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Immunogenicity, influenced by tumor antigenicity and antigen presenting efficiency,
critically determines the effectiveness of immune checkpoint inhibitors. The role of
immunogenicity has not been fully elucidated in gliomas. In this study, a large-scale
bioinformatics analysis was performed to analyze the prognostic value and predictive
value of antigen presentation machinery (APM) signature in gliomas. ssGSEA algorithm
was used for development of APM signature and LASSO regression analysis was used for
construction of APM signature-based risk score. APM signature and risk score showed
favorable performance in stratifying survival and predicting tumorigenic factors of glioma
patients. APM signature and risk score were also associated with different genomic
features in both training cohort TCGA and validating cohort CGGA. Furthermore, APM
signature-based risk score was independently validated in three external cohorts and
managed to predict immunotherapy response. A prognostic nomogram was constructed
based on risk score. Risk score-derived CALR was found to mediate the invasion and
polarization of macrophages based on the coculture of HMC3 and U251 cells. CALR
could significantly predict immunotherapy response. In conclusion, APM signature and
APM signature-based risk score could help promote the clinical management of gliomas.

Keywords: antigen presentation machinery, glioma, microenvironment, prognosis, genomic alteration, immunotherapy
Abbreviations:OS, overall survival; LGG, low grade glioma; GBM, glioblastoma; IDH, isocitrate dehydrogenase; MGMT, O-6-
methylguanine DNA methyltransferase; ICIs, immune checkpoint inhibitors; PD-L1, programmed death-ligand 1; TMB,
tumor mutation burden; MSI, microsatellite instability; APM, antigen processing and presenting machinery; TCGA, The
Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; ssGSEA, single sample gene set enrichment analysis; CNV,
copy number variation; TIDE, Tumor Immune Dysfunction and Exclusion; CTLA-4, anti-cytotoxic T lymphocyte associated
antigen-4; CL, classical; ME, mesenchymal; NE, neural; PN, proneural; Tregs, regulatory T cells; DSS, disease specific survival;
PFI, progression free interval; ER, endoplasmic reticulum; PSMB, proteasome beta subunits; NSCLC, non-small cell
lung cancer.
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INTRODUCTION

Gliomas account for the majority of brain tumor and are one of
the top-leading causes of cancer death worldwide. Although the
surgical resection with adjuvant chemoradiotherapy could
effectively treat gliomas to some extent, the overall survival (OS)
of low grade glioma (LGG) patients is 8–10 years and the OS of
glioblastoma (GBM) is about 12–14 months (1). Given that, many
researchers have dedicated to exploring novel biomarkers such as
isocitrate dehydrogenase (IDH) mutation, 1p19q codeletion, and
O-6-methylguanine DNA methyltransferase (MGMT) promoter
methylation in glioma for a better classification of glioma patients,
which is more likely to fulfill precision medicine of glioma and
prolong the survival of glioma patients.

Immunotherapy, represented by immune checkpoint blockage,
has become a promising treatment modality in solid cancer.
Compared to conventional therapy options, immune checkpoint
inhibitors (ICIs) induce improved clinical responses in patients. It
has been proposed that cancer cells could disguise themselves to
escape immune surveillance by adopting immune checkpoint
pathways. ICI critically releases the already established immune
response from being suppressed by immune checkpoint and help
the human immune system to recognize and eradicate tumor cells
again. Several factors, namely, programmeddeath-ligand1 (PD-L1)
expression (2), tumor mutation burden (TMB) (3), and
microsatellite instability (MSI) (4) have been confirmed to affect
the ICIs response. Notably, the immunogenicity of tumor cells has
been proved as a fundamental determinant of the effectiveness of
ICIs, where the tumor with sufficient immunogenicity is more
sensitive to ICIs. Furthermore, tumor antigenicity and antigen
presenting efficiency have been identified as fundamental
determinants of tumor immunogenicity (5), and antigen
presentation defects were revealed to contribute to the failure of
ICIs (6). Taken together, exploring the antigen processing and
presenting efficiency in glioma can be significant to optimize the
ICIs therapy for glioma patients.

In this study, antigen processing and presenting machinery
(APM) signature genes were collected and analyzed (7). The
molecular characteristics of APM signature score were explored.
The prognostic value and genomic features of APM signature
score and APM signature gene-based risk scores were determined.
Besides, APM signature gene-based risk score showed remarkable
performance in predicting the immunotherapy response of glioma
patients. Our results suggested that APM signature could be a
novel and effective biomarker for predicting immunotherapy
response in glioma.
MATERIALS AND METHODS

Data Collecting and Preprocessing
A total of 672 glioma samples were collected from The Cancer
Genome Atlas (TCGA) and 1,013 glioma samples were collected
from the Chinese Glioma Genome Atlas (CGGA), where
mRNAseq_693 (693 glioma samples) and mRNAseq_325 (325
glioma samples) were combined as the CGGA dataset using the
R package sva for reduction of batch effect. RNA-seq data and
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corresponding clinical information were downloaded from the
TCGA (https://xenabrowser.net/) and the CGGA (http://www.
cgga.org.cn/) datasets. LGG samples were defined as grade II and
grade III gliomas, while GBM samples were defined as grade IV
gliomas. Samples with incomplete overall survival information of
patients were excluded. Samples with missed information of IDH
status were also excluded. The detailed clinical characteristics of
all the included glioma samples are provided in Table S1.

Development of APM Signature Score
and Risk Score
APM signature score was defined using single sample gene set
enrichment analysis (ssGSEA) algorithm. A total of 28 immune
infiltrating cell signatures were collected from previous study (8),
and the abundance of 28 immune cells was also quantified using
ssGSEA algorithm. A total of 22 immune infiltrating cell signatures
were calculatedbasedon theCIBERSORTalgorithm(9).Univariate
cox regression analysis was performed to determine the prognostic
value of APM signature gene. LASSO regression analysis was
applied to explore the feature genes for calculating risk score
based on their coefficients. The different levels of APM signature
score and risk score in different clinical characteristics were
visualized using raincloud plot. R package pheatmap was used for
construction of heatmap. Copy number variation (CNV) of APM
signature score and risk score were explored using GISTIC 2.0, and
the genomic eventswere also determined.OncoPrintwas applied to
depict the mutation landscape of glioma sample fromTCGA using
R package maftools (10).

Immunotherapy Response
The Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm was applied to explore individual immunotherapy
response (11), which the submap analysis was used to compare
differences of risk score in anti-PD-1 response and anti-cytotoxic
T lymphocyte associated antigen-4 (CTLA-4) response. The
melanoma dataset (GSE78220, N = 28) and the urothelial
carcinoma dataset (IMvigor 210, N = 298) were both used to
calculate the risk score (12). The GBM dataset (PRJNA482620,
N = 17) were also used for assessing the predictive value of risk
score (13).

Single Cell Sequencing Analysis
The detailed procedures of processing the raw data of
GSE138794 were described in our previous study (14). Briefly,
the data was normalized using the “NormalizeData” function
and the “RunPCA” function was performed for dimension
reduction. Cancer cells were identified as cells with aneuploid
using the R package “copykat” (15). The R package “Single R”
was used to identify the immune and stromal cell types. Vlnplot,
Dimplot, and Featureplot were used for visualization.

Western Blotting Assay
The expression level of CALR and b-actin were assessed by the
western blotting assay. Anti-CALR (Rabbit, 1:1,000, Proteintech,
China) and anti-b-actin (Mouse, 1:5,000, Proteintech, China) were
used as the primary antibody. HRP goat anti-mouse IgG
(Mouse, 1:5,000, Proteintech, China) and HRP goat anti-rabbit
March 2022 | Volume 13 | Article 833792
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IgG (Rabbit, 1:6,000, Proteintech, China) were used as the
secondary antibody. ECL development was used for visualization.

RT-qPCR Assay
The primers of b-actin (F ACCCTGAAGTACCCCATCGAG; R
AGCACAGCCTGGATAGCAAC) and CALR (F GCCGCGCC
AAATAATGTCTC; R ATCCACCCCAAATCCGAACC) were
designed using the primer 5.0. Total RNAs were extracted and
reversely transcribed into cDNA by HiScript Q RT SuperMix for
RT-qPCR. The expression levels of b-actin and CALR were
quantified using 2−DDCT.

Coculture of HMC3 and U251 Cells for
Transwell Assay
U251 cells were digested and resuspended using 10% DMEM, and
were added to the lower chamber. At the density of 1 × 105 each
well, U251 cells were transfected with si-NC and si-CALR. After
U251 cells were transfected for 48 h, and HMC3 cells were also
digested and resuspended at the density of 2 × 105 each well. At the
ratio of 1:1, U251 cells and HMC3 cells were cocultured for 48 h.
After being washed with phosphate buffer saline (PBS) for twice,
the upper chamber was fixed using acetone and methyl alcohol at
the ratio of 1:1 for 20 min. The upper chamber was then stained
with 0.5% crystal violet for 5 min for photographing.

Coculture of HMC3 and U251 Cells for
Immunofluorescence Staining
The transfected U251 cells on the upper chamber were
cocultured with HMC3 cells on the cell slide of the lower
chamber at the ratio of 1:1. After being washed with phosphate
buffer saline (PBS), one group of cell slides were incubated with
primary antibody CD68, CD11c and the other group of cell slides
were incubated with primary antibody CD68, CD163. The cell
slides were subsequently incubated with anti-mouse and anti-
rabbit IgG secondary antibody. The cell nucleus of cocultured
cells was stained with DAPI. The cell slides were observed with
microscope and representative images were photographed.

Statistical Analysis
All statistical analyses were performed on R project. Group
comparisons were determined by two‐tailed t-test or one‐way
ANOVA. Spearman correlation analysis was applied to
determine significant correlation between linear variables. The
R package survival ROC was applied to plot the ROC curves (16).
Survival analysis was visualized using the Kaplan–Meier curves.
Univariate cox regression analysis was performed using the R
package survival. All tests with P-values <0.05 were considered to
be statistically significant.
RESULTS

Molecular Features and Clinical
Characteristics of APM Signature Score
The overall study design is shown in Figure 1. Based on a previous
reviewpaper aboutAPM(17), the followinggeneswere collected for
Frontiers in Immunology | www.frontiersin.org 3
estimation of APM signature: PSMB5, PSMB6, PSMB7, PSMB8,
PSMB9, PSMB10, TAP1, TAP2, ERAP1, ERAP2, CANX, CALR,
PDIA3, TAPBP, B2M, HLA-A, HLA-B and HLA-C. These
signature genes were responsible for four main tasks of MHC
class I antigen processing and presentation, namely, peptide
generation and trimming (PSMB5, PSMB6, PSMB7, PSMB8,
PSMB9, PSMB10, ERAP1, ERAP2), peptide transport (TAP1,
TAP2), assembly of the MHC class I loading complex (CANX,
CALR, PDIA3, TAPBP), and antigen presentation (B2M, HLA-A,
HLA-B, HLA-C). The APM signature score of each glioma patient
fromTCGAwas calculated. The increasing tumor grade of gliomas
was associated with increasing APM signature score (Figure 2A).
Themolecular subtypesofGBMcanbeclassified into classical (CL),
mesenchymal (ME), neural (NE), proneural (PN). Notably,
malignant subtypes, CL and ME, were associated with higher
levels of APM signature score in pan-glioma, LGG, and GBM
samples, respectively (Figure 2B and Figure S3A). IDH wildtype,
an indicator ofworse survival, was also associatedwithhigherAPM
signature score in pan-glioma, LGG, and GBM samples,
respectively (Figure 2C and Figure S3B). Consistently, 1p19q
non-codeletion, an indicator of worse survival, was associated
with higher APM signature score in pan-glioma and LGG
samples, respectively (Figure 2D and Figure S3C). Besides,
unmethylated MGMT promoter correlated with higher APM
signature score in pan-glioma and LGG samples, respectively
(Figure 2E and Figure S3D). Glioma patients aged over 45 years
old hadhigherAPMsignature score inpan-glioma, LGG, andGBM
samples, respectively (Figure 2F). Although the statistical analysis
was not significant in GBM due to the small sample size, the
tendency was still obvious. Taken together, the close association
between APM signature and clinicopathological features was not
reflected by tumor heterogeneity between LGGandGBM. So,APM
signature could be successfully applied to pan-glioma samples.
Additionally, glioma patients with progressive disease after
treatment had higher APM signature score (Figure 2G).

TMB was also associated with higher level of higher APM
signature score (Figure 2H), which suggested that APM signature
score could predict ICI response in gliomas. Besides, SNV
neoantigens were associated with higher level of higher APM
signature score (Figure 2I), indicating that APM signature score
could predict tumor antigenicity. Moreover, classical immune
checkpoint molecules, namely, VTCN1, PDCD1LG2, LAG3, and
CD274, were all highly associatedwith higher level of APMsignature
score in the TCGA and the CGGA (Figures 2J, K, respectively).

Prognostic Value of APM Signature Score
To further determine the prognostic value of APM signature score,
univariate cox regression analysis was performed on the APM
signature genes. Notably, all APM signature genes except PSMB5,
PSMB6, and PSMB7 were significant hazardous markers in the
TCGA (Figure 2L). LGG patients, GBM patients, and glioma
patients with high APM signature scores experienced reduced OS,
disease specific survival (DSS), and progression free interval (PFI) in
theTCGA (Figures 3A–C, respectively). Consistently, LGGpatients,
GBMpatients, and glioma patients with high APM signatures scores
experienced reduced OS in the CGGA (Figure 3D). The expression
differences of APM signature genes in different clinical factors of
March 2022 | Volume 13 | Article 833792
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gliomapatients fromtheTCGAand theCGGAare shown inFigures
S1A, B. Specifically, APM signature genes were more expressed in
glioma patients with IDH wildtype in the TCGA (Figure S2A) and
the CGGA (Figure S2B). APM signature genes were abundantly
expressed in GBM patients compared to LGG patients in the TCGA
(Figure S2C) and the CGGA (Figure S2D). Furthermore, APM
signature geneswere abundantly expressed in grade 3 gliomapatients
compared to grade 2 glioma patients in the TCGA (Figure S2E) and
the CGGA (Figure S2F).

Immune Infiltration Characteristics of APM
Signature Score
Given the vital role of tumor immune microenvironment, the
association between APM signature score and immune
infiltration was explored. The expression patterns of immune
infiltration cells in different levels of APM signature is shown in
Frontiers in Immunology | www.frontiersin.org 4
Figure S1C, which immune suppressive cells such as
neutrophils, macrophages, mast cells, and regulatory T cells
(Tregs) were all abundantly existed in glioma patients with
high APM signature scores. DC and macrophages ranked top 2
among the immune infiltration cells positively correlated with
APM signature score (Figure S1D). The expression patterns of
inflammatory signature genes in different levels of APM
signature score is shown in Figure S1E. APM signature score
was found to be positively associated with inflammatory
activities regulated by MHC I, MHC II, STAT1, interferon,
LCK, HCK, and negatively associated with IgG (Figure S1F).

Construction of APM Signature
Gene-Based Risk Score
LASSO regression analysis was further performed on the 17
APM signature genes (Figure 4A). The formula of the risk score
FIGURE 1 | Flow diagram of this study.
March 2022 | Volume 13 | Article 833792

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Antigen Presentation Machinery Signature in Glioma
A B C

D E F

G

J

K

L

H I

FIGURE 2 | Clinical characteristics and molecular features of APM signature. Raincloud plot depicting the expression differences of APM signature in (A) tumor
grade, (B) molecular subtypes, (C) IDH status, (D) 1p19q status, (E) MGMT status, (F) age groups, and (G) treatment outcome. CR, Complete Remission/
Response; PR, Partial Remission/Response; PD, Progressive Disease; SD, Stable Disease. (H) Different levels of TMB in two APM signature groups. (I) Different
levels of SNV neoantigens in two APM signature groups. (J) Expression differences of VTCN1, PDCD1LG2, LAG3, and CD274 in two APM signature groups in the
TCGA. (K) Expression differences of VTCN1, PDCD1LG2, LAG3, and CD274 in two APM signature groups in the CGGA. (L) Forest plot depicting the hazard ratios
of APM genes and APM signature score in glioma samples. NS, Not Statistically Significant; **P < 0.01; ***P < 0.001.
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was as follows, risk score = 0.4712 ∗ CALR (gene expression
level) + 0.1171*CANX + 0.2059 ∗ PSMB8 + 0.0198 ∗ PDIA3 +
0.0966 ∗ HLA_B. The partial likelihood deviance of APM
signature genes is shown in Figure 4B. Bubble plot was used
to show the value of coefficients of 5 identified prognostic genes
(Figure 4C). The risk score of each glioma patient from the
Frontiers in Immunology | www.frontiersin.org 6
TCGA and the CGGA was calculated on the basis of the 5
prognostic genes. Heatmap showed the consistency among APM
signature gene expression values, APM signature, and risk score
in the TCGA and the CGGA (Figures 4D, E, respectively). As
expected, risk score highly correlated with APM signature score
in the TCGA and the CGGA (Figures 4F, G, respectively).
A

B

C

D

FIGURE 3 | Prognostic value of APM signature score in (A) LGG samples from the TCGA, (B) GBM samples from the TCGA, (C) glioma samples from the TCGA.
(D) Kaplan–Meier curves of the two APM signature score groups regarding OS of glioma samples from the CGGA.
March 2022 | Volume 13 | Article 833792
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Molecular Features and Clinical
Characteristics of Risk Score
To comprehensively determine the prognostic value of APM
signature gene-based risk score, the association between risk
score and different clinicopathologic factors was analyzed. The
increasing tumor grade of gliomas was associated with increasing
risk score (Figure S4A). Notably, CL and ME subtypes were
associated with higher levels of risk score (Figure S4B). IDH
wildtype was also associated with higher risk score (Figure S4C).
Consistently, 1p19q non-codeletion was associated with higher
risk score (Figure S4D). Besides, unmethylated MGMT
promoter correlated with higher risk score (Figure S4E).
Glioma patients aged more than 45 years old had higher risk
score (Figure S4F). Additionally, glioma patients with
progressive disease after treatment had higher risk score
(Figure S4G).

TMB was also associated with higher level of higher risk score
(Figure S4H), which suggested that risk score could predict ICI
response in gliomas. Besides, SNV neoantigens were associated
with higher level of higher risk score (Figure S4I), indicating that
APM signature score could predict tumor antigenicity.
Moreover, classical immune checkpoint molecules, namely,
VTCN1, PDCD1LG2, LAG3, and CD274, were all highly
associated with higher level of risk score in the TCGA and the
CGGA (Figures S4J, K, respectively).

Prognostic Value of Risk Score
The ROC curves showed that risk score and APM signature score
could sensitively predict molecular subtypes (Figure 5A),
MGMT promoter methylation status (Figure 5B), IDH status
(Figure 5C), and 1p19q status (Figure 5D). Besides, APM
signature score could sensitively predict OS, DSS, and PFI with
high AUC value of 0.786, 0.791, and 0.671, respectively, while
risk score could sensitively predict OS, DSS, and PFI with high
AUC value of 0.848, 0.846, and 0.733, respectively (Figure 5E).
LGG patients, GBM patients, and glioma patients with high risk
scores experienced reduced OS, DSS, and PFI in the TCGA
(Figures S5A–C, respectively). Consistently, LGG patients, GBM
patients, and glioma patients with high risk scores experienced
reduced OS in the CGGA (Figure S5D).

Genomic Features of APM Signature
Score and Risk Score
Gene mutation has always been the critical factor in facilitating
tumor growth, tumor progression, and tumor metastasis. The
overall somatic mutation profile of glioma patients in the
increase of APM signature score is shown in Figure S6A. The
copy number variation (CNV) regions in high and low APM
signature score groups are shown in Figure S6B, where
amplifications in 1q32.1, 4q12, and 7p11.2 more frequently
occurred in high APM signature score group while deletions in
2q37.3, 11p15.5, and 19q13.31 more frequently occurred in low
APM signature score group. Specifically, mutations in
oncogenes, EGFR (24%) and TTN (22%), more frequently
occurred in high APM signature score group. On the contrary,
mutations in tumor suppressors, IDH1 (89%) and TP53 (54%),
Frontiers in Immunology | www.frontiersin.org 7
more frequently occurred in low APM signature score group
(Figure S6C).

Likewise, the genomic features of risk score were explored.
The overall somatic mutation profile of glioma patients in the
increase of risk score is shown in Figure 5F. The copy number
variation (CNV) regions in high and low risk score groups are
shown in Figure 5G, where amplifications in 1q32.1, 4q12,
7p11.2 and deletion in 9p21.3 more frequently occurred in
high risk score group while amplification in 12q14.1 and
deletions in 2q37.3, 11p15.5, 19q13.31 more frequently
occurred in low risk score group. Specifically, mutations in
oncogenes, EGFR (21%) and TTN (24%), more frequently
occurred in high risk score group. On the contrary, mutations
in tumor suppressors, IDH1 (88%) and TP53 (51%), more
frequently occurred in low risk score group (Figure 5H). The
differentially altered genes in the two risk score groups with
statistical significance are exhibited in Figure 5I.

Risk Score Could Predict Anti-PD-1
Immunotherapy Response
Based on the TIDE algorithm, high risk score group showed
significantly better anti-PD-1 response (Figure 6A). In IMvigor
210 cohort, patients with high risk score experienced prolonged
OS (Figure 6B). Patients with complete response or partial
response to immunotherapy had higher occupation of risk
score (Figure 6C). Correspondingly, patients in high risk score
group were more likely to respond to immunotherapy
(Figure 6D). Besides, the high risk score group had higher
level of CD274 (Figure 6E). Additionally, in the GSE78220
cohort, patients with high risk score experienced prolonged OS
(Figure 6F). The high risk score group had more patients with
complete response or partial response to immunotherapy
(Figure 6G). Correspondingly, patients with response to
immunotherapy had higher occupation of risk score
(Figure 6H). Likewise, the high risk score group had a higher
level of CD274 (Figure 6I). Notably, in the GBM cohort
receiving anti-PD-1 therapy, although the difference is not
statistically significant, patients with high risk score
experienced reduced OS compared to patients with low risk
score (Figure 6J). GBM patients with no response to
immunotherapy had relatively higher risk score (Figure 6K).

Construction of a Nomogram Based on
Risk Score
To further determine the value of risk score in clinical
application, we compared the survival between patients with or
without radiotherapy in two risk score groups separately. It
turned out that patients receiving radiotherapy with high risk
score had the worst survival outcome (Figure 7A). We also
compared our risk score with two previously established models
(Figure 7B) (18, 19). Notably, our risk score showed the highest
AUC value of 0.851 in predicting survival outcome compared
with those of the two models (AUC = 0.818,0.725, respectively).
Subsequently, univariate cox regression analysis was performed,
which risk score was an independent clinical factor as tumor
grade, age, IDH status, 1p19q status (Table S2). Given that, a
March 2022 | Volume 13 | Article 833792
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FIGURE 4 | Construction of APM signature gene-based risk score. (A) LASSO regression analysis showing the coefficients of APM signature genes. (B) Partial
likelihood deviance of APM signature genes. (C) Bubble plot depicting the APM-derived risk signature genes. (D) Heatmap depicting the association between APM
signature genes and risk score in the TCGA. (E) Heatmap depicting the association between APM signature genes and risk score in the CGGA. (F) The correlation
between APM signature and risk score in TCGA. (G) The correlation between APM signature and risk score in the CGGA.
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FIGURE 5 | Genomic features of risk score groups. (A) ROC curve depicting the predictive value of APM signature and risk score in molecular subtypes. (B) ROC
curve depicting the predictive value of APM signature and risk score in MGMT status. (C) ROC curve depicting the predictive value of APM signature and risk score
in IDH status. (D) ROC curve depicting the predictive value of APM signature and risk score in 1p19q status. (E) ROC curve depicting the predictive value of APM
signature and risk score in OS, DSS, and PFI. (F) The overall somatic alteration pattern of glioma. (G) Copy number variations in high and low risk score group.
(H) Genomic alterations in high and low risk score group. (I) Forest plot depicting the differences between high and low risk score group regarding altered genes
based on chi-square test. ***P < 0.001.
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FIGURE 6 | The predictive value of risk score in immunotherapy. (A) Submap analysis showed a significant difference in CTLA-4 and anti-PD-1 therapy response
based on the TIDE algorithm regarding the risk score. (B) Kaplan–Meier curves of the two risk score groups regarding OS in IMvigor 210 cohort. (C) Box plot
showing the occupation of two risk score groups in different anti-PD-1 immunotherapy responses in IMvigor 210 cohort. (D) Box plot showing the occupation of
different anti-PD-1 immunotherapy responses in two risk score groups in IMvigor 210 cohort. (E) Box plot showing the expression differences of CD274 in two risk
score groups in IMvigor 210 cohort. (F) Kaplan–Meier curves of the two risk score groups regarding OS in GSE78220 cohort. (G) Box plot showing the occupation
of different anti-PD-1 immunotherapy responses in two risk score groups in GSE78220 cohort. (H) Box plot showing the occupation of two risk score groups in
different anti-PD-1 immunotherapy responses in GSE78220 cohort. (I) Box plot showing the expression differences of CD274 in two risk score groups in GSE78220
cohort. (J) Kaplan-Meier curves of the two risk score groups regarding OS in GBM cohort. (K) Box plot showing the different levels of risk score in two anti-PD-1
response groups in GBM cohort. ***P < 0.001.
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prognostic nomogram based on these independent clinical
factors was constructed (Figure 7C). The 1-, 3-, 4-, and 5-year
calibration curves showed the reliability of the nomogram
(Figure 7D). As expected, patients with high score based on
the nomogram were associated with decreased survival
(Figure 7E). Moreover, the nomogram-based score showed
remarkable predictive value in survival outcome with the AUC
value of 0.912 (Figure 7F).

The Predictive Value of CALR in
Immunotherapy Response
The disease network related to CALR was generated using the
Open Targets Platform (https://platform.opentargets.org),
which CALR was involved in the carcinogenesis of various
cancers (Figure 8A). The protein interaction of CALR was
visualized using the STRING database (https://string-db.org/
cgi/input.pl) (Figure 8B).

The predictive value of CALR expression in immunotherapy
response was first explored in human immunotherapy cohorts.
The results showed that CALR alone had an AUC of >0.5 in 17 of
the 25 immunotherapy cohorts (Figure 8C). Moreover, CALR
showed a higher predictive value than TMB, T. Clonality and B.
Clonality, which gave AUC >0.5 in eight, nine and seven
immunotherapy cohorts, respectively. However, CALR had
lower predictive value scores than the CD274 score (AUC >0.5
in 21 immunotherapy cohorts), CD8 score (AUC >0.5 in 21
immunotherapy cohorts), and Merck 18 score (AUC >0.5 in 18
immunotherapy cohorts).

To investigate the correlation between CALR expression in
tumor cells and their sensitivity to immunotherapy agents,
CALR expression level across tumor cell-lines were compared
between pre- and post-cytokine treated samples. As shown in
Figure 8D, IFNg treatment significantly upregulated CALR
expression in B16 and EMT6 cells, IFNb treatment
significantly upregulated CALR expression in KPC while
downregulated CALR expression in MC38 cells, TNFa
treatment significantly upregulated CALR expression in Panc-
02 while downregulated CALR expression in B16 cells. We then
compared the CALR expression level across different tumor cell-
lines between pre- and post-ICB treatment and responders and
non-responders. CALR expression was significantly increased in
CT26 cells that responded to anti-CTLA and anti-PD-1
treatment, and CALR expression was obviously increased in
EMT6 cells that responded to anti-PD-1 treatment. On the
contrary, CALR expression was significantly decreased in T11
cells that responded to anti-PD-1 treatment (Figure 8E). Above
all, CALR expression can function as an effective biomarker for
the prediction of immunotherapy response.

Validation of CALR in Mediating the
Invasion of Macrophages
As the major component of the LASSO regression-based genes,
CALR had the highest coefficient in determining the risk score.
Therefore, CALR was hypothesized to play a vital role in the
tumor microenvironment of glioma. In the TCGA, glioma
patients with high CALR expression were associated with
decreased survival (Figure S7A). As mentioned above,
Frontiers in Immunology | www.frontiersin.org 11
macrophage was one of the top two immune cells exhibiting
significant correlation with APM signature score. We next tried
to establish the connection between CALR and macrophage. In
the TCGA, macrophages were more active in glioma patients
with high CALR expression (Figure S7B). Besides, in the GBM
single cell sequencing dataset GSE138794 (Figure S7C), CALR
was abundantly expressed in cancer cells and macrophages based
on Dimplot and Vlnplot (Figures S7D, E). Based on the western
blotting assay in U251 cell line, three siRNA targeting CALR
significantly suppressed the protein expression of CALR
(Figure 9A). qPCR assay further validated the results
(Figure 9B). siRNA-1 and siRNA-3 were the top two interference
efficient siRNA in suppressing CALR, and they were used for
subsequent experiment. The diagram for coculture between
HMC3 and U251 cells is shown in Figure 9C. After coculturing
HMC3 and U251 cells, macrophages in siRNA-1 and siRNA-3
groups showed significantly decreased ability in invasion compared
with siRNA-NC group (Figure 9D). Moreover, macrophages in
siRNA-1 and siRNA-3 groups weremore likely to polarize intoM1
type macrophages (Figure 9E). In the meanwhile, macrophages in
siRNA-1 and siRNA-3 groups were less likely to polarize into M2
type macrophages (Figure 9F).
DISCUSSION

Immunogenicity, influenced by both tumor cell itself and the
surrounding tumor microenvironment, has been reported to be
critical inherent feature of cancer and closely connected to
immunotherapy response. Tumor antigenicity and antigen
presenting ability are two key determinants of tumor
immunogenicity. In this study, we employed APM signature
genes from previous study to measure the immunogenicity of
gliomas. APM signature score and the corresponding risk score
showed favorable performance in stratifying survival and
predicting tumorigenic factors of glioma patients. APM
signature score and risk score were also associated with
different genomic features. Furthermore, APM signature-based
risk score managed to predict immunotherapy response.

The APM signature score was developed based on the
expression value of CALR, PDIA3, CANX, PSMB8, PSMB10,
TAPBP, B2M, PSMB9, HLA-A, HLA-B, TAP1, HLA-C, ERAP1,
PSMB6, ERAP2, PSMB7, and PSMB5. PDIA3 and B2M have been
identified as critical immunemodulators and hazardousmarkers in
gliomas (20, 21). CANX has also been identified as prognostic
marker in LGG (19). Proteasome beta subunits (PSMB) family is
identified as a negative regulator of innate immune responses (22).
HLA families are important mediators in cancer immunity (23).
CALR mutation was frequently detected in different cancer types
(24). The endoplasmic reticulum (ER) aminopeptidases ERAP1
and ERAP2 are two frequently altered genes that affect anti-tumor
immune responses and tumor growth (25). Moreover, the
downregulation of TAP1 has been reported to elicit immune
escape in colorectal cancer (26).

As immunogenicity is an important inherent feature of tumor
cells, the constructed APM signature score and risk score were
found to be more associated with higher tumor grade, CL and
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ME subtypes, IDH wildtype, 1p19q non-codeletion,
unmethylated MGMT promoter as expected, all of which
indicated more malignancy of gliomas. It should be noted that
high APM signature score and high risk score were both
Frontiers in Immunology | www.frontiersin.org 12
associated with more copy number variations, including 1q32.1
(NR5A2), 4q12 (KIT), and 7p11.2 (EGFR). Besides, tumor
suppressors, including IDH1 and TP53, were more frequently
occurred in low APM signature score group and low risk score
A C

B

D

E F

FIGURE 7 | The prognostic value of risk score. (A) Kaplan–Meier curves of the two risk score groups receiving radiotherapy or not regarding OS in TCGA. (B) ROC
curves depicting the predictive value of risk score compared with two previously developed signatures for 3-year survival. (C) A nomogram based on several clinical
factors. (D) 1-, 3-, 4-, and 5-year calibration curves for the nomogram. (E) Kaplan–Meier curves of the two nomogram-based score groups regarding OS in the
TCGA. (F) ROC curve depicting the predictive value of the nomogram-based score for 3-year survival.
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FIGURE 8 | CALR predicts immunotherapy response. (A) Disease network related to CALR. (B) Protein–protein interaction network related to CALR. (C) The
predictive value of CALR in human immunotherapy cohorts. (D) The predictive value of CALR in cytokine treatment. (E) The predictive value of CALR in murine
immunotherapy cohorts.
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FIGURE 9 | (A) Western blotting results for U251 cells treated with siRNAs. Statistical analysis of the western blotting results in different siRNA groups. (B) Statistical
analysis of the qPCR results in different siRNA groups. (C) Diagram for the coculture between HMC3 and U251 cells. (D) Transwell assay for the cocultured HMC3
cells. Statistical analysis of the migrated HMC3 cells in different siRNA groups. (E) Immunofluorescence staining of CD68 and CD11c in HMC3 cells. (F)
Immunofluorescence staining of CD68 and CD163 in HMC3 cells. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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group. Moreover, APM signature score and risk score predicted
worse survival outcome of glioma patients. Taken together, these
results suggested that APM signature score and risk score could
be reliable markers in predicting malignancy of gliomas and
prognosis of glioma patients.

Tumor immune microenvironment plays an important role in
regulating the tumorigenic process and immunogenic process of
tumor (27, 28). As expected, APM signature score correlated with
multiple immune suppressive cells, namely, neutrophils, Tregs,
mast cells, and macrophages. It should be noted that patients with
highergradeofgliomaswere estimatedwith relativelyhigher level of
immune infiltration cells, namely, T cells, B cells, DC, and
macrophages (29, 30), all of which have been proved with robust
antigen presentation capacity and could express antigen
presentation machinery. This was in accordance with our finding
that higher grade of gliomas was associated with higher level of
APM signature. APM signature score also correlated with
inflammatory activities by regulating the T cell mediated antigen
presenting process. Additionally, immune checkpoint molecules
have already been proved to help facilitate the immune escape of
tumor cells (31). The strong positive correlation between APM
signature-based risk score and classical immune checkpoint
molecules including VTCN1, PDCDLG2, LAG3, and CD274
further indicated that APM signature score could predict an
immunosuppressive and onco-inflammatory microenvironment
that supported tumor growth and progression.

Given the vital role of APM signature score and risk score in
immunity, we explored the predictive value of risk score in
immunotherapy response. Previous study has proved that APM
signature score could predict response to immune checkpoint
blockage in non-small cell lung cancer (NSCLC) and melanoma
(32). Based on the TIDE algorithm, glioma patients with high risk
score were more likely to respond to anti-PD-1 immunotherapy. In
two most widely studied cohorts receiving anti-PD-1 therapy,
IMvigor 210 and GSE78220, high risk score predicted better
survival outcomes, better immunotherapy responses, and higher
expression levels of CD274. These results confirmed the
remarkable predictive value of risk score in anti-PD-1 response.
Although immunotherapy has demonstrated promising results in
several solid cancer types, the clinical outcome of GBM patients
receiving immunotherapy is still dismal. Based on a recent GBM
cohort receiving anti-PD-1 therapy, high risk score correlated with
insignificant worse survival and worse immunotherapy responses.
The insignificant differences between high risk score group and low
risk score group can be attributed to the insufficient sample size. The
contradictory role of risk score in GBM compared to those in
melanoma and urothelial carcinoma may partly be explained by
the different tumor microenvironment in central nervous system.
Therefore, more GBM cohorts with large-scale samples are urgently
needed for exploring the clinical practice of immunotherapy.

By comparing our risk score with other previous signatures,
our risk score demonstrated its advantage in predicting survival
outcome of patients. A prognostic nomogram was also
constructed to further prove the clinical value of risk score. In
addition, as the core component of risk score, CALR was proved
to mediate the invasion and polarization of macrophages in
Frontiers in Immunology | www.frontiersin.org 15
gliomas. CALR could also effectively predict immunotherapy
response in both human and murine immunotherapy cohorts.
Specifically, CALR expression was significantly increased in
CT26 cells (murine colorectal cancer) that responded to anti-
CTLA and anti-PD-1 treatment, and CALR expression was
obviously increased in EMT6 cells (murine breast cancer) that
responded to anti-PD-1 treatment. On the contrary, CALR
expression was significantly decreased in T11 cells (genetically
engineered mouse models (GEMM) of mammary cancer with
overexpression of murine APOBEC3) that responded to anti-
PD-1 treatment (33). Thus, CALR was proposed to be affected
by APOBEC3B.

In conclusion, our study demonstrated that APM signature
score and APM signature-based risk score could be potential
markers in predicting survival outcome, IDH status, 1p19q
status, MGMT status, and molecular subtypes of glioma
patients. Besides, APM signature score could be associated
with an immune suppressive microenvironment and risk score
could potentially predict immunotherapy responses of patients.
However, the role of APM signature in immunotherapy of GBM
needs to be further elucidated. It is expected that APM signature
score and APM signature-based risk score could help promote
the clinical management of gliomas.
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