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Objectives: We explored whether genetically predicted increased body mass index (BMI)
modulates multiple sclerosis (MS) risk through interleukin-6 (IL-6) signaling.

Methods: We performed a two-sample Mendelian randomization (MR) study using
multiple genome-wide association studies (GWAS) datasets for BMI, IL-6 signaling, IL-6
levels and c-reactive protein (CRP) levels as exposures and estimated their effects on risk
of MS from GWAS data from the International Multiple Sclerosis Genetics Consortium
(IMSGC) in 14,802 MS cases and 26,703 controls.

Results: In univariable MR analyses, genetically predicted increased BMI and IL-6
signaling were associated with higher risk of MS (BMI: odds ratio (OR) = 1.30, 95%
confidence interval (Cl) = 1.15-1.47, p = 3.76 x 10™°; IL-6 signaling: OR = 1.51, 95% Cl =
1.11-2.04, p = 0.01). Furthermore, higher BMI was associated with increased IL-6
signaling (B = 0.37, 95% ClI = 0.32,0.41, p = 1.58 x 10°°). In multivariable MR
analyses, the effect of IL-6 signaling on MS risk remained after adjusting for BMI (OR =
1.36, 95% ClI = 1.11-1.68, p = 0.003) and higher BMI remained associated with an
increased risk for MS after adjustment for IL-6 signaling (OR = 1.16, 95% CI =1.00-1.34,
p = 0.046). The proportion of the effect of BMI on MS mediated by IL-6 signaling
corresponded to 43% (95% Cl = 25%-54%). In contrast to IL-6 signaling, there was little
evidence for an effect of serum IL-6 levels or CRP levels on risk of MS.

Conclusion: In this study, we identified IL-6 signaling as a major mediator of the
association between BMI and risk of MS. Further explorations of pathways underlying
the association between BMI and MS are required and will, together with our findings,
improve the understanding of MS biology and potentially lead to improved opportunities
for targeted prevention strategies.

Keywords: Mendelian randomization, multiple sclerosis, obesity, interleukin-6, c-reactive protein, genetic
epidemiology, susceptibility
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INTRODUCTION

Multiple sclerosis (MS) is a complex autoimmune disease of the
central nervous system (CNS), with both genetic variants and
lifestyle/environmental factors involved in disease susceptibility
(1). As modification of environmental and lifestyle factors offers
potential for disease prevention, it is important to pinpoint
causal links between these factors and MS.

Mendelian randomization (MR) analyses, in which genetic
variants are used as a proxy for environmental/lifestyle
exposures, help overcome limitations of observational studies,
i.e., reverse causation, recall bias and residual confounding.
Hence, they are an elegant tool to strengthen causal inference.
MR analyses have consistently shown a causal relation between
lower 25-hydroxyvitamin D (250HD) levels, higher body mass
index (BMI) and an increased risk for MS (2-12), in line with
observational studies (13-18). Previously, it has been
demonstrated that 250HD and BMI act largely independently
on risk of MS, with approximately 5% of the effect of BMI on MS
mediated by 250HD (11). In addition, leptin and adiponectin,
proposed mediators of the BMI-MS association, did not show an
effect on the risk of MS (11). Therefore, the majority of the effect
of obesity remains unexplained.

Observational studies have shown that serum concentrations
of interleukin-6 (IL-6), an adipose-associated cytokine, are
influenced by BMI (19). As patients with obesity suffer from a
chronic low-grade pro-inflammatory state (20) in which plasma
levels of pro-inflammatory cytokines such as IL-6 are elevated
(21), we explored whether IL-6 signaling mediates the
association between BMI and risk of MS.

For this purpose, through two-sample MR we first
investigated the contribution of BMI to IL-6 signaling and of
IL-6 signaling to risk of MS. In an MR mediation analysis, we
determined to which extent IL-6 signaling mediates the
association between BMI and risk of MS.

MATERIALS AND METHODS

Data Sources

Data sources for adult body mass index (BMI), interleukin-6 (IL-
6) signaling, serum IL-6 levels, c-reactive protein (CRP) levels
and multiple sclerosis (MS) risk are summarized in
Supplementary Table 1.

Genome-wide significant (p < 5 x 10°®) genetic variants for
BMI were extracted from, to date, the largest meta-analysis
genome-wide association study (GWAS) for BMI from the
Genetic Investigation of Anthropometric Traits (GIANT)
consortium, in n = 681,275 individuals of European ancestry
(22). We selected 656 primary associations, as described in a
previous study from our group (10) (Supplementary Table 2). In
secondary analyses, we selected 77 BMI SNPs identified in
individuals of European ancestry not including the UK
Biobank cohort (23) (Supplementary Table 3).

Genetic variants for IL-6 signaling were selected as uncorrelated
(#* < 0.1) SNPs within 300 kb of the IL-6 receptor gene (IL-6R,

GRCh37/hgl9 coordinates: chrl:154077669-154741926) that are
associated with CRP in the UK Biobank (24) (GWAS round 2,
n = 343,524 individuals) at genome-wide significance
(Supplementary Table 4).

Additionally, uncorrelated (r* < 0.1) genetic variants
genome-wide significantly associated with CRP within 300 kb
of IL-6R in the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) Inflammation Working
Group GWAS of 204,402 individuals of European ancestry
were selected (25), as described in Georgakis et al. (26)
(Supplementary Table 5).

CRP is a relevant downstream biomarker for IL-6 signaling. It
has been shown previously that genetic variants reflecting higher
levels of CRP and thus increased IL-6 signaling correlate with
lower soluble IL-6 receptor (IL-6R) levels and lower circulating
IL-6 levels (26, 27).

SNPs reaching genome-wide significance for circulating
serum IL-6 levels in the combined GWAS meta-analysis from
the CHARGE Inflammation Working Group of 67,428
individuals of European ancestry were selected (28)
(Supplementary Table 6).

Finally, SNPs associated with CRP levels at genome-wide
significance throughout the genome and clumped at 7 < 0.1
were selected from the CHARGE Inflammation Working Group
of 67,428 individuals of European ancestry (25) for trans-MR
analysis (Supplementary Table 7). From these SNPs, SNPs were
selected within 300kb of the CRP gene (chrl: 159,382,079-
159,984,379) for cis-MR (Supplementary Table 8).

Genetic estimates for MS susceptibility were derived from the
discovery cohorts of the latest IMSGC meta-analysis, including
up to 41,505 participants (14,802 MS and 26,703 controls) (29).
We selected the 138 primary, independent non-MHC SNPs for
bi-directional MR (Supplementary Table 9).

Selection of Instrumental Variables
Clumping and data harmonization were implemented in R v3.6.1
using the TwoSampleMR package (RRID: SCR_019010, v0.5.6)
(30). SNPs were excluded from analyses if their measured linkage
disequilibrium (LD) is #* > 0.05 in the European samples of 1000
Genomes. Furthermore, palindromic SNPs were replaced by
non-palindromic proxy SNPs in high LD (+* > 0.9) if the
forward strand alleles could not be inferred based on allele
frequencies. For exposure-associated variants not directly
ascertained in the outcome datasets, we looked for proxy SNPs
in high linkage disequilibrium (r* > 0.9) using the LDIlinkR
package v1.1.2 in R v4.0.2.

An overview of the instrumental variables included in each
MR analysis is provided in Supplementary Tables 10-29.

Statistical Analyses
Univariable MR analyses were implemented in R v3.6.1 using the
TwoSampleMR package (RRID: SCR_019010, v0.5.6) (30).
When both marginal and conditional effect estimates were
reported in the original studies, the marginal effect estimates
were used in two-sample MR analyses.

As primary analysis, the multiplicative random-effects
inverse-variance weighted (IVW) analysis was used to estimate
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the effects of the instrumental variables on outcomes (30, 31).
The Cochran Q test and I statistic (32) were calculated to
measure the degree of heterogeneity across the individual effect
estimates derived from each genetic variant (33).

Additional sensitivity tests were performed, including MR
Egger (34), weighted median regression (35) and simple and
weighted mode-based estimator (36). Horizontal pleiotropy was
evaluated based on the intercept obtained from the MR Egger
analysis being significantly different from 0 (34, 37) and by visual
inspection of the funnel plot, where asymmetry is indicative of
horizontal pleiotropy (30). Furthermore, we used the MR
Pleiotropy RESidual Sum and Outlier (MR-PRESSO) method
for detection of horizontal pleiotropy (MR-PRESSO global test)
and correction of horizontal pleiotropy, if detected, via outlier
removal (MR-PRESSO outlier test) (38). In MR-PRESSO
analyses with BMI as exposure, we increased the number of
simulations to compute the null distribution (NbDistribution) to
10,000 (default = 1,000). In addition, sensitivity tests were
applied in which we excluded variants within the major
histocompatibility complex (MHC) region, if present, as it is
strongly associated with MS risk and susceptible to bias from
pleiotropy due to its complex LD patterns.

We considered as MR results indicative of causal effects those
that were concordant in direction across multiple MR
approaches and with p value < 0.05 in IVW MR. The MR
sensitivity analyses were only performed to explore the
robustness of the main IVW analysis to potential pleiotropy
and as such no statistic sensitivity threshold was applied
for these.

Multivariable MR (MVMR) analyses were implemented in R
v3.6.1 using the TwoSampleMR package (RRID: SCR_019010,
v0.5.6) (30) for the inverse-variance weighted method.
Additional sensitivity analyses robust to pleiotropy, i.e.

MVMR-Egger, MVMR-Robust, MVMR-Median and MVMR-
Lasso, and robust to weak instruments, i.e. MVMR-Q(het) were
implemented from the MendelianRandomization R package
(39), the MVMR R package (40) and from the R code
described in Grant et al. (41).

Multivariable and mediation analyses were performed with
BMI data from Yengo et al. (22) and CRP (proxy for IL-6
signaling) data from the CHARGE Inflammation Working
Group (25) or from UK Biobank (24) as exposures, and MS
risk as outcome (29). The directed acyclic graph of the MR
mediation analysis is depicted in Figure 1. The indirect effect
estimate was obtained using the product of coefficients method,
i.e. by the multiplication of the B coefficients from the univariable
MR analysis with BMI as exposure and IL-6 signaling as outcome
(o) and from the multivariable MR analysis with IL-6 signaling
as exposure and MS as outcome, conditioned on BMI (f3,). The
total effect is obtained from the univariable analysis with BMI as
exposure and MS risk as outcome, without adjustment for IL-6
signaling (42). The proportion mediated was estimated by
dividing the indirect effect (o0 * ;) by the total effect of BMI
on MS (11, 43).

The odds ratios (ORs) and p values of the MS risk SNPs were
transformed into B coefficients and standard errors for
subsequent analyses. As the BMI phenotype in the GIANT
meta-analysis was normalized, B coefficients correspond to SD
of BMI, with 1 SD equaling a mean of 4.70 BMI units (kg/m®)
among cohorts in the GIANT consortium (22). For IL-6
signaling SNPs (proxied by CRP) derived from the UK
Biobank, B coefficients correspond to a 1-unit change in CRP
levels. For IL-6 signaling, CRP and IL-6 SNPs derived from the
CHARGE Inflammation Working Group, B coefficients
correspond to 1-unit change in natural-log transformed CRP
and IL-6.

Confounders

Genetic variants for

Body mass index

— >
body mass index (exposure) B2
5 MS susceptibility
(outcome)
Genetic variants for IL-6 signaling
IL-6 signaling (mediator) P

FIGURE 1 | Directed acyclic graph of the Mendelian randomization mediation analysis. o. = the effect of BMI on IL-6 signaling levels; B1 = the effect of IL-6 signaling
on MS, adjusted for BMI using multivariable MR; B2 = the effect of BMI on MS, independently from IL-6 signaling; the indirect effect is estimated by multiplying o with
B1. The proportion mediated is estimated by dividing the indirect effect (o * B+) by the total effect of BMI on MS.
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RESULTS

Genetically Predicted BMI and

Multiple Sclerosis

Genetic predisposition to an increased BMI, with BMI SNPs from
the latest meta-analysis by Yengo et al. (22), was associated with
MS susceptibility (IVW: odds ratio (OR) = 1.30, 95% confidence
interval [CI] = 1.15-1.47, p = 3.76 x 107) (Figure 2). There was no
evidence for directional pleiotropy from the MR Egger regression
intercept nor from the funnel plot (Supplementary Figure 1),
though the Cochran Q test and I statistic did show heterogeneity
among individual SNP effect estimates (Supplementary Table 30).
Excluding the MHC SNP rs498240 led to very similar
findings (Supplementary Table 30). The MR-PRESSO global test
p was < 0.0001, with eleven SNPs identified as outliers (rs1048932,
rs1106908, rs2010281, rs273504, rs3803286, rs3810291, rs3814883,
rs419261, rs498240, rs7535528, rs7941030). MR-PRESSO outlier-
corrected estimates were consistent with the main IVW analysis
(Supplementary Table 30). The effect of BMI on MS risk was
replicated using a smaller set of 69 variants from an earlier BMI
GWAS (23), excluding the UK Biobank cohort (Supplementary
Figure 2 and Supplementary Table 30).

Genetically Predicted IL-6 Signaling, IL-6
Levels, CRP and Multiple Sclerosis

Significant effects were observed for increased IL-6 signaling on risk
of MS (IL-6 signaling UK Biobank: OR = 1.14, 95% CI = 1.02-1.27,
p = 0.02; IL-6 signaling CHARGE: OR = 1.51, 95% CI = 1.11-2.04,
p =0.01) (Figure 2, Supplementary Table 31 and Supplementary
Figure 3). There was no evidence for pleiotropy nor heterogeneity
(Supplementary Table 31). In contrast to IL-6 signaling, we found
little evidence for an effect of serum IL-6 levels on risk of MS (OR =
0.71, 95% CI = 0.09-5.64, p = 0.75) (Figure 2, Supplementary
Table 31 and Supplementary Figure 4). In addition, there was
considerable heterogeneity among the individual SNP effect
estimates (Supplementary Table 31). There was no evidence for
pleiotropy from the MR Egger intercept (Supplementary
Table 31). After exclusion of the MHC SNP rs660895, the IVW
estimate was similar as the original analysis, though with a more
precise 95% confidence interval (Supplementary Table 31).

To disentangle the effect of upregulated IL-6 signaling from the
effect of CRP, we next performed MR analyses to explore
associations between SNPs associated with CRP and MS risk. Both
cis- and trans MR analyses showed little evidence for an association
between genetically determined CRP levels and risk of MS (Figure 2,
Supplementary Table 32 and Supplementary Figure 5).

In bi-directional MR analyses, genetically predicted MS risk
as exposure was not associated with BMI (Supplementary
Table 33), neither with IL-6 signaling or serum IL-6 levels
(Supplementary Table 34 and Supplementary Figure 6 and
Supplementary Figure 7).

Genetically Predicted BMI and IL-6
Signaling and IL-6 Serum Levels

Significant effects were observed for genetically predicted BMI (22)
on IL-6 signaling and serum IL-6 levels (IL-6 signaling UK Biobank:

B =099, 95% CI = 0.88,1.09, p = 1.56 x 107% IL-6 signaling
CHARGE: B = 0.37,95% CI = 0.32,0.41, p = 1.58 x 10°*°, IL-6 levels
CHARGE: B = 0.15, 95% CI = 0.12,0.18, p = 481 x 10°%)
(Supplementary Table 35 and Supplementary Figure 8). There
was no evidence for pleiotropy from the MR Egger intercept test,
except for IL-6 signaling data from the CHARGE Inflammation
Working Group as outcome (Supplementary Table 35).
Heterogeneity amongst individual SNP effect estimates was
present in all three analyses (Supplementary Table 35).
Exclusion of the MHC SNP rs498240 led to similar effect
estimates (Supplementary Table 35). Likewise, MR-PRESSO
outlier corrected estimates were in line with those obtained in the
main IVW analyses (Supplementary Table 35).

Potentially, there is sample overlap between the latest BMI dataset
(22) and the IL-6 signaling dataset from the UK Biobank. Therefore,
secondary analyses were performed with the BMI dataset from Locke
et al. (23), not including UK Biobank data. Effect estimates were in
the same direction and order of magnitude as our primary analysis
with the latest BMI dataset (22) (Supplementary Table 36).

In contrast, genetically predicted increased IL-6 signaling did
not influence BMI (IL-6 signaling CHARGE: B = -0.004, 95%
CI = -0.057,0.049, p = 0.87) (Supplementary Table 37).

Mediation of the Effect of Genetically
Predicted BMI on MS by IL-6 Signaling

In multivariable MR analyses with IL-6 signaling data from the
CHARGE consortium, the effect of IL-6 signaling on MS remained
after adjusting for BMI (OR = 1.36, 95% CI = 1.11-1.68, p = 0.003),
with smaller effect estimate and confidence intervals after
adjustment (Figure 3). Likewise, the effect of higher BMI on MS
after adjustment for IL-6 signaling remained, though this direct
effect is considerably smaller in effect size and only borderline
significant compared to the total effect obtained in the univariable
analyses without adjustment for IL-6 signaling (MVMR: OR = 1.16,
95% CI =1.00-1.34, p = 0.046) (Figure 3). Results from methods
robust to pleiotropy (MVMR-Egger, MVMR-Median, MVMR-
Robust and MVMR-Lasso) and weak instruments (MVMR-Q
(het)) for multivariable Mendelian randomization (40, 41) are
depicted in Supplementary Figure 9. These methods gave results
which were broadly consistent with the MVMR-IVW results. The
MVMR-Egger, MVMR-median and MVMR-Q(het) methods
suggested a null causal effect of BMI on risk of MS, however
their point estimates are still in the same direction and all other
methods were in line with MVMR-IVW. The proportion of the
effect of BMI on MS, mediated by IL-6 signaling was estimated by
dividing the indirect effect by the total effect of BMI on MS and
corresponded to 43% (95% CI = 25%-54%). As secondary analysis,
using the UK Biobank data for IL-6 signaling, the proportion of the
effect of BMI on MS corresponded to 35%, albeit with a larger 95%
confidence interval (95% CI = 3%-51%).

DISCUSSION

In this MR study, we investigated the role of interleukin-6
signaling in mediating the effect of BMI on risk of MS. First, our
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results show evidence for a causal role of genetically predicted
increased BMI and upregulated IL-6 signaling in the development
of MS. Second, genetically predicted increased BMI is associated
with upregulated IL-6 signaling. In contrast, genetically predicted
increase in IL-6 signaling did not influence BMI. Finally,
considering both BMI and interleukin-6 signaling in a

Exposure OR 95% CI P Value
BMI (N SNPs = 588)
IVW MR - 1.30 1.15-1.47 3.76e-05
MR Egger —— 1.49 1.05-2.11 0.026
Weighted median —a— 1.31 1.11-1.55 0.001
Weighted mode —— 1.44 1.06-1.96 0.022
Simple mode —_ 1.53 0.90-2.59 0.118
IL6 signaling-UKBB (N SNPs = 4)
IVW MR - 1.14 1.02-1.27 0.021
MR Egger —— 1.14 0.86-1.51 0.470
Weighted median - 1.14 1.01-1.28 0.032
Weighted mode o 1.14 1.00-1.31 0.144
Simple mode o 1.09 0.92-1.29 0.404
IL6 signaling-CHARGE (N SNPs = 3)
IVW MR —— 1.51 1.11-2.04 0.009
MR Egger - 0.94 0.20-4.40 0.953
Weighted median —— 1.44 1.05-1.98 0.023
Weighted mode —— 1.44 1.01-2.05 0.181
Simple mode — 1.37 0.89-2.10 0.286
IL6 levels (N SNPs = 3)
IVW MR - 0.71 0.09-5.64 0.747
MR Egger - 0.47 0.00-159.60 0.843
Weighted median —a— 0.78 0.55-1.12 0.179
Weighted mode —a— 0.77 0.54-1.10 0.291
Simple mode = 1.85 0.88-3.89 0.244
CRP cis - CHARGE (N SNPs = 13)
IVW MR —8— 0.84 0.65-1.07 0.150
MR Egger —a 0.81 0.51-1.27 0.374
Weighted median o 0.85 0.71-1.01 0.071
Weighted mode HH 0.84 0.73-0.97 0.039
Simple mode —— 0.56 0.37-0.85 0.018
CRP trans - CHARGE (N SNPs = 96)
IVW MR - 1.04 0.90-1.19 0.587
MR Egger —a— 1.04 0.83-1.30 0.742
Weighted median i 1.04 0.88-1.21 0.670
Weighted mode - 1.06 0.94-1.18 0.337
Simple mode f— 'l—'—l' —r 1.20 0.88-1.65 0.249
0 051 15 2 25 3
Odds ratio (95% CI) of MS per genetically predicted increase in exposure
FIGURE 2 | Forest plot of univariable Mendelian randomization estimates of body mass index, interleukin-6 signaling, interleukin-6 levels and c-reactive protein with
risk of multiple sclerosis. Data are displayed as odds ratio (OR) and 95% confidence interval (Cl) per SD increase in genetically predicted BMI levels, per unit increase
in c-reactive protein (CRP) levels for interleukin-6 (IL-6) signaling UKBB, per unit increase in natural-log transformed CRP levels for IL-6 signaling CHARGE and CRP
CHARGE, and per unit increase in natural-log transformed IL-6 levels for IL-6 levels CHARGE. UKBB, UK Biobank; CHARGE, Cohorts for Heart and Aging Research
in Genomic Epidemiology; CRP, c-reactive protein; MR, Mendelian randomization; N SNPs, number of variants in the analysis; SNP, single nucleotide polymorphisms;
IVW, inverse-variance weighted method.

Mendelian randomization mediation analysis, approximately
40% of the effects of body mass index on the development of
MS are mediated through interleukin-6 signaling.

Our findings are consistent with observational studies and
studies applying a polygenic risk score approach and further
support an effect of BMI on risk of MS (4-6, 8-12) and of BMI
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Exposure OR 95% ClI P Value
MVMR - main analysis
BMI - Yengo et al. HaH 1.16 1.00-1.34 0.046
IL-6 signaling CHARGE —a— 1.36 1.11-1.68 0.003
MVMR - secondary analysis
BMI - Yengo et al. HE— 1.18 1.02-1.38 0.029
1.10 1.01-1.20 0.037

IL-6 signaling UKBB HH
I | | T | | 1

0 0.5 1 1.5 2 2.5 3
Odds ratio (95% CI) of MS per genetically predicted increase in exposure

FIGURE 3 | Forest plot of multivariable Mendelian randomization estimates from the inverse-variance weighted method of body mass index and interleukin-6
signaling with risk of multiple sclerosis. Data are displayed as odds ratio (OR) and 95% confidence interval (Cl) per SD increase in genetically predicted body mass
index (BMI) levels, per unit increase in c-reactive protein (CRP) levels for interleukin-6 (IL-6) signaling UKBB, per unit increase in natural-log transformed CRP levels
for IL-6 signaling CHARGE. BMI, body mass index; UKBB, UK Biobank; CHARGE, Cohorts for Heart and Aging Research in Genomic Epidemiology; MVMR,

multivariable Mendelian randomization.

on IL-6 levels (19, 44-47). For the first time, we leveraged large-
scale genetic associations within the two-sample MR paradigm to
investigate the causal role of BMI on IL-6 signaling and serum
levels. Two prior MR studies have investigated the relation
between IL-6 and risk of MS. Zhang et al. demonstrated a causal
role between increased soluble IL-6R levels and decreased risk of
MS (48). These results are in line with our findings as increased
soluble IL-6R levels reflect reduced IL-6 signaling via the classical
pathway. In contrast, Lu et al. found little evidence for a role of
serum IL-6 levels in the risk of MS (49), again in line with our
results. A potential explanation for the discrepancy between IL-6
signaling and IL-6 levels may be weak instrument bias, as the
instruments selected for serum IL-6 levels explain solely ~1% of
phenotypic variance (28) while the instruments selected for IL-6
signaling explain ~5% of phenotypic variation (26).

We applied a cis-MR approach by selecting genetic proxies
for IL-6 receptor mediated regulation of IL-6 signaling within a
region of 300kb of the IL-6R gene, that were associated with CRP
levels. While CRP is a well-established downstream biomarker
for IL-6 signaling, and the variants selected reflect higher levels of
CRP and thus increased IL-6 signaling, there is little evidence for
a causal effect of total CRP levels on risk of MS, in concordance
with previous studies (6). This may reflect that the effects of IL-6
signaling on risk of MS are independent of the effects of CRP. In
addition, the IL-6 signaling pathway is complex with three
different signaling modes, i.e. classic (via the membrane-bound

IL-6R), trans (via the soluble IL-6R) and cluster (IL-6 bound to
IL-6R on the surface of dendritic cells presented to T-cells),
release of IL-6 from different sources, and pleiotropic effects of
IL-6 on different cell types (50). Subsequently, disentangling
which IL-6 signaling modes and cell types are involved needs
further clarification which goes beyond the scope of this study.
Studies are now emerging that implement the MR design to
better understand the pleiotropic nature of IL-6 signaling.
Recently, Rahman and colleagues leveraged genetic variants
that proxy IL-6 signaling to investigate effects on levels of
circulating cytokines, chemokines and growth factors (51).
Among considered cytokines, increased IL-6 signaling was
associated with reduced levels of interferon-y, interleukin-4,
interleukin-10 and interleukin-12 (51). Besides MR studies, in
vitro studies in T-cells from MS patients showed that blockade of
IL-6 signaling by anti-IL-6R monoclonal antibody reduces IL-17
production and elevates IL-10 release by activated CD4+ T cells
(52). A deleterious role of IL-6 signaling in MS has been further
demonstrated in studies in experimental autoimmune
encephalomyelitis (EAE) mice where IL-6R blockade prevents
the development of EAE in IL-6 sufficient mice (53) and IL-6 -
mice are resistant to EAE (54, 55). Transfer of autoantigen-
loaded IL-6 sufficient dendritic cells renders IL-6-deficient mice
fully susceptible to EAE, pointing towards dendritic cells as a key
early source of IL-6 (56). Altogether, these findings further
provide insights into the effects of IL-6 signaling.
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Our study has a number of strengths. We minimized
pleiotropy by choosing genetic variants in the proximity to the
IL-6R gene that are associated with CRP, which is a reliable
biomarker of IL-6R signaling. Furthermore, the MR-Egger
intercept did not suggest biasing pleiotropy, and results were
consistent across methods more robust to pleiotropy, such as
MR-Egger, weighted median, weighted mode and MR-PRESSO.
Finally, we performed sensitivity analyses excluding SNPs within
the MHC region to minimize bias related to pleiotropic effects of
MHC SNPs. Likewise, we extended our multivariable analyses to
methods robust to pleiotropy and weak instruments.

We also acknowledge a number of limitations. First, as
individuals of European ancestry only were included in the
GWASs from which we selected our instrumental variables, the
generalization of our findings to other populations is limited.
Second, biological compensation can occur, i.e. genetically
proxied IL-6 signaling may be compensated by changes in
other pathways. Third, the results from the MR analyses reflect
life-long effects of the instrumental variables on IL-6 signaling
and may therefore not immediately be extrapolated to estimate
the magnitude of effect of clinical interventions. Fourth, the non-
collapsibility of OR can cause biased mediation estimates.
However, this is lessened by the use of the product of
coefficients method (57). Fifth, inherent to our threshold for
clumping (r* of 0.05) genetic instruments might still be
correlated. Hence, this may lead to an overestimation of the
true causal effects. Finally, although our findings do not provide
evidence for pleiotropic bias, we cannot entirely rule out the
possibility that genetic proxies for IL-6 signaling affect other
pathways unrelated than those of IL-6R signaling.

Previously, it has been shown that lowered vitamin D levels
mediate only a small proportion of the effect of obesity on risk of
MS (11). Taken together with our current findings, vitamin D
and interleukin-6 signaling explain approximately 50% of the
association between obesity and MS susceptibility. Despite
the identification of IL-6 signaling as major mediator, still half
of the association between BMI and MS susceptibility remains
unexplained. Further explorations of pathways underlying the
association between BMI and MS are required. These include,
but are not limited to, the investigation of other inflammatory
adipokines and changes in metabolites and composition of gut
microbiota. These findings will improve our understanding of
MS biology and potentially lead to improved opportunities for
targeted prevention strategies.
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