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Organ-specific autoimmunity is often characterized by autoantibodies targeting proteins
expressed in the affected tissue. A subgroup of autoimmunopathies has recently emerged
that is characterized by predominant autoantibodies of the IgG4 subclass (IgG4-
autoimmune diseases; IgG4-AID). This group includes pemphigus vulgaris, thrombotic
thrombocytopenic purpura, subtypes of autoimmune encephalitis, inflammatory
neuropathies, myasthenia gravis and membranous nephropathy. Although the
associated autoantibodies target specific antigens in different organs and thus cause
diverse syndromes and diseases, they share surprising similarities in genetic
predisposition, disease mechanisms, clinical course and response to therapies. IgG4-
AID appear to be distinct from another group of rare immune diseases associated with
IgG4, which are the IgG4-related diseases (IgG4-RLD), such as IgG4-related which have
distinct clinical and serological properties and are not characterized by antigen-specific
IgG4. Importantly, IgG4-AID differ significantly from diseases associated with IgG1
autoantibodies targeting the same organ. This may be due to the unique functional
characteristics of IgG4 autoantibodies (e.g. anti-inflammatory and functionally
monovalent) that affect how the antibodies cause disease, and the differential response
to immunotherapies of the IgG4 producing B cells/plasmablasts. These clinical and
pathophysiological clues give important insight in the immunopathogenesis of IgG4-
AID. Understanding IgG4 immunobiology is a key step towards the development of novel,
IgG4 specific treatments. In this review we therefore summarize current knowledge on
org March 2022 | Volume 13 | Article 8343421
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IgG4 regulation, the relevance of class switching in the context of health and disease,
describe the cellular mechanisms involved in IgG4 production and provide an overview of
treatment responses in IgG4-AID.
Keywords: IgG4 autoimmune disease, MHC, autoimmunity, IL-4, IL-10, Fab-arm exchange, memory B cells
INTRODUCTION

IgG4 autoimmune diseases (IgG4-AID) are an emerging group
of autoimmune diseases caused by IgG4 subclass autoantibodies
(1, 2). Autoantibodies are key pathogenic players in many
autoimmunopathies, and cause disease by a range of different
effector mechanisms, such as complement activation, antibody-
dependent cellular cytotoxicity or cross-linking and endocytosis
of antigen (3). These are pathogenic mechanisms that depend on
the antibody Fc region of IgG1-3 subclass antibodies, such as
acetylcholine receptor (AChR) antibodies in myasthenia gravis,
NMDAR antibodies in autoimmune encephalitis or of antibodies
against aquaporin 4 (AQP4) in neuromyelitis optica. These
effector functions are not available to the IgG4 subclass which
has a structurally distinct Fc region (4, 5). IgG4 is produced in
response to prolonged or strong antigen stimulation, and
thought to play a role as anti-inflammatory or tolerogenic
antibody (discussed in more detail below). Despite IgG4’s
protective and tolerogenic role, in recent years two groups of
rare diseases emerged, in which IgG4 takes the center stage:
IgG4-AID that are caused directly by pathogenic IgG4
autoantibodies [such as MuSK myasthenia gravis (6, 7) or
pemphigus vulgaris (8, 9), reviewed in more detail here (10)]
and IgG4 related diseases [IgG4-RLD, such as IgG4-related
pancreatitis (11) or IgG4-related periaortitis/periarteritis (12)].
IgG4-RLD are a rare multiorgan diseases that are characterized
by tissue-destructive fibrotic lesions with lymphocyte and IgG4
plasma cell infiltrates and elevated serum IgG4 concentrations
(13). Both IgG4-AID and IgG4-RLD are rare diseases of the
immune system that may affect different target organs that are
nevertheless most likely two unrelated groups of diseases (14). A
key difference lies in the role of the IgG4 antibodies: In IgG4-
RLD, increased serum concentrations of IgG4 are present in a
majority of patients (15), but the antigenic targets of IgG4 and
the role of IgG4 antibodies for pathogenicity is unclear [reviewed
in detail here (16, 17)]. In contrast, IgG4-AID patients do not
show the 10-fold increase in serum IgG4 levels as IgG4-RD
patients (14), which otherwise– even though causing diverse
symptoms and affecting different organs - all share one common
feature: They are associated with antigen-specific, pathogenic
IgG4 autoantibodies (1, 10).

Antibodies involved in IgG4-AID, known to date, target
antigens in mainly four organ systems: 1) the central and
peripheral nervous system with diseases such as MuSK
myasthenia gravis (MG), anti-LGI1 and anti-Caspr2
encephalitis, anti-IgLON5 disease or chronic inflammatory
demyelinating polyneuropathy (CIDP) with antibodies against
NF155/contactin-1/CASPR1, 2) the skin and mucosa with skin
blistering diseases such as pemphigus vulgaris (PV) and
org 2
pemphigus foliaceus (PF), 3) the kidneys with PLA2R- and
THSD7A- antibody positive membranous glomerulonephritis
and 4) the haematological system with diseases such as
thrombotic thrombocytopenic purpura (TTP, ADAMTS13) or
GPIHBP1 autoantibody syndrome. Other unifying features of
IgG4-AID are their low prevalence (10), their emerging strong
genetic associations with specific HLA alleles such as HLA-
DQB1*05 and HLA-DRB1*14 (18, 19), their clinical severity
and chronici ty and their good response to B cel l
depletion therapy.

How can the disease-overarching association of these
common features be explained and which commonalities can
we identify in the immune cells involved in the production of
pathogenic IgG4 autoantibodies (2, 20)?
IgG4-ISOTYPE ANTIBODIES: THE
FRIENDLY VILLAIN?

IgG is the main antibody class in the human body, with serum
concentrations of 7-15g/L. However, the four IgG subclasses are
numbered in descending order of their frequency, making IgG4
with an average of 5% (0.35-0.51g/L) of total IgG the rarest IgG
subclass (21–23). Notably, IgG4 concentrations vary
considerably between healthy individuals and throughout life
(24), and may range from 0.01g/L to 1.4g/L (25), but may exceed
these ranges in inflammatory conditions such as helminth
infection to extreme levels such as 9g/L (26).

Normally IgG4 is produced after chronic exposure to antigen
(27–31) or a strong antigenic stimulus such as in allergen
immunotherapy (29–32), and it is usually induced by a class
switch from IgE (or other antibody classes/subclasses) towards
IgG4. IgG4 then competes with antibodies of other classes and
subclasses for the antigen, and blocks the epitope so that the
effector function of the competing antibody is abolished (30–38).
Experiments using IgG4 derived from hyper-immune beekeepers
show that it is protective in bee venom allergy patients (28, 39)
and mice exposed to lethal africanised honey bee venom (40).
IgG4 antibodies against the AChR protected experimental
animals in a passive transfer model from the pathogenic effects
of IgG1 antibodies against the AChR (20).

The four IgG subclasses share over 90% sequence homology,
but single amino acid differences in IgG4 affect its structure and
function substantially. IgG4 has anti-inflammatory properties
(Figure 1), as it does not activate the complement system or
engage activating Fcg receptors on immune cells. A single amino
acid difference in the hinge leads to increased stereometric
flexibility and allows – under reducing conditions- the
formation of intrachain disulphide bridges instead of
March 2022 | Volume 13 | Article 834342
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interchain disulphide bridges, which leads to a loss of covalent
connection of the two antibody half-molecules (41–43). This
allows for a dissociation of IgG4 into two half-molecules that
may then recombine randomly with IgG4 half-molecules of
other specificities, and generate bi-specific functionally
monovalent antibodies. This process is termed “Fab-arm
exchange” (20, 44–50). Fab-arm exchange and bi-specificity
were also observed in IgG4 autoantibodies against MuSK (50,
51). Functionally monovalent antibodies cannot cross-link
antigen and induce antibody-induced antigen-internalization
(Figure 1). Furthermore antigen-antibody immune complexes
cannot be formed (20, 52, 53). Single amino acid differences in
the CH2 region also render IgG4 immunologically inert: 1) a
serine instead of a proline at position 331 (P331S) prevents
binding of C1q and activation of the classical complement
pathway (54, 55), while 2) further differences in the CH2
(L234F, P331S, A327G) reduce IgG4 binding to activating Fcg
receptors, which prevents activation of immune cells (56–61).

Therefore, IgG4 autoantibodies do not hold classical effector
functions such as complement- or immune cell- mediated tissue
damage. Rather they exert their effects by direct steric
interference with their target antigens. Since they are unable to
form immune complexes, this interaction would be beneficial in
situation where non pathogenic antigen needs to be cleared and
eliminated without causing overt inflammation. However, in the
setting of autoimmunity, this mechanism has the potential to act
as pharmacological antagonism at its target antigen. Increasing
antibody concentrations will increasingly compete with
physiological interaction of the targeted protein with its
partners. And indeed, this has been found to be the main effect
in many IgG4-AID such as MuSK-MG, pemphigus vulgaris or
anti-LGI1 encephalitis (62–67). For example, antibodies to
MuSK interrupt a signal transduction pathway required for the
functioning of the neuromuscular junction, therefore causing
muscle weakness in patients with MuSK-MG (62, 63), antibodies
against desmoglein 1 and/or 3 lead to loss of cell adhesion
between keratinocytes, therefore causing blistering of the skin
in pemphigus patients (65, 68, 69), and inhibitory antibodies
against the protease ADAMTS13 lead to an accumulation of
multimeric von Willebrand factor and vascular occlusion in
patients with TTP (70–72).

The autoantibody isotype and subclass is thus a critical factor
in the pathomechanism of antibody-mediated autoimmunity.
Yet it remains a crucial question, why IgG4 subclass
autoantibodies are produced in the first place. What causes B-
cells to undergo class-switching towards IgG4 and which cells are
involved in its production?
B CELLS IN IgG4-AID: THE GUN THAT
SHOOTS THE BULLETS

B cells are the antibody-producing cells of the adaptive immune
system and are responsible for humoral immunity. B cells are
also powerful antigen presenting cells and provide critical
costimulatory signals to T cells. Naive B cells can develop into
Frontiers in Immunology | www.frontiersin.org 3
distinct cytokine-producing subsets that influence CD4+ T cell
responses. Various cytokine-producing B cell subsets (TNF-a,
CCL3, IFN-g, GM-CSF, IL-6, IL-17, IL-2) have now been
identified to modulate the polarization of CD4+ T cell
responses in vivo (73, 74).

During isotype switching, which is required for the formation
of immunoglobulin subtypes, T helper cells stimulate the
progeny of IgM– and IgD–expressing B lymphocytes to
produce antibodies of different heavy-chain isotypes. Heavy
chain isotype switching is induced by a combination of
CD40L-mediated signals and cytokines. These signals act on
antigen stimulated B cells and induce switching in some of the
progeny of these cells. In the absence of CD40 or CD40L, B cells
secrete only IgM and fail to switch to other isotypes, indicating
the essential role of this ligand-receptor pair in isotype switching.
Activated B cells in germinal centers may differentiate into long-
lived plasma cells or memory cells. The antibody-secreting cells,
called plasmablasts, enter the circulation and migrate to the bone
marrow or mucosal tissues, where they may survive for years as
plasma cells and continue to produce high-affinity antibodies,
even after the antigen is eliminated (75, 76). In anti-LGI1-
encephalitis, cloning of recombinant human antibodies from
the CSF of three patients indeed showed that 84% of all antibody-
secreting cells and 21% of memory B cells did produce LGI1-
specific antibodies (77).

Considering the substantial progress in B cell targeting
therapy approaches in recent years, understanding the role of
effector B cells and B cell dysregulation in subgroup specific
differences of IgG4-AID is crucial. Although the proportion of B
cells in the peripheral blood is not altered, memory B cells are
increased in both AChR- and MuSK-MG patients (78). Notably,
immunosuppressive treatment appears to reduce regulatory B
cell subsets and increase memory B cell proportions in the
peripheral blood (78–80). CD40 or TLR9-mediated IL-10
production of isolated B cells is reduced in MuSK-MG,
suggesting suppressed regulatory B cell functions (78).
Rituximab, a monoclonal anti-CD20 antibody, is highly
effective in treatment of MuSK-MG and PV and appears to
show its beneficial effects, at least partially, through repopulation
of diminished IL-10 producing B cells (81). Although rituximab
is also successfully used in other IgG1-3-AIDs, the general
consensus is that IgG4-AIDs seem particularly sensitive and
more often remain in long term remission (82–90). In a recent
study, treatment with a low dose of teriflunomide was shown to
ameliorate muscle weakness in the mouse model of MuSK-MG,
predominantly through suppression of memory B cells in the
lymph nodes without significantly reducing effector T cell
populations (80). MuSK-MG patients also exhibit defective IL-
6 production after B cell stimulation (78). This may be a
compensating counter-measure to regulate autoantibody
production, since IL-6 is involved in IgG class-switching (91).

The importance of B cells has been shown in other IgG4-AID
as well. In great likeness to MuSK-MG, PV patients show
increased memory B cell pools and impaired regulatory B cell
functions. Treatment induced amelioration of PV symptoms is
associated with reduction of memory B cells and enhancement of
March 2022 | Volume 13 | Article 834342
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IL-10 producing regulatory B cells (92–94). Memory B cell levels
are also correlated with disease activity and rituximab-mediated
reduction of memory B cells result in amelioration of symptoms
in TTP (95).

In brief, the dysbalance between memory/regulatory B cell
activities appears to be a determining factor in IgG4-AID.
Frontiers in Immunology | www.frontiersin.org 4
Treatment response appears to be more closely associated with
those targeting the aforementioned B cell subsets than other cell
types of adaptive and innate immunity. However, what makes
antigen-secreting B cells undergo class switch to IgG4? Does
IgG4 have a physiological role and which cytokine factors are
inductors of IgG4?
A

B

C

D

FIGURE 1 | Charactristics of IgG4: (A) IgG4 can undergo Fab-arm exchange and form functionally monovalent antibodies. (B) IgG4 may bind and compete for
binding of other Ig classes and IgG subclasses. (C) IgG4 has anti-inflammatory properties and lacks typical IgG effector mechanisms. (D) IgG4 autoantibodies can
be pathogenic by direct blocking of protein-protein and cell-cell interaction. ADCC, Antibody-dependent cellular cytotoxicity; MuSK, muscle-specific kinase; Lrp4, low
density lipoprotein receptor-related protein 4; vWF, von Willebrand factor; ADAMTS13, a disintegrin and metalloprotease with thrombospondin type 1 motif 13.
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PHYSIOLOGICAL REGULATION OF IgG4
CLASS SWITCH: A PATH TO TOLERANCE

Interestingly, IgE and IgG4 are both stimulated by the same Th2
cytokines, namely IL-4 and IL-13, and the determining factor,
which induces the switch towards IgG4 production and IgE
inhibition seems to be IL-10 (96–99). Among other cells,
regulatory T cells (Tregs) secrete IL-10, which induces IgG4
production (100), and it is thought that this is mediated by
signalling via glucocorticoid-induced tumour necrosis factor
receptor-related protein (GITR) and GITR- ligand (GITR-L)
(101). Regulatory B cells (Bregs) are mainly defined by their
ability to secrete IL-10 in vitro (102–104). A common set of
defining cell surface markers is not yet described, which may be
due to the large variety of Breg subsets and the fact that every B
cell subset has the ability to become an IL-10 producing Breg
(103), even plasma cells (105). In one study, IL-10 producing
Bregs were found to produce preferentially IgG4, in contrast to
other B cell subsets (106). How exactly IL-10 promotes IgG4 and
inhibits IgE production is not sufficiently understood. A recent
study suggests that IL-10 directly increases the IL-4 induced
IgG4 production in B cells over 20-fold, while the inhibition of
IgE-production in B cells is indirect and requires the help of a
further, yet unknown, cell population from PBMCs (107). In the
context of allergy immunotherapy, the IgG4 response is also
associated with a diversification and increased numbers of
epitopes, while the number and diversity of IgE epitopes is
reduced (108).

Taken together, IgG4 production is associated with anti-
inflammatory tolerance mechanisms that is set in motion after
prolonged or strong exposure to antigen and likely mediated via
regulatory T and B cells via cytokines like IL-10 [discussed in
more detail in (5)]. The induced switch towards the IgG4
subclass is thought to convey protection from chronic antigen
exposure, including the potentially damaging effector
mechanisms of other antibody classes and to save energy
required to uphold a state of constant inflammation [Figure 1
(30–38, 109)]. However, where does this tolerogenic mechanism
get corrupted and skewed towards autoimmunity?
CLASS SWITCH TOWARDS IgG4 IN
AUTOANTIBODY-ASSOCIATED
DISEASES: GOOD INTENTION,
BAD OUTCOME?

One of the key questions is why the autoantibodies in IgG4-AID
are predominantly of the IgG4 subclass. Indeed, it is currently
unclear, why and how a preferential class switch towards the
“protective” IgG4 subclass in patients with IgG4-AID is achieved
and whether this is cause or consequence of disease chronicity.

A major challenge currently hampers our understanding of
the class switch in IgG4-AID, which is the lack of commercially
available and CE/FDA approved diagnostic tests that include
autoantibody isotyping. The IgG subclass profiles of the
Frontiers in Immunology | www.frontiersin.org 5
autoantibodies are rarely analysed, and if so mostly in the
context of basic or translational research studies. Quantitative
IgG subclass profiles can be determined e.g. using flow cytometry
(62, 82, 110, 111) or ELISA (112–114), which are research-based
methods that are technically challenging, therefore not available
for many diagnostic laboratories. The option to quantify antigen-
specific IgG subclass profiles with certified, commercially
available diagnostic test kits would greatly improve diagnosis
and clinical management, and further both translational and
clinical research into IgG4-AID, including the correlation
between serological concentrations of the four IgG subclasses
with clinical outcomes in response to different types of
immunosuppression or the timing of the IgG4 class switch in
the patients. With the data available to date, three different (but
not per se mutually exclusive) scenarios can be hypothesized:

(1) After initial breach of tolerance and dominant relative low
dose IgG1-3-mediated disease including complement mediated
tissue damage, chronic antigenic exposure together with
regulatory T-cell influence leads to class switch to IgG4. While
this prevents complement mediated tissue damage, high-titer
IgG4 autoantibodies cause direct steric interference with their
target antigens and thus disrupt their respective function, which
accelerates chronic ongoing disease activity. In other words,
IgG1-3 autoantibodies may be of lesser dose or less pathogenic
than IgG4 autoantibodies to the same target antigen. In most
IgG4-AIDs, IgG4 levels predominate at time of diagnosis but
often considerable levels of IgG1-3 antibodies against the same
antigenic target can (still) be detected. Very recently, cloned
recombinant human antibodies isolated from cerebrospinal fluid
of three patients with the IgG4-AID anti-LGI1 encephalitis were
analysed. In all three patients, IgG1, IgG2 and IgG4 LGI1
antibodies were identified (77). The class switch from IgG1/3
to IgG4 could merely be difficult to be observed, because by the
time the disease has manifested and serum was tested for
antibodies, the class switch had already taken place. Indeed, in
some patients with IgG4-AID, class switch has been observed: In
CNTN1 antibody-associated neuropathy and membranous
nephropathy with PLA2R antibodies or acute autoimmune
paranodopathy, a class switch from complement-fixing IgG1 or
IgG3 in the acute disease phase towards IgG4 in the chronic
phase has been observed (115–118). In TTP with anti-
ADAMT13, a class switch to IgG4 has been documented
before relapse in patients (119).

(2) Individual predisposition for antigen-specific
autoimmunity mediated by certain MHC II- antigen- T-cell
receptor combinations could predispose to a “skewed” isotype
profile towards IgG4, as supported by the strong genetic
associations with specific HLA alleles such as HLA-DQB1*05
and HLA-DRB1*14 (18, 19). This would mean, that IgG4-
predominance occurs already early during the disease in
predisposed individuals and causes chronicity rather than
being a consequence of it: A recent study by Ellebrecht et al.
(120) has looked into the evolution of autoreactive B cells in PV.
B cells normally undergo class switch in the order IgM > IgG3 >
IgG1 > IgA1 > IgG2 > IgG4 > IgE > IgA2, therefore it is possible
that from the initial IgM class, first anti-Dsg B cells of a different
March 2022 | Volume 13 | Article 834342
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antibody class or subclass (e.g. IgA) were generated before they
switched to the IgG4 subclass. However, it was found that IgG4-
specific B cells showed no clonal relationships to B cells with
other subclasses and preferentially targeted desmoglein adhesion
domains, while anti-Dsg B cells of other classes and subclasses
also targeted other regions, suggesting that IgG4 anti-Dsg B cells
evolve independent of other antibody classes and subclasses,
perhaps by a direct switch from IgM to IgG4 (120). In line with
this observation is the finding that IgG4, but not IgG1-3
antibodies against MuSK are able to block Lrp4-MuSK
interaction, which suggests the recognition of different epitopes
(62, 63). Another related possibility is a class switch first to IgG3,
followed by an immediate switch to IgG4 due to unknown
regulatory mechanisms. This possibility (and specifically IgG3)
was not investigated in the Ellebrecht study (120), but another
recent study suggested that a single amino acid replacement in
IgG3, which increases its half-life, is associated with a risk to
develop PV (121). This is interesting since the PV antibodies are
not usually of the IgG3 subclass, but predominantly IgG4 and, to
a lesser degree, IgG1 and IgA (122–125). Perhaps a switch to
long-lived IgG3 leads to conditions where the immune system
induces for yet unknown reasons an immediate and complete
class switch towards IgG4. Still, one would expect remnant IgG3
to be present, yet in PV and MuSK MG this subclass is mostly
absent in the antigen-specific IgG repertoire (62). Furthermore,
some allergens e.g. food or tree pollen, seem especially inclined to
induce IgG4 responses, as shown e.g. in response to banana, a
lectin antigen (126) or increased IgG4 response to allergens in
patients with IgG4-RLD (127).

(3) Aberrant B cell development in IgG4-AID may lead to
individuals beingmore inclined to develop an IgG4 response. Serum
IgG4 levels are generally normal or slightly elevated in IgG4-AID
patients (14, 128, 129). Upon vaccination with a recall antigen,
MuSKMG patients did not develop a disproportionately high IgG4
response (130). Moreover, circulating isotype-specific plasma cells
and memory B cell numbers do not show large deviations from
healthy individuals. Although many of these studies are challenged
by the use of immunosuppressants by the patients, the data thus far
does not suggests large B cell developmental problems in patients
with IgG4-AID. Cells involved in regulation of the immune
response do sometimes appear in abnormal levels. Especially
lower Tregs and Breg numbers have been reported, but this is
also found in other IgG1-IgG3 dominated AIDs.

Confirming or refuting one (or all) of these hypothesis is
remarkably difficult in humans. Longitudinal analysis of patients
starting at presymptomatic time points and including cell
sampling from bone marrow and target organs would be
required. Yet what translational insight can be gained from
modelling IgG4-AID in model organisms? Are there suitable
models and what are their limitations?
LESSONS LEARNED FROM
ANIMAL MODELS

Some evidence – albeit to some degree conflicting - can be
gleaned from animal models. It is important to mention that
Frontiers in Immunology | www.frontiersin.org 6
mice do not have a proper equivalent of human IgG4, meaning
mouse IgG subclasses do not undergo Fab-arm exchange and all
have some immunogenic capacity. That being said, mouse IgG1
is the closest homolog to human IgG4, as it does not fix
complement by the classical pathway and is driven by Th2
cells, which allows for studying the effect of vaccination for
example in rodent models. Furthermore, mice have two IgG2
isotypes, IgG2a and IgG2b, although B6 mice, and a few other
strains, lack the IgG2a isotype and have IgG2c instead. In B6
mice with the same genetic background, both AChR and MuSK
antibodies can be induced with full-blown symptoms of
myasthenic muscle weakness. While AChR autoantibodies are
IgG2-dominant, MuSK antibodies are IgG1-(human IgG4
equivalent) dominant in B6 mice, suggesting that the direction
of immune response is at least partially mediated by the
molecular characteristics of the target antigen in addition to
genetic factors (131, 132). Notably, both MuSK and Dsg-
immunized mice show IgG1-dominant antibody responses in
both sera and the target tissue (muscle and skin, respectively),
already shortly after the immunizations. However, respectable
levels of anti-MuSK and anti-Dsg IgG2 and IgG3 antibodies are
also present in sera of immunized mice at the same time point,
implying that class switch may occur from other IgG isotypes to
mouse IgG1/human IgG4 in IgG4-AID or that these responses
develop in parallel and are not clonally related (131–134).
Moreover, in MuSK experimental autoimmune myasthenia
gravis (EAMG) models, IgG1 KO mice are capable of
developing pathogenic IgG2 and IgG3 antibodies and MuSK-
binding IgG2+ and IgG3+ peripheral blood B cells, further
conforming that autoantigens of the IgG4-AID may induce
antibody responses of all IgG isotypes (131, 132). Significantly
enhanced IgG3 responses in IgG1 KO mice suggests that mouse
IgG1 (and putatively human IgG4) might be suppressing
production of complement-fixing IgG isotypes and this might
be an additional underestimated anti-inflammatory mechanism
of the human IgG4 isotype (131, 132). In AChR-EAMG, IgG1
deficiency causes increased EAMG incidence and severity in
parallel to enhanced AChR-specific IgG2 and IgG3 production
further supporting this assertion (135). To the best of our
knowledge, IgG1 KO experiments have not been conducted for
other IgG4-AID and thus it is not certain whether the
abovementioned results can be generalized to all autoantigens
associated with IgG4-AID.

Passive transfer of MuSK-MG and PV IgG into experimental
animals induce the characteristic clinical and pathological
features of the human disease, indicating the pathogenic action
of serum IgGs in both disorders. Passive transfer of equal
amounts of patient derived IgG4 and IgG1-3 to mice also
showed that IgG4 was pathogenic, while IgG1-3 were not
(136). However, MuSK antibody levels in the IgG1-3 injected
mice were below detection level, while they were clearly
detectable in the IgG4-injected mice probably due to low
amounts of MuSK-specific IgG1-3 within the IgG1-3 fraction
and has to be interpreted with caution. Removal of anti-Dsg IgG
by immunoadsorption abolishes the pathogenic activity of PV
sera (137). Moreover transfer of splenocytes of Dsg-3-
immunized mice to Rag-2 deficient mice, which are not
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capable of producing antigen-specific B cells, generated anti-
Dsg-3 antibodies and induced PV in recipient mice (137).
Similarly, administration of inhibitory monoclonal antibodies
against human recombinant ADAMTS13, target antigen in TTP,
r e su l t ed in reduced ADAMTS13 ac t i v i t y , s ev e r e
thrombocytopenia and hemolytic anemia in baboons. Also,
treatment of mice with anti-ADAMTS13 single-chain variable-
region fragments generated fatal thrombocytopenia (138–140).

Immunization based-mouse models of PV show striking
resemblance to MuSK-EAMG in terms of pathogenic factors
and corroborate the significance of IL-4, IL-10 and IgG1 as major
contributing factors of IgG4-AID pathogenesis. In the mouse
model of PV, IL-4 and IL-10 producing Dsg-3-reactive T cells
have been associated with pathogenicity and neutralization of IL-
4 has led to suppression of anti-Dsg-3 production and reduced
disease severity. Moreover, in the animal model of PV, IgG1 has
been identified as the dominant isotype both in serum and on
keratinocyte surfaces (134, 141, 142).

It is also possible that further antibody-mediated mechanisms
may additionally contribute to disease. A relatively understudied
common denominator might be antibody-mediated
mitochondrial dysfunction and apoptotic cell death in IgG4-
AID, which so far have been implicated in PV, membranous
nephropathy/IgG4-related disease and anti-LGI1 encephalitis
(143–147). For example, muscle samples of MuSK-MG
patients often exhibit mitochondrial dysfunction. MuSK-
immunized, but not AChR-immunized, mice show increased
numbers of ragged red fibers (a histochemical sign of
mitochondrial dysfunction) and decreased activity of
mitochondrial enzymes indicating the role of MuSK-immunity
in induction of mitochondrial dysfunction.

In this context, it should be considered that perhaps not all
pathogenic effects in IgG4-AID are necessarily induced by
directly antibody-mediated mechanisms. In resemblance to
AChR-EAMG, where proinflammatory cytokines have been
shown to induce muscle cell toxicity (148), non-antibody
pathogenic factors causing IgG4-AID may also influence the
functions of the target organs. For example, IL-4 has been shown
to reduce ADAMTS13 expression thereby potentially
contributing to pathogenesis of TTP (149).

The role of IgG4 antibodies is still unclear in anti-IgLON5 disease,
where patients often show a rather “neurodegenerative” clinical
phenotype, brain autopsies may present hyperphosphorylated tau-
deposition (a marker of neurodegeneration) and anti-IgLON5
autoantibodies induce neurodegeneration in vitro via unknown
intracellular mechanisms (150, 151).

Taken together, although it is possible that the production of
IgG4-autoantibodies represents a “primary” phenomenon in
IgG4-AID, and their ongoing production causes chronicity, for
the time being, one cannot exclude that they are simply a
“secondary” phenomenon and their ongoing production is a
result of chronic antigenic “stimulation”. Hopefully, future
systematic approaches using sophisticated single cell based
high throughput directly ex vivo analysis of transcriptomes and
B/T cell receptors of lymphocytes together with animal
experiments will provide the definite answer.
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Yet how do these insights from human and animal studies
contribute to “personalized therapies”. Can IgG4-producing
plasmablasts or downstream effects of IgG4 itself be targeted
and what are potential side effects? Is the new subcategorization
into IgG4-AID relevant from a therapeutical point of view or is
their treatment identical to comparable IgG1-antibody
mediated autoimmunopathies?
TREATMENTS OF IgG4 NEUROLOGICAL
DISEASES

Overall, general or partially selective immunosuppression or
immunomodulation is the major treatment applied to the
autoimmune neurological diseases. Unfortunately, to date, there
are almost no disease-specific therapies for neuroimmunological
diseases. However, in vitro (cell cultures) and in vivo (animal,
brain pathology and clinical) studies have suggested the presence
of different pathophysiological mechanisms in patients with
different antibody types and subtypes (152, 153). These findings
suggest that special treatment requirements may apply to
neuroimmunological diseases with different antibody subtypes,
including patients with dominant IgG4 antibodies, and indeed
IgG4-AID have a unique response pattern to conventional
therapies for autoimmune diseases. Importantly, IgG4 is not the
sole antibody present in IgG4-AID. IgG1 antibodies can be
present, and may also contribute to disease. The patients are
heterogenous and may react differently to treatments, perhaps due
to the different involvement of immune cells. Distinct B-cell
populations may predominate in different patients, IgG subclass
profiles of autoantibodies may vary, which could explain the
differences in clinical responsiveness towards different
immunosuppressive drugs. As in most autoimmune conditions,
steroids have - mostly empirically - been shown to be effective in
IgG4-autoantibody mediated diseases. Most if not all treatment
regimens at least initially contain corticosteroids (152, 154–157).
Some physicians initially apply high-dose iv methylprednisolone
and other start with oral steroids (1mg/kg bodyweight followed by
tapering). However, in most instances, long-term steroids are
needed as maintenance therapy to prevent relapses and
oftentimes side-effects become a limiting factor. Even though
many questions regarding steroid therapy in IgG4-antibody
mediated diseases remain unclear, this review will focus on four
specific therapies directly addressing IgG4 antibodies or their
producing cells that we estimate to be the most relevant
treatments across diseases.

Plasmapheresis
Plasmapheresis (plasma exchange, PLEX) and Ig-apheresis
remove the majority of antibodies located in the patient’s
blood plasma [which does not extend to extravascular
antibodies, which may account for up to 65% (158)]. Since
autoantibodies directly cause disease, and are removed from
the body, it is considered to provide immediate relief for patients
and is utilized in cases of acute exacerbation. PLEX is the first line
of treatment for TTP where it contributes significantly in survival
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of acute episodes of the disease (159), possibly not only by
removing ADAMTS13 inhibitory antibodies but also by
replenishing active ADAMTS13. In MG, PLEX has long been
used as a treatment option, especially during myasthenic crises or
pre-operatively (160). It is especially effective in MuSK-MG,
probably more effect ive than in AChR-MG (161) .
Plasmapheresis has been successfully performed in pemphigus
for over thirty years, particularly in cases of severe or recalcitrant
disease, and as a steroid-sparing agent (162, 163). More recently,
there is growing evidence to the therapeutic value of
plasmapheresis in AE, including patients with GABA, LGI1
and AMPA antibodies. In a single center prospective study,
significant improvement of the modified Rankin scale was seen
in patients with severe refractory AE after treatment with PLEX,
steroids and IVIG compared to those that only received steroids
and IVIG (164). Studies have shown that both plasmapheresis
and Ig-apheresis are well tolerated with minimal adverse effects
supporting their use in clinical practice (165). Taken together,
plasmapheresis appears to be a safe and efficient escalation
therapy for acute IgG4-AID.

IVIGs
Intravenous immunoglobulins (IVIGs) are pooled human IgG
from many healthy donors, and as such comprised of a highly
diverse antibody repertoire of human IgG1,2,3 and 4. IVIGs have
a range of proposed mechanisms, of which some may be relevant
and others irrelevant for IgG4-AID (166).

Possible mechanisms: A key mechanism of action of IVIGs
may be the blocking of the neonatal Fc receptor (FcRn), which
contributes to effective humoral immunity by recycling IgG and
extending its half-life in the circulation to 3-4 weeks (167). IVIGs
block and saturate these receptors, thereby increasing the
degradation of IgG, reducing the half-life of IgG and ultimately
leading to reduction of circulating IgG (168, 169) IgG1 and IgG4
both bind to the FcRn with similar efficiency (170), and blocking
of the FcRn by a different drug led to reduction of both serum
IgG1 and IgG4 (171). This mechanism of action is therefore
available for IgG4 and may provide relief by enhancing
IgG4 degradation.

In the highly diverse antibody repertoire of IVIGs, it is
possible that antibodies against distinct autoantibodies,
particularly against the antigen-binding part, termed anti-
idiotype antibodies, can be present, and could neutralize the
effects of autoantibodies (172–174). IVIGs may therefore also
provide anti-idiotype antibodies that may bind to and neutralize
pathogenic antibodies, but whether this applies to IgG4
autoantibodies is not clear.

Less likely mechanisms: Effect on proinflammatory cytokines:
IVIGs may reduce the levels of proinflammatory cytokines that
do not play a major role for IgG4-AID and induce anti-
inflammatory cytokines (175–177). Effect on FcgRs: IgG4 has
reduced binding affinity to activating FcgRs it does bind to
FcgRIIB, which is an inhibitory IgG Fc receptor expressed on
immune cells (170). IVIGs may bind and upregulate the
receptors, therefore suppressing inflammation (178, 179),
which is not essential in IgG4-AID. Furthermore, IVIGs have a
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range of inhibitory effects on other immune cells, e.g. monocytes,
macrophages and dendritic cells (180–182).

Effect on complement: An important mechanism of IVIGs that
is not relevant for IgG4 is the inhibition of complement activation,
which is a main effector mechanism of IgG3 and IgG1, but not of
IgG4 autoantibodies (183). Perhaps the degree of complement
involvement in pathology is the determining factor for IVIG
efficacy for the patients. In AChR-MG, complement-mediated
damage is a key pathogenic mechanism, and IVIGs are
considered as a short time treatment that provides immediate
relief in AChR MG (160). In contrast, IVIG seems to be less
efficient in MuSK MG, and particularly less effective than
plasmapheresis (155), which could be due to the fact that MuSK
IgG4 does not activate complement. A similar conclusion was
drawn by Rodriguez et al. in a recent study with LGI1
encephalitis patients. In this large retrospective case series of 118
patients with LGI1 encephalitis patients, the authors observed that
IVIGs were less efficient in comparison with corticosteroid
treatment (184). Nevertheless, IVIGs did have an effect and fared
better than placebo in a small randomized placebo-controlled trial,
in which patients with anti-LGI1 antibody-associated epilepsy (all
with predominantly IgG4 autoantibodies) showed response in 6 out
of 8 patients in the IVIG group, compared to zero response in the 6
patients in the placebo group (185). In pemphigus, high dose IVIG
treatment has been reported to be an efficient treatment in patients
that are unresponsive to immunosuppression (186) most likely due
to FcRn blocking by IVIGs and increased IgG degradation, as a
rapid decrease of Dsg autoantibodies (IgG1 and IgG4) was observed
following IVIg treatment (187).

While IVIGs are considered as short-term treatment for most
IgG4-AID, it is also used as a long-term treatment in certain
disorders such as inflammatory neuropathies (188). The
underlying mechanism of action of IVIG in the treatment of
CIDP remains unclear. Long-term IVIG treatment appears to
decrease autoreactive CD4+ and CD8+ T effector memory cells
(189) and enhance FcgRIIB expression on B cells thus reducing
conversion of naïve B cells to memory B cells (176, 190).

Taken together, IVIGs have several potential mechanisms of
action targeting different parts of the immune system, and
depending on their respective role for disease, IVIGs may be
more or less efficient. The effects on complement, cytokine
production and cellular immunity may not have a major
impact of IVIGs in most IgG4-AIDs. These anti-inflammatory
actions may in theory also backfire in IgG4-AID: IVIGs
upregulate regulatory T-cells (191, 192), which are known
producers of IL-10, and induce production of IL-10 by
macrophages (182). IL-10 is a regulator of IgG4 class switch
and may as such even increase production of pathogenic IgG4. In
contrast, FcRn blocking and increased degradation of IgG4 may
provide therapeutic relief as e.g. observed in pemphigus.

Rituximab
Targeting B-cells, which are the cells producing autoantibodies,
is a main focus of therapy for IgG4-AID. CD20 is a marker that is
expressed on B-cells throughout development, but not on the
antibody-secreting cells, short-lived plasmablasts or long-lived
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plasma cells. Rituximab is an anti-CD20 monoclonal antibody
and as such depletes B-cells expressing CD20, therefore the
treatment efficacy of rituximab depends directly on the type of
B-cells involved in the production of autoantibodies which also
appears to be linked to the IgG subclass.

For example, in refractory AChR-MG, rituximab is usually
the preferred treatment (193), but its efficacy is not conclusive,
probably because AChR antibodies are secreted by long-lived
plasma cells, e.g. residing in the thymus or bone marrow (194–
196). In contrast, rituximab has a much more promising effect in
the IgG4 associated form, MuSK MG where it was found to be
very efficient (88, 197–201), leading to depletion of MuSK IgG4
(86). The generally accepted explanation to date is that the cells
responsible for MuSK autoantibody secretion (such as
plasmablasts) require constant replenishment by memory B
cells that express CD20 and are therefore susceptible to
rituximab treatment (202).

It has well been established that CIDP patients with
neurofascin antibodies do not respond to steroid and IVIG
treatment but to rituximab, which was found to enhance
regulatory B cell responses and inhibit memory B cell and
plasmablast populations (203). More importantly, rituximab
suppresses short-lived plasma cells and their CD20+ precursors
involved in IgG4 production (204). Rituximab is also considered
as a very efficient treatment in TTP (205–207) and pemphigus
(84, 85, 206, 208–212). Rituximab may be another efficient
therapy in anti-LGI1 and CASPR2 encephalitis with
predominantly IgG4 antibodies (213). Several studies suggest
clinical usefulness of rituximab treatment for autoimmune
encephalitis with antibodies against LGI1 and CASPR2, among
these a large study from the GENERATE Registry with 62
patients with anti-LGI1 and 34 with anti-CASPR2 antibodies.
The results suggest class IV evidence that early and short-term
rituximab therapy could be an effective and safe treatment for
these patients (214–216). An important limitation of these
studies is that the IgG antibody subtype was not established.
Future studies linking antigen-specific IgG-subtypes and specific
immunotherapies are required to identify the best treatment for
IgG4 of these patients.

However, because of its potential side effects and its high cost,
in several countries rituximab is mostly used for the treatment of
steroid-refractory MuSK-MG. In several cases, rituximab
treatment was sufficient by itself, eliminating the need for
other treatments or even leading to long term remission (201),
and aggressive treatment strategies including rituximab led to
better clinical outcomes of MuSK-MG patients in general (217).
Clinical guidelines suggested the early use of rituximab when an
initial standard immunosuppression treatment does not result in
rapid remission (218). On another note, a study on cost of
rituximab in patients with pemphigus vulgaris suggests that the
initial higher cost of rituximab may be at least in part
counterbalanced by reduced long-term treatment cost (219).

Bortezomib
Several preclinical studies have shown a potential benefit from
proteasome inhibitors, which target long-lived plasma cells, a
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subset of cells that remains untouched with all the therapies
previously mentioned (220). Due to their high antibody
production rate, plasma cells are highly sensitive to the
inhibition of the ubiquitin-proteasome pathway, resulting in the
accumulation of misfolded proteins, leading to plasma cell death.
In vitro treatment of thymocytes from AChR-MG patients with
bortezomib resulted in marked depletion of long-lived plasma
cells and inhibition of autoantibody production (221), and
treatment of animals (active immunization model for MG,
EAMG) resulted in an improvement of the symptoms (222).
The TAVAB clinical trial (ClinicalTrials.gov Identifier:
NCT02102594), aiming to assess the efficacy of bortezomib, a
first generation proteasome inhibitor, in generalized AChR-MG
among other antibody-mediated autoimmune diseases was
unfortunately prematurely terminated due to difficulties in
recruitment (ClinicalTrials.gov Identifier: NCT02102594).
Interestingly, a case report presented a therapeutic benefit of a
patient with refractory MuSK-MG after treatment with
bortezomib (treated in combination with rituximab, aciclovir
and cotrimoxazole after initial courses of IVIG and prednisone)
(223). Treatment with bortezomib has also shown to be efficient
in refractory cases of autoimmune encephalitis (224–226). Its
efficacy and safety is currently being tested in severe cases of
NMDAR, LGI1 and Caspr2 autoimmune encephalitis, of which
the LGI1 and Caspr2 antibodies have IgG4 as the predominant
isotype (227). Among IgG4-AID, bortezomib was described as a
good therapeutic option for CIDP patients (228) with severe
relapses or an acute progression who did not respond adequately
to regular immunosuppression treatment and rituximab (228).
Additionally, in a patient with anti-pan-NF-associated
neuropathy (predominantly of the IgG4 isotype) with severe
clinical manifestations, it has also being shown reduction in
antibody titer leading to clinical improvement after receiving a
combination of IVIG, PLEX, rituximab and bortezomib (229).
Bortezomib was beneficial in patients with relapsed/refractory
TTP with an acceptable adverse event profile (230). Together with
rituximab, bortezomib has shown to induce long-lasting
remission in an acute refractory subgroup of patients with TTP
(231). Additionally, some case reports of TTP patients
unresponsive to plasma exchange, immunosuppressive therapy
and rituximab, presented with a reduction in autoantibody levels
and an improvement in clinical condition after treatment with
bortezomib alone (232) or in combination with plasma exchange
and steroids (233). The authors attributed the improvement to an
abolition of residual autoreactive plasma cells. A new clinical trial
to investigate the efficacy and safety of bortezomib as a first line
treatment for acquired TTP has been approved, but at the last
update in November 2021, recruitment had not yet begun
(ClinicalTrials.gov Identifier: NCT05135442). Among the IgG4-
RD spectrum, hyper IgG4 syndrome is characterized by the
lymphoplasmacytic infiltration with IgG4-positive cells and a
pronounced fibrosis of different tissues. Interestingly, a patient
suffering from recurrent and unresponsive hyper IgG4 disease, in
this case characterized by IgG4 plasma cell infiltration in the
lungs, was successfully treated with a combination of bortezomib,
dexamethasone and cyclophosphamide (234).
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Strategies for Novel and Specific
Therapeutic Approaches
As described above, current treatments for IgG4- AIDs rely
mostly on immunosuppression (corticosteroids or non-steroid
immunosuppressants) and depletion of antibodies or B cell
antigen-specific, which are non-specific. Therefore, they can be
associated with side-effects, raising the need for novel, more
targeted therapies.

Plasmapheresis or total IgG immunoadsorption is often
beneficial in MuSK-MG, PV, TTP, CIDP, AIDP, Goodpasture’s
syndrome and anti-DPPX encephalitis (235–242). A targeted
approach would be the selective adsorption of the IgG4 or
antigen-specific antibodies, while leaving unaffected the majority
of plasma IgGs, thus avoiding hypogammaglobulinemia. In
addition, the removal of a very small percentage of the total IgGs
could prolong the treatment effect, due to the slower rate of
autoantibody reappearance after treatment (243, 244). This could
be accomplished by passing the plasma through a suitable matrix
before being returned to the patient. In the case of MuSK-MG, we
have explored an antigen-specific approach by the generation of
sepharose-immobilized recombinantMuSK extracellular domains.
The efficiency and specificity of themethod has been established by
in vitro experiments, where immunoadsorption resulted in almost
complete removal of the autoantibodies from all the patients’ sera
tested (245). In addition, ex vivo immunoadsorption in rats with
EAMG, induced by immunizationwith humanMuSK, resulted in a
rapid and significant amelioration of symptoms, without the
emergence of any adverse effects (246). Similarly, others have
found that sepharose-immobilized Dsg-1 and 3 ectodomains
successfully and specifically removed the Dsg antibodies and
eliminated the pathogenic activity of PV patient sera (247).
Although the demonstration of the proof of principle by these
studies supports that similar strategies could be applied in other
IgG4-associated diseases as well, it may be difficult and cost-
prohibitive to optimize different matrices for each individual of
these rare diseases. A similar butmuchmore feasible solution could
be the generation of matrices capable of binding only the IgG4
fraction of antibodies, thus removing the pathogenic
autoantibodies, but not the majority of the IgGs (IgGs 1-3).

Another approach that gains ground as an antigen-specific
therapy is the induction of tolerance towards the autoantigens, by
administration of disease-relevant antigen derived domains and
peptides. A recent study using MuSK-induced EAMG in mice
demonstrated the potential for tolerance induction by oral
administration of recombinant MuSK domains (248). However,
MuSK administration took place prior to induction, so further
studies are necessary to evaluate the actual therapeutic potential.
Furthermore, it is not clear what IgG autoantibody subclasses were
generated in the mouse model, so it is difficult to extrapolate the
findings to IgG4-mediated MuSK-MG in humans. In fact, several
linesof evidence support that tolerance inductionworksbydiverting
the immune response from a Th1 type to Th2/Th3 (249, 250).
Furthermore, it appears that tolerance induction is accompanied by
an increase in IL-10 levels, suggesting the diversion of the immune
response towards IgG4 (251, 252). Therefore, it is still not clear how
beneficial such an approach would be in the case of IgG4-associated
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autoimmune diseases, and further studies illuminating the
underlying mechanisms are required.

IL-10 is essential in IgG4 class switch, however, it probably
increases the production of IgG4 by enhancing IL-4 induced
IgG4 switch (52, 99), making IL-4 also a key player in IgG4-RLD
and, potentially, in IgG4-AID. Increased IL-4 levels have been
associated with an increment in Th2 and plasmablast cell count
and stimulation with IL-4 resulted in elevated IgG4 and IgG4:
IgG ratios in patients with active untreated IgG4-RLD (253, 254),
and lymph node cells and sera from MuSK immunized mice also
showed upregulation of IL-4 and IL-10 (131).

Several drugs targeting soluble IL-4 or its receptor have been
developed (Figure 2). Among those, dupilumab is an IgG4
monoclonal antibody that acts on the IL-4 receptor alpha (IL-
4Ra), a receptor that can bind to both IL-4 and IL-13 (255).

In IgG4-RLD, the efficacy of dupilumab has been described in a
few case reports. After refusing treatment with other
immunosuppressants, a patient with a complex and acute clinical
picture including allergies, asthma, atopic dermatitis and a
borderline diagnosis for IgG4-RLD was treated with dupilumab.
After 12 months, the patient’s IgG and IgG4 levels decreased and
most of the complaints resolved. Importantly, no relapses were
observed and the patient did not suffer from any long-term side
effects (256). Another case report described a patient with IgG4-
RLD, who presented a good initial clinical response to steroid
treatment. However, after suffering a relapse, rituximab was
introduced, which helped initially to ameliorate disease, but could
not prevent relapse one year later.Dupilumab treatmentwas started
thereafter and led to rapid improvement accompanied by a
biological reduction of all cells currently associated with IgG4-
RLD (decrease of total Thelper 2 cells, T follicular helper (Tfh) cells,
Tfh2 cells and plasmablasts as well as serum IgE after 3 and 8
months of treatment). Interestingly, IgG4 levels remained stable. It
is likely that the clinical improvement was not exclusively due to
dupilumab treatment but perhaps due to combination therapy
(with rituximab). The authors suggested that dupilumab could be
a good treatment option for IgG4-RLD patients with relapses after
an induction treatment (257). Another IL-4 targeting therapy
known as dectrekumab (VAK-694), an IL-4 antagonist fully
humanized monoclonal antibody, showed a decrease in the
number of allergen-specific IL-4 producing cells in a clinical trial
with patientswith seasonal allergic rhinitis.However, VAK-694 did
not show any extra benefit compared to patients treated only with
the routine/standard therapy when looking at the symptoms (258).

Clinical trials are required to further investigate and validate
the therapeutic benefit of anti-IL-4 therapies, but the initial data
suggest that targeting the regulation of IgG4 production and
IgG4 class switch via IL-4 may present a potential novel
therapeutic strategy for IgG4-RLD, and perhaps also IgG4
autoimmune diseases (Figure 2).
CONCLUSIONS

IgG4-AID affect different organs, are characterized by IgG4
autoantibodies targeting specific antigens and mostly display a
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strong genetic predisposition mediated by HLA-genes. IgG4-AID
are distinct from IgG4-RLD which are characterized by fibrosis,
elevated serum IgG4 concentrations and IgG4 positive plasma cell
infiltrates in the affected tissue, but mostly lack antigen-specific
IgG4. Hallmarks of IgG4 are the absence of complement activation,
lack of bispecificity due to Fab arm exchange and inability to
activate cells via Fc receptors. Instead, IgG4 autoantibodies are
pathogenic by direct blocking mechanisms. Why and how IgG4
autoantibodies are produced is currently unknown, but we suspect
that IL-4, IL-13 and IL-10 that are known regulators of IgG4 class
switch may also play a role in the production of pathogenic IgG4,
and a dysbalance between memory and regulatory B cells may
determine the induction of IgG4-AID. Overall we propose three
possible scenarios contributing to IgG4-AID immunopathogenesis:
1) initial disease includes antigen-specific IgG1-3 antibodies with
low pathogenicity (e.g. via complement activation) or at low
concentration, but chronic antigen exposure and influence from
regulatory T cells induces class switch to IgG4, which then- either
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by increased dosis or pathogenicity- cause disease by steric
hindrance. 2) Genetic predisposition, e.g. via distinct MHCII-
antigen-T-cell receptor combinations may lead to a “skewed”
isotype profile towards IgG4, or 3) aberrant B cell development
in IgG4-AID may lead to individuals being more inclined to
develop an IgG4 response. Further studies are necessary to
investigate these different possibilities. Clinically, therapies
targeting B cells have led to better clinical outcomes than general
immunosuppression with corticosteroids in MuSK-MG and anti-
LGI1 encephalitis, therefore we conclude that IgG4-AID may
require different treatment strategies than classical antibody-
mediated autoimmunity. We also discuss IgG4- or antigen-
specific -apheresis and IL-4 receptor blockade as potential new
treatment strategies for IgG4-AID. Finally, we think that the key to
a better therapy lies in understanding the underlying
immunopathogenesis and better diagnostics that also include the
analysis of IgG subclasses to improve our assessment of
treatment outcomes.
FIGURE 2 | Therapeutic strategies targeting IgG4 class switch via IL-4. Altrakincept, pascolizumab, dupilumab, dectrekumab, AMG-317 and pitrakinra have been
developed to prevent the binding of IL-4 to its receptor by blocking the soluble IL-4 or targeting its receptor itself. Targeting IL-4 may help to avert IgG4 class switch
and therefore, the development of IgG4-RLD and IgG4-AID. Figure created using Biorender.
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GLOSSARY

AChEi Acetylcholinesterase inhibitors
AChR Acetylcholine receptor
ADAM22 ADAM metallopeptidase domain 22
ADAMTS13 A disintegrin and metalloprotease with thrombospondin

type 1 motif 13
ADCC Antibody-dependent cellular cytotoxicity
AIDP Acute inflammatory demyelinating polyneuropathy
AMPAR a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

receptor
Bregs Regulatory B-cells
Caspr2 Contactin associated protein 2
CCL3 C-c motif chemokine ligand 3
CIDP Chronic inflammatory demyelinating polyneuropathy
CNTN1 Contactin 1
DPPX Dipeptidyl-peptidase–like protein-6
Dsg-1 Dsg-3 Desmoglein-1, desmoglein-3
EAMG Experimental autoimmune myasthenia gravis
FAE Fab-arm exchange
GABAaR Gamma-aminobutyric acid a receptor
GABAbR Gamma-aminobutyric acid b receptor
GITR Glucocorticoid-induced tumour necrosis factor receptor-

related protein
GITR-L GITR- ligand
GM-CSF Granulocyte macrophage colony-stimulating factor
HLA Human lymphocyte antigen
IFN-g Interferon gamma
IgG4-AID IgG4 autoimmune diseases
IgG4-RLD IgG4 related disease
IgLON5 Immunoglobulin-like cell adhesion molecule 5
IL Interleukin (IL-4
IL-10 IL-13)
IL-4Ra Interleukin 4 receptor alpha
IVIG Intravenous immunoglobulin
KO Knock out
LGI1 Leucine rich glioma inactivated 1
LRP4 Low density lipoprotein receptor-related protein 4
MG Myasthenia gravis
MN Membranous nephropathy
MuSK Muscle specific kinase
NMDAR N-methyl-D-aspartate receptor
PBMC Peripheral blood mononuclear cell
PF Pemphigus foliaceus
PLA2R Phospholipase A2 receptor
PLEX Plasmapheresis or plasma exchange
PV Pemphigus vulgaris
TNF-a Tumor necrosis factor alpha
Tregs Regulatory T cells
THSD7A Thrombospondin type 1 domain containing 7a
TTP Thrombotic thrombocytopenic purpura
vWF Von Willebrand factor
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