre-existing (i.e., already present in
circulation before the vaccination) and de novo (i.e., newly
elicited following the vaccination) repertoires (34). The authors
showed that >60% of the post-vaccination hemagglutinin (HA)-
specific repertoire consisted of pre-existing antibodies which
tended to be cross-reactive to H1 and H3 subtypes while de
novo antibodies were mostly specific to one subtype, suggesting
that the pre-existing population targeted conserved regions on
HA. Recombinant expression of representative cross-reactive
antibodies revealed a conserved, previously uncharacterized
epitope present at the ‘interface’ of trimeric HA. These
antibodies conferred prophylactic and therapeutic protection in
mice against divergent influenza strains. Other groups have since
confirmed the protective ability and prevalence of HA interface-
targeting antibodies (35–38).

A subsequent study investigated the longitudinal dynamics of
the HA-reactive antibody repertoire in an individual across 5
years of repeated exposure to the same H1N1 (A/California/4/
2009; CA09) strain (39). With Ig-Seq enabling the identification
and quantification of influenza-specific serum antibodies at
multiple timepoints, the authors showed that a small group of
‘persistent’ antibodies circulating in serum across five years made
up ~70% of the CA09-reactive serum titer, demonstrating the
remarkable stability of serological antibody repertoires. In other
words, each vaccination elicited new antibodies making up ~30%
of the anti-HA titer, but these ‘transient’ antibodies decayed
away while the ‘imprinted’ repertoire remained. The persistent
antibodies were more mutated and displayed more cross-
reactivity to a divergent H5N1 influenza strain compared to
non-persistent antibodies.

Most of the population is exposed to influenza at an early age,
whether due to infection by the circulating virus or through
childhood vaccines (40). Older adults are likely to have been
exposed on many occasions to both viral and vaccine antigens.
The ability to elicit de novo protective immune responses
decreases with old age (41), accentuating the importance of a
broadly protective persistent repertoire. This impact of age on
the influenza-reactive antibody repertoire has been investigated
by determining the relative abundances of antibodies cross-
reactive to H1 and H3 across adults aged 26-70 before and
after seasonal vaccination (42). The study revealed that older
individuals (suggesting increased exposure events) had a larger
relative abundance of cross-reactive antibodies, with over 90% of
the vaccine-specific repertoire in some elderly donors displaying
reactivity to both H1 and H3. Strikingly, subsequent in-depth
characterization of broadly cross-reactive serum antibodies
revealed that they recognized sulfated glycans abundant in
avian egg-prepared vaccines, likely rendering them ineffective
in preventing infection. Collectively, the quantitative nature of
Ig-Seq and the ability to track antibodies longitudinally enabled
studies focusing on the molecular and functional features of
imprinted influenza serum antibody repertoires.
Frontiers in Immunology | www.frontiersin.org 3
SARS-CoV-2
The onset of the COVID-19 pandemic raised the urgency to
understand the immune response to viral infection, and more
recently, vaccination. Serological studies of SARS-CoV-2-
infected patients and analysis of their B cells led to rapid
profiling of longitudinal antibody responses to infection (43–
46), contributing to the unprecedented speed of new and effective
vaccine development (47) and discovery of neutralizing mAbs
(48–53). While these data have improved our understanding of
protection afforded by serum antibodies, the relative abundance
and functionalities of the individual SARS-CoV-2-reactive
antibodies circulating in blood have remained unknown. The
traits of individual antibodies are clinically important based on
previous serological repertoire analyses, which indicate a high
degree of polarization [i.e., a small number of antibodies
comprising a large fraction of the overall response (14, 15, 34,
39, 42, 54)]. To address this, Ippolito and colleagues profiled the
SARS-CoV-2 Spike (S) protein-reactive serological repertoire in
COVID-19 patients during early convalescence (55). They
determined that over 80% of S-specific IgG in sera bound to
regions other than the receptor-binding domain (RBD), a
primary target of neutralizing antibodies. Instead, many highly
abundant antibodies (some of which individually comprised
>20% of the S-specific repertoire) bound to the N-terminal
domain (NTD), and functional characterization of those NTD-
binding mAbs showed robust neutralization activity (IC50 as low
as 10 ng/mL). However, NTD binding decreased or was
completely ablated when the authors introduced mutations
present in SARS-CoV-2 variants of concern (56). Thus, a
sizable portion of antibodies were demonstrably susceptible to
mutations in their binding epitopes, implying that their
protective ability was not robust against emerging mutants.

Given that anti-S IgG binding titers are thought to be well-
correlated with protection against SARS-CoV-2 infection (10), a
recent study sought to determine the longitudinal dynamics of
individual S-reactive serum antibodies over four months in
convalescent patients (57). The authors specifically tracked
peptides containing the complementarity determining region
of heavy chain 3 (CDR-H3) using multiple reaction
monitoring (MRM) (58), which enables precise quantitation of
pre-selected peptides within a complex mixture. The authors
built a model simulating the decay of S-specific serum antibodies
and determined that antibody levels drop below a chosen
seroconversion threshold of 1:40 around 70 days after onset of
symptoms. This finding is in agreement with the observation of
short-lived nature of antibody responses following SARS-CoV-2
infections (59), although the thresholds for protection are as yet
uncertain. This work further highlights the urgency to better
understand the longevity of SARS-CoV-2-specific antibodies in
secretions, which may present important implications for
deve lop ing vacc ines capab l e o f e l i c i t ing durab l e
antibody responses.

Other Infectious Disease
The therapeutic impact of broadly-neutralizing antibodies
(bnAbs) has been demonstrated in infectious disease (60),
suggesting that the antibody repertoire can be an expansive
February 2022 | Volume 13 | Article 832533
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reservoir for mining potent therapeutic candidates against
microbial pathogens. Lindesmith et al. longitudinally profiled
patients before and after vaccination against norovirus (HuNoV)
(54), and found a pre-existing antibody, A1431, that was boosted
126-fold by vaccination. A1431 bound to conserved viral capsid
epitopes and neutralized a broad panel of HuNoV strains,
including strains first observed years after the patient was
vaccinated. The sera of patients with chronic infections such as
HIV have also been studied with similar methods, as chronic
stimulation of B cells by viruses that undergo immune escape
may give rise to bnAbs (61). For example, one study functionally
characterized abundant antibodies against the HIV Env
glycoprotein MPER region in a chronically infected donor
(62). The authors swapped the chains of several bnAbs found
using Ig-Seq to generate a chimeric mAb that neutralized 206/
208 global isolates of HIV-1. Similar work has been done to
analyze antibodies identified in sera collected from 2 HIV elite-
neutralizers (63), finding one in particular, N49P7, which was
able to neutralize 117/117 pseudoviruses of a global panel due to
its ability to bind conserved inner-layer residues of the gp120
glycoprotein (64). Additionally, Ig-Seq-based repertoire profiling
has been similarly applied in malaria (65) and hepatitis C (66),
leading to the isolation and delineation of mAbs with
protective qualities.

Autoimmune Disease
While the secreted antibody repertoire may act as the principal
protective force in infectious disease immunity, the same
repertoire acts as a primary agent of pathogenesis in
autoimmune conditions (67–69). To this end, groups have
applied Ig-Seq to study serologic signatures of systemic lupus
erythematosus (SLE), namely anti-dsDNA antibodies and
antibodies expressing the 9G4 idiotype (‘9G4 antibodies’) (70,
71). One study sequenced anti-dsDNA antibodies from SLE
patients and found a preference for mutations to arginine in
antibody variable regions, consistent with observations from
previous B cell sequencing studies that these mutations enable
DNA binding (71). Others have compared spectra of purified
9G4 antibodies with sequences of donor-matched antibody-
secreting cells (ASC’s), which expand rapidly during SLE-
associated disease ‘flares’ (70). The sequences from ASC’s
matched peptide spectra exactly, indicating that these ASC’s,
which were derived from naïve B cells, had a profound impact on
the SLE serological repertoire. In the case of celiac disease
patients, a more recent study found a gene preference for
IGHV5-51 in plasma cells reactive to TG2, a primary celiac
antigen (72). The researchers quantified the percentage of
IGHV5-51 antibodies in anti-TG2 IgA repertoires of patients
in various stages of disease and observed that IGHV5-51
percentage was well correlated with disease severity, suggesting
a pathogenic role for these antibodies. Looking forward,
proteomic study of the ‘autoantibody repertoire’ with Ig-Seq
may help us understand this repertoire’s behavior before
symptom onset, a crucial step in the reversal or treatment of
autoimmunity (70, 72–74).

In some cases, trends observed in B cell populations and the
secreted repertoire differ, highlighting the utility of direct
Frontiers in Immunology | www.frontiersin.org 4
proteomic analysis in characterizing the mechanisms of
autoimmune pathology. In an illustrative example, Stanley and
colleagues followed up on an earlier study (75) investigating B
cells specific to the Dsg3 autoantigen in pemphigus vulgaris
patients, interrogating the anti-Dsg3 autoantibodies in serum
using Ig-Seq (76). Their initial B cell sequencing work had
revealed a gene preference for IGHV1-46 among the Dsg3-
reactive B cell population, but the new study demonstrated
that the functional, secreted antibody repertoire did not share
this preference, and was more diverse than what was observed in
the B cell compartment. Moreover, longitudinal analysis over
several years revealed a substantial change in the abundances of
individual anti-Dsg3 antibodies in circulation over time, though
a subset of the highly abundant antibodies persist for years, as
well as a significant portion of antibody sequences observed by
transcriptomic methods.

Cancer
Though few studies have examined cancer antibody repertoire
via Ig-Seq, initial studies indicate that MS-based analysis of sera
can be used for increased sensitivity in monitoring malignancies.
For example, a study investigating multiple myeloma (MM)
patient serum antibodies (77) was able to detect MM-specific
antibodies in patients that had returned false-negative results via
protein electrophoresis and serum immunofixation, both
standard procedures for molecular detection of myeloma (78).
A separate study (79) attempted to create a screen for non-small-
cell lung cancer based on serum antibody CDR’s detected using
mass spectrometry. This work suggests that peptide signatures
have potential as tools for cancer detection (80), though other
studies in humans and animal models have suggested that
antigen-specific antibody repertoires do not exhibit major
overlap between individuals (76, 81, 82). Separately,
interrogating the tumor immune repertoire has resulted in the
identification of tumor-specific antibodies, which can be
developed as therapeutics or used to discover novel binding
targets (83). McDaniel et al. (84) analyzed serum antibodies from
breast cancer patients who had tested positive for the cancer
testis antigen NY-ESO-1, a marker normally confined to male
germ cells but present in up to 25% of breast cancers. Serum
antibodies identified from Ig-Seq and expressed as mAbs bound
to NY-ESO-1 with KDs as low as 2.0 nM.
ALTERNATIVE METHODS FOR
IMMUNOPROTEOMIC ANALYSIS
OF DISEASE

Ig-Seq is a bottom-up proteomic method involving injection of
proteolytically-digested peptides into the LC-MS system (85);
trypsin is a good choice for Ig-Seq studies due to the prevalence
of arginine or lysine residues flanking the antibody CDR-H3
region. However, proteolytic digestion with trypsin or any
other proteases may lead to loss of detectable CDR-H3
peptides and reduce the quantity of identifiable CDR-H3
sequences. To address this, other groups have used top-down
February 2022 | Volume 13 | Article 832533
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or middle-down proteomic approaches, which preserve sequence
coverage at the expense of resolution; nevertheless, these
methods have resulted in useful insight regarding the antibody
repertoire [reviewed in (26)]. Bottom-up approaches have also
sought to increase coverage by digesting samples with
complementary proteases and using computational pipelines to
construct intact antibody sequences (86). Separately, Ig-Seq relies
on reference antibody databases to deconvolute peptide spectra;
the quality, size and source of the database can significantly
impact the results and accuracy of antibody identification (26).
Several groups are attempting to overcome this dependence
using germline gene sequence databases available through
online resources, such as IMGT (72, 87, 88). However,
database matching cannot discern exact sequences of
antibodies, as their CDR-H3’s specifically are formed only after
somatic hypermutation in their secreting B cells. Reference-free
sequencing of antigen-specific immunoglobulins from biological
fluids via mass spectrometry would address this limitation,
though this remains difficult due to the complexity and high
variability of antibody variable regions. Recent methods have
enabled sequencing of full-length purified mAbs at close to 100%
accuracy (89), implementing error correction with database
homology searches and introducing mutations and post-
translational modifications to converge on exact sequences.
Some groups have combined similar pipelines with database
matching and have been successful in sequencing antibodies
from highly restricted populations, as in autoimmune disease
(90). More recent work suggests that antibodies will soon be
sequenced directly from repertoires with enough precision to
allow recombinant expression (82, 91).
DISCUSSION

Numerous studies have utilized Ig-Seq to identify individual
antibodies in serum and track how their abundances change
over time in the contexts of various pathologies (34, 39, 42, 54,
55, 57, 66, 76). This is of particular interest in viral diseases, as
there is increasing evidence that exposure history plays a decisive
role in the antibody response to infection or vaccination (39, 54,
92, 93). Though the effects of immune imprinting have been most
extensively studied in influenza (34, 39, 42), recent work in
HuNoV has revealed boosting of persistent cross-reactive
antibodies in response to vaccination (54). Further, emerging
research in SARS-CoV-2 indicates that the antibody repertoire
may be shaped by previous infection with endemic coronaviruses,
suggesting that exposure history may play a critical role in other
viral immune responses (92, 93). Tracking individual antibody
abundances over longitudinal samples will allow us to measure the
relative contributions to protection made by pre-existing and de
novo antibodies. Describing both of these antibody populations on
a disease-specific basis will be necessary for understanding the
immunopathogenesis of infection and evaluating the effectiveness
of vaccines.

The Ig-Seq pipeline has yielded high-affinity, broadly
neutralizing antibodies reactive to SARS-CoV-2, influenza,
Frontiers in Immunology | www.frontiersin.org 5
HIV, and HuNoV, demonstrating the broad potential of the
method in discovering novel therapeutics (54, 62, 64). Notably,
this method has allowed groups to identify immune ‘signatures’
of exposure, such as the presence of broadly-reactive antibodies
against select influenza (34) or norovirus strains (54), or non-
protective antibodies to a conserved epitope on SARS-CoV-2
(93). These and similar data may inform the design of next-
generation vaccines customized for an individual’s exposure
history. For example, a novel vaccine may present epitopes
known to boost pre-existing, broadly neutralizing antibodies
and avoid presenting epitopes known to be associated with
previous non-protective immune responses. It is worth noting,
however, that this strategy cannot predict immune escape
mutations, which may occur even on conserved epitopes.

Ig-Seq holds promise as a means to profile the secreted
antibody repertoire at mucosal surfaces, including the
respiratory and intestinal tracts (94–98) (Figure 1). Functional
characterizations of site-specific antibody repertoires in diseases
occurring at mucosal surfaces are highly important for treatment
of individuals with respiratory conditions, such as cystic fibrosis
and lung cancer. In addition, novel vaccines are being developed
to target mucous membranes (99), and quantitative profiling of
the mucosal immune repertoire will be essential to understand
their effectiveness and function. As the source of the antibody
transcript sequence database influences the quality of Ig-Seq
data, subsequent work will require generating more
comprehensive donor-specific reference databases using B cells
from various compartments. Alternatively, substantial advances
in reference-free sequencing may soon enable identification of
serum antibodies without the need for such databases.

While mass spectrometric studies of the antibody repertoire
span a wide breadth of disease types, more depth of study is
needed to obtain additional data for developing novel
therapeutic strategies in each disease case, and to validate the
protective effects of those strategies. Ig-Seq will allow us to
interrogate the overall immune response in unprecedented
detail and use site-specific characteristics of the antibody
repertoire to design novel therapeutics and vaccine strategies.
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