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As the new year of 2020 approaches, an acute respiratory disease quietly caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as
coronavirus disease 2019 (COVID-19) was reported in Wuhan, China. Subsequently,
COVID-19 broke out on a global scale and formed a global public health emergency. To
date, the destruction that has lasted for more than two years has not stopped and has
caused the virus to continuously evolve new mutant strains. SARS-CoV-2 infection has
been shown to cause multiple complications and lead to severe disability and death,
which has dealt a heavy blow to global development, not only in the medical field but also
in social security, economic development, global cooperation and communication. To
date, studies on the epidemiology, pathogenic mechanism and pathological
characteristics of SARS-CoV-2-induced COVID-19, as well as target confirmation, drug
screening, and clinical intervention have achieved remarkable effects. With the continuous
efforts of the WHO, governments of various countries, and scientific research and medical
personnel, the public’s awareness of COVID-19 is gradually deepening, a variety of
prevention methods and detection methods have been implemented, and multiple
vaccines and drugs have been developed and urgently marketed. However, these do
not appear to have completely stopped the pandemic and ravages of this virus.
Meanwhile, research on SARS-CoV-2-induced COVID-19 has also seen some twists
and controversies, such as potential drugs and the role of vaccines. In view of the fact that
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research on SARS-CoV-2 and COVID-19 has been extensive and in depth, this review will
systematically update the current understanding of the epidemiology, transmission
mechanism, pathological features, potential targets, promising drugs and ongoing
clinical trials, which will provide important references and new directions for SARS-
CoV-2 and COVID-19 research.
Keywords: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19),
small molecular inhibitor, vaccine, traditional Chinese medicine, potential target, targeted therapeutic strategy
INTRODUCTION

To date, the 2019 coronavirus disease (COVID-19) pandemic
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has infected 440 million people and caused
approximately 5.97 million deaths, and these data are still
growing rapidly (https://coronavirus.jhu.edu/map.html). This
terrible disease not only causes a large number of casualties,
but also seriously affects the world economy and peaceful
development (1). Therefore, elucidating the possible
mechanisms and potential targets of the disease and exploring
effective therapeutic drugs and strategies are the most urgent
efforts worldwide.

Studies have confirmed that SARS-CoV-2 is a single-stranded
RNA-positive Sarbecovirus subgenus b-coronavirus (2).
Homology analysis found that the genome sequence of SARS-
CoV-2 is approximately 79% homologous with that of the
previous SARS-CoV, and more than 50% homologous with
that of MERS-CoV, which provides a certain basis and
direction for its research (3). However, due to the extremely
unstable genetic material of SARS-CoV-2, it is prone to
mutations, producing mutant strains or promoting rapid virus
evolution (Table 1), promoting the continued progress of
COVID-19 and a wave of turbulence. This once again
threatens the prevention and research of COVID-19 (39).
Therefore, the need for targeted drugs and promising
treatment strategies is urgent.

In view of this, this article will comprehensively analyze the
epidemiological and pathological characteristics of SARS-CoV-2
to promote further research on COVID-19. In-depth discussion
of promising therapeutic targets and possible pathogenesis
during SARS-CoV-2 infection will accelerate the development
of promising drugs, including small molecule drugs, vaccines and
biological products, traditional Chinese medicines (TCMs) and
symptomatic drugs, and the exploration of effective treatment
strategies will eventually promote their clinical applications to
overcome SARS-CoV-2-induced COVID-19.
STRUCTURAL INFORMATION,
EPIDEMIOLOGY AND PATHOLOGY
FEATURES OF SARS-COV-2

According to statistics, there are currently two types (highly
pathogenic and minimally pathogenic) of six coronaviruses
org 2
(CoVs) that can cause human diseases. Among them, highly
pathogenic CoVs, including SARS-CoV (Guangdong, China,
2002), Middle East respiratory syndrome coronavirus (MERS-
CoV, Saudi Arabia, 2012) and the existing SARS-CoV-2 can
cause severe human lung infections and multiple organ
dysfunctions (40). The specific development trend of these
CoVs is included in Figure 1. With the help of the latest
omics, structural biology and other technologies, researchers
have initially mastered the genome and structural information
of SARS-CoV-2 (41). Specifically, the structure of SARS-CoV-2
is composed of the nucleocapsid (N) protein wrapped with RNA
as genetic material located in the core region, accompanied by
spike (S) protein, envelope (E) protein and membrane (M)
protein scattered in the peripheral area, and the genome
structure is mainly composed of multiple open reading frames
(ORFs) (42). According to the current gene bank annotation
(NC_045512.2), 2 functional ORFs (ORF1a and ORF1b) are
translated into replicase complexes, and 4 functional ORFs
encode S, E, M and N proteins in the 5’-3’ direction, while the
remaining ORFs are distributed in the abovementioned
functional genes, encoding multiple accessory proteins,
including 3a/3b, 6, 7a/7b, 8a/8b and 9b (43). Further research
found that the ORF1a- and ORF1b-translated viral replicase/
transcriptase protein complex is cleaved to form up to 16 kinds
of nonstructural proteins (nsps) by the virus/host proteolytic
enzymes, including 3C-like main protease (3CLpro or Mpro) and
papain-like protease (PLpro) (44). During this process, PLpro cuts
the N-terminus of the polyprotein to form nsp1, nsp2 and nsp3,
which are required for SARS-CoV-2 replication, while 3CLpro

cleaves and separates the polyprotein pp1ab to generate nsp4-16
to form multiple active proteins, including RdRp and helicases,
which are essential requirements for the life cycle of SARS-CoV-
2 in host cells (45). The useful information shown in Figure 2
will help scientists better discover potential targets that interfere
with the replication, spread, and pathogenicity of SARS-CoV-2
and develop promising vaccines, small molecule drugs and
TCMs that can be used in the clinic.

Meanwhile, the initial epidemiological research results
indicate that SARS-CoV-2 spreads from person to person
mainly through the respiratory tract, droplets or aerosols (46).
However, based on multiple studies, it can be seen that SARS-
CoV-2 can be spread not only through the abovementioned
channels but also through other means, which is mainly
manifested as follows: 1. There have been cases showing that
SARS-CoV-2 can spread by the placenta, but vertical
transmission rarely occurs. 2. According to existing research,
April 2022 | Volume 13 | Article 834942
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TABLE 1 | Characteristics of the current concerned SARS-CoV-2 variant strains.

Variant Name Discovery
Time

Original
Location

Epidemiological Characteristics Reference

B.1.1.7 (Alpha) September
2020

United
Kingdom

The infectivity of this type of variant strain has changed, and the transmission speed has
increased by approximately 50%; the sensitivity to monoclonal antibody therapy remains
unchanged; it can be effectively neutralized by vaccines or antibodies produced by natural
infections

Sabino et al. (4)
Thye et al. (5)

B.1.351 (Beta)
B.1.351.2
B.1.351.3

May 2020 South Africa The infectivity of this variant strain increases by approximately 50%; the sensitivity to
monoclonal antibody treatment is reduced; the neutralizing effect of antibodies produced by
vaccines or natural infections is also significantly reduced

Martin et al. (6)
Benton et al. (7)

B.1.1.28.1
(P.1/Gamma)

November
2020

Japan/Brazil This type of variant strain is less sensitive to monoclonal antibody therapy; the neutralizing
effect of antibodies produced by vaccines or natural infections is also significantly reduced

Faria et al. (8)
Hemmer et al. (9)

B.1.617.1
(Kappa)
B.1.617.2
(Delta)

October
2020

India The infectivity of this type of variant strain is enhanced; the sensitivity to monoclonal antibody
therapy may be reduced; the neutralizing effect of antibodies produced by vaccines or
natural infections may be reduced

Mishra et al. (10)
Kannan et al. (11)

B.1.1.28.2
(P.2/Zeta)

April 2020 Brazil Potential depletion in neutralization by convalescent and postvaccination sera or monoclonal
antibody treatments

Sapkal et al. (12)
Zhang et al. (13)

B.1.427/
B.1.429
(Epsilon)

June 2020 United
States

The mutant strain has enhanced toxicity and immune escape ability, resulting in low efficacy
or even ineffectiveness of various serum vaccines and neutralizing antibodies, ~20%
increased transmissibility

McCallum et al. (14)
Deng et al. (15)

C.37 (Lambda) December
2020

Peru This mutant strain will affect the effectiveness of vaccines and neutralizing antibodies, and is
believed to promote the virus to invade host cells and help the virus escape the host
immune system

Romero et al. (16)
Darvishi et al. (17)

B.1.621 (Mu)
B.1.621.1

January
2021

Colombia The mutant strain is highly resistant to COVID-19 convalescent serum and vaccines
vaccinated thus far, with enhanced transmission and pathogenicity, and is likely to have
immune escape and natural derivation capabilities

Laiton-Donato et al. (18)
Uriu et al. (19)

B.1.1.28.3
(P.3/Theta)

March
2021

Philippine The mutant strain may show stronger transmission, while reducing the neutralization of
vaccine and convalescent serum

Shuai et al. (20)
Moubarak et al. (21)

B.1.1.523 May 2020 Russia The enhanced immune escape ability of the mutant strain leads to weakened vaccine
effectiveness

van der Veer et al. (22)

C.1.2 March
2021

South Africa The mutation degree of this mutant strain far exceeds that of other strains, the gene
mutation rate is higher but the incidence rate is low, and the infectivity and immune escape
ability are enhanced

Albayat et al. (23)
Yang et al. (24)

R.1 January
2021

Japan This variant strain is easier to spread and may have the ability to actively evade vaccine
antibodies

Nagano et al. (25)
Sekizuka et al. (26)

C.36.3 January
2021

Thailand-
Egypt

This strain has been listed by the WHO as a “mutant strain under surveillance”, which means
that the strain is potentially dangerous

https://www.who.int/en/
activities/tracking-SARS-
CoV-2-variants/

B.1.1.519 November
2020

Mexico This variant strain reduces the activity of some monoclonal antibodies, but does not show
changes in immune escape ability and pathogenicity

Rodrıǵuez-Maldonado et al.
(27)

B.1.1.318 February
2021

United
Kingdom

This variant strain is highly transmissible and may impair the efficacy of the vaccine Laine et al. (28)
Manouana et al. (29)

B.1.466.2 November
2020

Indonesia This mutant strain has a high infection rate in Indonesia (approximately 48%), but the
overseas infection rate is low (<0.5%)

Fibriani et al. (30)
Sam et al. (31)

B.1.620 February
2021

Europe This mutant strain carries mutations and missing information of a variety of strains of interest,
and is likely to have antibody-mediated immune escape. It may be ineffective against mRNA
vaccines and is widely spread in central Africa.

Dudas et al. (32)
Zahradnıḱ et al. (33)

B.1.526 (Iota) November
2020

United
States

The mutant strain has a faster transmission speed and a higher lethality rate, is partially or
completely resistant to monoclonal antibodies, and is not sensitive to the neutralization effect
of plasma and serum during the recovery period.

Annavajhala et al. (34)
Thompson et al. (35)

B.1.525 (Eta) December
2020

Nigeria/
United
Kingdom

The mutant strain has strong transmission and immune escape ability, which can weaken
the neutralization efficiency of vaccines and antibodies

Bugembe et al. (36)

B.1.630 March
2021

Dominican
Republic

This mutant strain has a large number of spike protein mutation points, but weaker
transmissibility than the Delta variant. It still needs attention

https://www.who.int/en/
activities/tracking-SARS-
CoV-2-variants/

B.1.1.529
(Omicron)

November
2021

South Africa
Botswana

The mutant strain has more mutation sites and significantly enhanced infectivity, which is
10× and 2× higher than the original virus or Delta mutant strain, respectively; the immune
escape ability is enhanced and twice that of the Delta mutant strain, resulting in a decreased
efficiency of monoclonal antibodies and resistant to vaccines; the speed of virus infection has
increased, and there is an increased risk of reinfection

Abdool and de Oliveira (37),
Chen et al. (38)
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the virus can spread among minks and can infect humans.
Meanwhile, cats and ferrets have been confirmed to be able to
transmit to each other, but there are no reported cases of
transmission to humans. 3. There have been studies
speculating that this virus can also be spread by direct contact
and pollutants, but this may be just an unusual route of
transmission. 4. Although live virus has been isolated from
saliva and feces, viral RNA has also been detected in semen
and blood transfusions (47). There are currently no reports of
sexual or blood transmission and only one report of possible
fecal-respiratory transmission (48), which will provide us with
important guidance for all-round protection.

Researchers conducted a systematic analysis of SARS-CoV-2-
infected patients and found that almost all patients had frosted
glass shadows on both sides of their lungs (49). The initial
symptoms of the patient mainly included fever, cough and
sputum, hemoptysis, headache and myalgia or fatigue,
diarrhea, dyspnea, etc. As the disease progresses, symptoms
such as inflammation, fibrosis and edema appear in the lungs,
which gradually develop into acute respiratory distress syndrome
(ARDS) and cause lung failure (50). Meanwhile, SARS-CoV-2
infection also causes damage to multiple organ functions,
including digestive system injury, such as liver degeneration
and spot necrosis, and the epithelium of the esophagus,
stomach and intestine mucosa show varying degrees of
Frontiers in Immunology | www.frontiersin.org 4
degeneration, necrosis and exfoliation; brain and nervous
system damage, such as cerebral congestion and edema, some
neuronal degeneration and ischemic changes; cardiovascular
system damage, such as increased blood pressure and
arrhythmia, increases the probability of myocardial infarction,
causes myocardial ischemia, necrosis, thrombosis and cardiac
insufficiency; genitourinary system damage, including
glomerular congestion, segmental hyperplasia or necrosis,
protein exudation in the glomerular capsule, and acute kidney
injury (Figure 3); and some patients still die after treatment (51).
Based on this, being familiar with the pathological changes
caused by SARS-CoV-2 will lay the foundation for clinical
diagnosis and targeted therapy.

At present, new cases of COVID-19 are caused by multiple
SARS-CoV-2 variants in many countries (52). Currently, a
number of major variants are rapidly growing and causing
concern, including alpha (B.1.1.7), beta (B.1.351), gamma
(B.1.1.28.1), delta (B.1.617.2) and omicron (B.1.1.529), and the
characteristics of these variants are shown in Table 1.
Meanwhile , different mutant strains have different
characteristics. For example, the gamma variants increase
toxicity and increase the risk of hospitalization and death,
while Delta strains are highly infectious and spread quickly,
especially the shortened incubation period or passage interval,
which increases the risk of global epidemics (10, 53).
FIGURE 1 | Timeline of key events for coronavirus discovery and research. Coronavirus was first isolated from chickens in 1937. With the passage of time and
changes in the environment, in the past 84 years, a variety of different species and subgroups of coronaviruses have been discovered, identified, named, and
researched. In December 2019, Wuhan, China, reported a novel coronavirus case for the first time. In a short period of time, the COVID-19 epidemic caused by
SARS-CoV-2 spread to the world and caused major disasters and epidemics. In the past two years, there have been more than 440 million confirmed cases
worldwide, causing approximately 5.97 million deaths, which has caused great social upheavals and dangers.
April 2022 | Volume 13 | Article 834942
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Authoritative research shows that SARS-CoV-2 has evolved
more than 800 different subtypes or branches, and its variants
may have exceeded 1,000 (54). In general, the direction of the
mutation and evolution of the new coronavirus is mainly to
break through immunity, avoid vaccines, increase exponential
replication, and be highly infectious (37). Although the mutant
strains are terrible, their diversity, transmission, epidemic, and
pathogenic characteristics will provide important clues for the
in-depth study of virus mutation mechanisms, exploration of
novel potential targets, and development of effective vaccines,
drugs, and therapeutic strategies.
POTENTIAL THERAPEUTIC TARGETS OF
SARS-COV-2

Combining the research experience of SARS- and MERS-CoV to
explore the potential therapeutic targets of SARS-CoV-2, the
Frontiers in Immunology | www.frontiersin.org 5
following aspects should be considered: enzymes and functional
proteins that affect RNA synthesis and viral replication;
structural proteins that affect virus entry and the self-assembly
process; virulence factors that affect the host immune regulation;
and host cell surface proteins and receptors (Figure 4).
Correspondingly, therapeutic strategies are also divided into
targeting SARS-CoV-2 and targeting host cells and the body’s
immune system (55). Authoritative research shows that SARS‐
CoV‐2 can encode a variety of proteins, including nsps,
structural proteins, and several virulence factors (56).
Moreover, multiple specific host cell surface receptors,
coreceptors, and auxiliary proteases, including angiotensin
converting enzyme 2 (ACE2), transmembrane protease serine
2 (TMPRSS2), cluster of differentiation 147 (CD147) tyrosine-
protein kinase receptor UFO (AXL) and nonmuscle myosin
heavy chain IIA (MYH9) (38, 57, 58), have been identified.
Obviously, these targets will be the most promising targets for
fighting the COVID-19 outbreak caused by SARS-CoV-2.
FIGURE 2 | The structural features, potential functions and transmission process of SARS-CoV-2. Structurally, the outer side of SARS-CoV-2 is surrounded by a
capsid, which is mainly composed of spike (S), membrane (M), and envelope (E) proteins, while the nucleocapsid (N) protein is accompanied by the genome. The
genomic structure of SARS-CoV-2 is based on a single-stranded positive-stranded RNA, which contains a 5’-methylated cap and a 3’-polyadenylic acid tail,
arranged in the following order: 5’-end; nonstructural protein (nsp) coding region [open reading frame (ORF1a/b)]; structure and accessory protein coding regions
such as S, E, M, N and 3a, 3b, 6, 7a, 7b, 8a, 8b, 9b. Among them, the open reading frame (ORF) 1a/b is responsible for encoding a variety of nonstructural
proteins, mainly RNA-dependent RNA polymerase (RdRP), papain-like protease (PLpro) and 3C-like protease (3CLpro). The putative functions of these proteins are
mentioned in the figure. During the infection process, SARS-CoV-2 recognizes and interacts with host cell surface receptors and enters the host cell through
membrane fusion and endocytosis. After entering the host cell, SARS-CoV-2 releases its genome and translates a large number of nsps, including RdRP, PLpro and
3CLpro. Under the action of these enzymes, it synthesizes the new RNA genome and assembles to form virus particles, which are then released into the extracellular
space through exocytosis. Uncontrolled replication promotes SARS-CoV-2 infection, leading to immune disorders and inflammatory cytokine storms and ultimately
leading to damage to multiple organs, especially the lungs.
April 2022 | Volume 13 | Article 834942
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RNA Synthesis and Replication
Protease Targets
Nsps have proven to be widely involved in SARS-CoV-2
recognition, entry, inheritance, replication, and infection.
Together with their key biological functions and relatively clear
structure and active site, the main nsps, including PLpro, 3CLpro,
RNA-dependent RNA polymerase (RdRP) and helicase, have
become the first batch of targets to be considered for the
development of small molecular inhibitors (Figure 4) (59).

3CLpro, the aforementioned nsp5, was found to cut 11 sites on
the polyprotein body encoded by ORF1ab and then release
mature nsp4-nsp16, which is crucial to the life cycle of SARS-
CoV-2 (60). Structural analysis showed that the protease
monomer mainly contains a domain I (residues 8-101) and a
Frontiers in Immunology | www.frontiersin.org 6
long loop connected domain II (residues 102-184) and a domain
III (residues 185-200), and the active site is located in the gap
between domains I and II (61). Mature research on the function,
structure and active site of 3CLpro makes it a powerful target for
anti-SARS-CoV-2 drugs such as small molecules and
peptide inhibitors.

Unlike 3CLpro, PLpro mainly cuts from the N-terminus of the
polyprotein to release nsp1, 2 and 3, which will affect the
accuracy of SARS-CoV-2 replication. Research on MERS-/
SARS-CoV suggests that it has a powerful role in antihost
innate immunity (62). Moreover, homology analysis found that
SARS-CoV-2 and SARS-CoV PLpro share approximately 83% of
the sequence at the protein level. Combined with its
indispensable role in virus replication and infection, PLpro
FIGURE 3 | Details of multiple organ injury caused by SARS-CoV-2. In addition to varying degrees of pulmonary inflammation, embolism, and acute respiratory
distress syndrome, COVID-19 caused by SARS-CoV-2 infection can also cause various organ dysfunctions and damages, including but not limited to encephalitis,
Gillan-Barre syndrome, muscle weakness and other nervous system dysfunction; increased blood pressure, arrhythmia, myocardial ischemia, cardiac insufficiency,
rupture and other cardio/cerebrovascular system damage; urogenital system damage, such as glomerular congestion and acute kidney injury; digestive system
damage, such as diarrhea, increased transaminase/serum bilirubin, decreased albumin/prothrombin activity, acute or chronic acute liver failure, and skin and
circulatory diseases, such as skin rash, urticaria, pernio-like lesions, inflammation, cytokine storm, coagulopathy and thrombosis.
April 2022 | Volume 13 | Article 834942
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should be a valuable target for SARS-CoV-2 inhibitor research.
Meanwhile, the use of X-ray crystallography and other
techniques to analyze the structure of PLpro will further
facilitate the study of PLpro inhibitors against SARS-CoV-2
(63, 64).

In the RNA replication of CoVs, RdRP promotes their
evolution by affecting the fidelity of replication and mutation
rates to help them adapt to the environment or host cells (65).
Homology analysis found that SARS-CoV and SARS-CoV-2
share approximately 82% of the homologous sequence at the
genome level, while RdRP shares a sequence of more than an
astonishing 96% at the protein level (66). These findings remind
us that RdRP will become one of the most promising targets for
Frontiers in Immunology | www.frontiersin.org 7
the study and treatment of SARS-CoV-2. High-resolution
structural analysis revealed that the functional domain of
SARS-CoV-2 RdRP is located at the C-terminus of the protein,
where there is a conserved Ser-Asp-Asp motif. At the RNA level,
nsp8 can control the de novo synthesis of up to 6 nucleotides,
which will provide primers for nsp12/RdRP RNA synthesis.
Meanwhile, the nsp7-nsp8 complex can increase the activity of
RdRP, which in turn affects its binding to RNA (67). All these
studies provide valuable references and directions for research on
anti-SARS-CoV-2 targeting RdRP.

SARS-CoV-2 helicase (nsp13) is a multifunctional nucleoside
triphosphate (NTP)-dependent protein. Structural analysis
revealed that helicase contains a metal binding domain (MBD)
FIGURE 4 | Potential targets and targeted therapeutic strategies for combating SARS-CoV-2-induced COVID-19. Scheme of the potential targets, intervention
strategies and types of therapeutic drugs in the cycle of SARS-CoV-2 infection, replication, and transmission. During the infection stage, SARS-CoV-2 recognizes
and interacts with host cell surface receptors through the spike (S) protein or transmembrane glycoprotein CD147 and enters the host cell through membrane fusion
and endocytosis. After the virus enters the host cell, SARS-CoV-2 releases its nucleocapsid and genome into the cytoplasm and translates a large number of
nonstructural proteins (nsps) including coding RNA-dependent RNA polymerase (RdRP), papain-like protease (PLpro) and 3C-like protease (3CLpro). Under the action
of these enzymes, a full-length negative antisense genome template is synthesized to produce the new RNA genome and assembled to form virus particles, which
are then released into the extracellular space through exocytosis. Uncontrolled replication promotes SARS-CoV-2 infection, leading to immune disorders and
inflammatory cytokine storms and ultimately leading to damage to multiple organs, especially the lungs. The whole process exposed multiple potential targets,
providing important guidance for research on anti-SARS-CoV-2 targets, drugs and treatment strategies.
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composed of 26 cysteine residues at the N-terminus and a
helicase domain (Hel) consisting of a conserved motif at the
C-terminus (68). Functional studies found that, helicase can
unwind double-stranded (ds) DNA and RNA in an NTP-
dependent manner along the 5’-3’ direction during (69). It was
found that the sequence of the helicase of SARS-CoV-2 is
conserved and indispensable and is an essential component of
virus replication. Based on these studies, helicase is expected to
become a viable target against SARS-CoV-2 infection.

Structural Protein Targets
Based on the current research results, the spike protein is one of
the most critical structural proteins of SARS-CoV-2, which
forms a special flower crown structure on the outer surface of
the virus in the form of a trimer. Meanwhile, studies have found
that the spike protein can directly affect the recognition, receptor
binding, interaction, and virus entry between SARS-CoV-2 and
host cells to determine the tissue or host preference in the initial
stage of infection (70). In the spike (S)-mediated infection
process, certain proteases in the host cell, such as TMPRSS2,
can cleave the spike protein into two subtypes, the S1 subunit and
the S2 subunit. The responsibility of the S1 subunit is to
recognize and bind to host cell surface receptors, while the
main task of the S2 subunit is to mediate the virus-cell and cell
membrane fusion process (71). From the perspective of the
mechanism, the structural integrity, cleavage and activation of
the S protein perform crucial roles during host cell invasion and
virulence. Therefore, it will have far-reaching significance to
develop drugs and vaccines that affect the viral spike protein or
specific receptors on the host cell surface to prevent SARS-CoV-2
from entering and infecting. Except for the outermost spike
protein, the N protein is a highly immunogenic phosphoprotein
and also a core and highly conserved component of SARS-CoV-2
(72). In the process of virion assembly, N protein combines with
viral genomic RNA to produce a spiral nucleocapsid and is
related to viral genome replication and regulation of cell
signaling pathways. During this process, the N-terminal
domain (NTD) and C-terminal domain (CTD) are necessary
structures for effective binding to viral RNA (73). Meanwhile,
studies have pointed out that the E protein mainly affects the
structural integrity and virulence of SARS-CoV-2 (74). In
addition, these proteins also exhibit the interferon (IFN)
antagonistic properties. In particular, the M protein can
prevent the formation of the MAVS-traf3-tbk1 complex and
antagonize the production of IFN-I by interacting with MAVS
(74, 75). Based on the above research, S (S1 and S2 subunit), N
(NTD and CTD domain), E and M proteins are all have great
potential to become targets for the development of anti-SARS-
CoV-2 drugs and vaccines (Figure 4).

Virulence Factor Targets
Virulence factors (VFs) are molecules with virulence properties
such as invasiveness and toxins produced by the metabolism of
viruses and bacteria, which mainly inhibit or evade the host’s
immune response when infecting the host and obtain nutrients
from the host for self-proliferation (76). At present, little is
known about the virulence factors of SARS-CoV-2, and there are
Frontiers in Immunology | www.frontiersin.org 8
three virulence factors, namely nsp1, nsp3c and ORF7a, which
are considered to be most likely involved in interfering with the
innate immunity of the host to assist in immune escape of the
virus (77–79). Specifically, nsp1 induces the degradation of
mRNA and inhibits the production of IFN-I by interacting
with host cell 40S ribosomal subunits, while nsp3c combines
with host cell ADP-ribose to resist innate immunity (77, 80). In
addition, ORF7a of SARS-CoV-2 directly binds to bone marrow
stromal antigen 2 (BST-2), which reduces its activity by blocking
the glycosylation of BST-2 and ultimately inhibits the release of
the assembled virus (79). In view of the high feasibility of
virulence factors as potential targets for SARS-CoV-2 research,
the development of drugs that affect the production and effects of
virulence factors will be another important clue to explore the
fight against SARS-CoV-2-induced COVID-19.

Hose Specific Receptor or
Enzyme Targets
Authoritative studies have confirmed that host cell ACE2 is the
specific receptor to which the SARS-CoV S protein receptor
binding domain (RBD) binds. The latest research has found that
the host receptors of SARS-CoV-2 and SARS-CoV have a high
degree of consistency, which indicates that there is also an
important interaction between the spike RBD of SARS-CoV-2
and ACE2 (81). During the infection stage, the RBD of the S
protein S1 subunit recognizes and binds to the cell surface ACE2
receptor, which promotes the weakening or disappearance of the
interaction between S1 and the S2 subunit, thereby exposing the
S2 subunit (82). Subsequently, the S2 subunit changes
conformation by inserting the fusion peptide (FP) into the host
cell membrane, resulting in the formation of a six-helix bundle
(6HB) between HR1 and HR2, which ultimately promotes fusion
of the viral membrane with the host cell membrane (83).
According to the receptor binding motif (RBM) analysis, a
large number of amino acid residues necessary for binding to
ACE2 are completely retained in the S protein of SARS-CoV-2,
which is consistent with the previous discovery that the virus
uses ACE2 to enter the host cell (84). Based on a number of
authoritative studies, ACE2 will be the most valuable host cell
target in preventing the entry and infection of SARS-CoV-2.

In addition, TMPRSS2 can cut off the spike to trigger SARS-
and MERS-CoV infection. In a study of SARS-CoV-2, it was
found that the virus uses TMPRSS2 instead of cathepsin B and L
(CatB/L) to activate the S protein, and the spreading process may
also be closely related to the activity of TMPRSS2 (85). Another
study found that TMPRSS2 inhibitors can significantly inhibit
the SARS-CoV-2 spike protein from entering a cell line
expressing TMPRSS2, while promoting the expression of
TMPRSS2 can cancel this inhibitory effect, which indicates that
the initiation of the SARS-CoV-2 spike protein is dependent on
TMPRSS2 (86). Furthermore, an in vitro study showed that
camostat mesylate, a serine protease inhibitor, can potently stop
the virus from entering Caco-2 (TMPRSS2+) cells rather than
293T (TMPRSS2-) cells by inhibiting the activity of TMPRSS2
(87). The above results suggest that inhibiting TMPRSS2 to treat
patients with SARS-CoV-2 infection will be a promising and
valuable therapeutic strategy.
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CD147 is a highly glycosylated single-pass transmembrane
glycoprotein that has been found to play an indelible role in
tumor development, plasmodium invasion, virus infection and
other processes (88). During SARS-CoV invasion of host cells,
CD147 molecules can interact with cyclophilin A (CyPA) to
mediate a similar mechanism of action in HIV-1 invasion, while
the CD147 antagonist peptide (AP)-9 can strongly bind to
HEK293 cells and exert its anti-SARS-CoV effect (89). In view
of the high similarity between SARS-CoV and SARS-CoV-2,
some studies have attempted to explore the possible role of
CD147 in host cell invasion by SARS-CoV-2 (90). The results
show that blocking host cell CD147 can significantly inhibit
SARS-CoV-2 infection, suggesting that CD147 is likely to be
another potential surface receptor independent of ACE2 (91). A
study used the humanized anti-CD147 monoclonal antibody
called meplazeumab (60 mg/ml), which can prevent virus
invasion and the subsequent inflammation caused by SARS-
CoV-2 and its variants, including variants a, b, g and d, with
inhibition rates of 68.7, 75.7, 52.1, 52.1 and 62.3%, respectively
(92). Furthermore, CD147 genetically modified mice are more
sensitive to SARS-CoV-2 and variants such as a and b, causing
the same pathological changes as COVID-19 (93). In addition,
surface plasmon resonance analysis confirmed that there is an
interaction between CD147 and the S protein (90). This evidence
indicates that SARS-CoV-2 can also enter host cells by binding to
the CD147 receptor. However, the question of whether CD147 is
a coreceptor, a secondary receptor or a completely independent
new receptor still needs more research to be verified. However,
CD147 is a novel potential therapeutic target with further
exploration value in research on fighting SARS-CoV-2
infection. While researchers have multiplied their hopes for
discovering this new infection mechanism, several studies have
suggested that there is no direct interaction between RBD and
CD147, raising doubts about its role as a coreceptor and potential
as a therapeutic target (94, 95). Science has always been
developed through constant questioning. The conflicting
results do not discourage us but instead provide us with new
research clues. In any case, more research needs to be done to
strengthen the reliability of this finding.

SARS-CoV-2 infection mainly relies on the interaction of the
viral surface S protein and the well-known host cell surface
receptor ACE2. However, the low expression of ACE2 in the
respiratory system makes it difficult to fully explain why SARS-
CoV-2 mainly infects the human respiratory system. Along with
the continuous deepening of exploration, researchers proved that
the AXL protein on lung cells can bind to the spike protein and
show a relatively obvious colocalization phenomenon on the cell
membrane through large-scale screening and a series of
biochemical cellular experiments (96). Interestingly, AXL does
not bind to the RBD of the S protein but instead binds to the
NTD region at the N-terminus. Meanwhile, a study also found
that AXL has significant retention in almost all types of airway
cells, including type I/II lung epithelial cells, fibroblasts, basal
cells, endothelial cells, smooth muscle cells and myeloid cells. In
addition, overexpression of AXL can effectively promote the
invasion of SARS-CoV-2, while knocking out AXL in human
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lung epithelial cells significantly reduces SARS-CoV-2 infection
(97). At the same time, clinical data from patients with SARS-
CoV-2 also show that the expression level of AXL is highly
correlated with severe infections (98). The use of soluble AXL
protein can effectively antagonize SARS-CoV-2 infection of lung
cells, suggesting that AXL is another potential target during
SARS-CoV-2 infection, and targeted or AXL-based drugs may be
used for future clinical interventions against SARS-CoV-
2 infection.
POTENTIAL THERAPEUTIC STRATEGIES
AND PROMISING ANTI-SARS-COV-2
DRUGS

Small Molecule Inhibitors
Drawing lessons from the research and development experience
of SARS-CoV and MERS therapeutic drugs and the current
authoritative research about SARS-CoV-2, we need to explore
small molecule inhibitors that can prevent the novel coronavirus
and its epidemic from two directions (99): 1. This type of
inhibitor targets viral proteins, such as the S protein, viral
enzymes (PLpro, 3CLpro, RdRP and helicase) and some
important structural proteins; 2. This type of inhibitor interacts
with host cell surface proteins, such as receptor (ACE2 or AXL)
or coreceptor (heparin sulfate), serine protease TMPRSS2, etc., to
block virus invasion and some signal regulators of the human
immune system, as shown in Figure 4. At the same time, the
corresponding development strategies are mainly divided into
three categories: 1. Virtual screening: High-throughput screening
is carried out to identify possible lead compounds from existing
compound databases, such as ZINC, DrugBank, or ChemDiv, on
the basis of structural biology and homology modeling analysis
of protein structure. 2. Experimental high-throughput screening
(HTS): Identify small molecules in the active compound library,
including approved drugs, clinical trial candidates, and even
internal compound databases. 3. Reposition the application of
clinical and preclinical drugs (100, 101). That is the so-called
“new use of old medicine”. In addition, the computer-aided
design and fragment-based drug exploration are also
important strategies.

Under the guidance of these strategies, a variety of small
molecule inhibitors targeting different stages of the SARS-CoV-2
life cycle have been discovered. When trying to block SARS-
CoV-2 entry by targeting the S protein, the researchers found
that Arbidol, Bictegravir, Dolutegravir, and Tizoxanide all have
such a conformation that they can bind to the key sites of the S
protein with a very high binding energy (102). Arbidol mainly
binds to the S1 and S2 subunits of SARS-CoV-2 to promote tight
subunit binding, which not only prevents the S1 subunit from
falling off, but also impedes the membrane fusion function of the
S2 subunit, eventually preventing virus entry. In vitro
experiments showed that Arbidol has satisfactory activity
against SARS-CoV-2 with IC50 and 50% cytotoxic
concentration (CC50) values of 4.11 and 31.79 mmol/L,
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respectively, and the selectivity index (SI) was 7.73 (103).
Bictegravir and Dolutegravir combine between the RBD and
NTD of two adjacent S1 monomers, which can prevent SARS-
CoV-2 entry by restricting the interaction between the spike
RBD and ACE2 receptor (104). In addition, Tizoxanide not only
affects the stability of the S1 subunit through hydrogen bonds
and van der Waals forces to prevent the RBD in the metastable
conformation of the S1 subunit from binding to ACE2 but also
affects the membrane fusion of the S2 subunit and host cell (105).
Importantly, structural optimization of these molecules produces
9 new small molecules with better anti-SARS-CoV-2 activity,
which provides important references for the discovery,
development and optimization of small molecule inhibitors
targeting the S protein (102). According to the research
experience of SARS/MERS-CoV, the design of viral fusion
interference peptides based on the properties of heptad repeat
1 (HR1) and heptad repeat 2 (HR2) of the S2 subunit is also an
important strategy for the research of small molecule inhibitors
of SARS-CoV-2. A pancoronavirus fusion inhibitor peptide,
EK1, was designed to inhibit a variety of CoVs and inhibit
SARS-CoV-2 S protein-mediated membrane fusion and
pseudovirus infection in a dose-dependent manner.
Subsequently, its improved version, lipopeptide EK1C4 was
designed to have the same inhibitory effect at IC50 values of 1.3
and 15.8 nmol/L, and these two results were 241- and 149-fold
those of the former, respectively (106). In addition, another
lipopeptide, IPB02, designed based on the HR2 sequence also
showed a similar effect (107). Furthermore, SARS-CoV-2-HR2P,
a peptide directly based on the amino acid sequence of SARS-
CoV-2 HR2, showed a potent membrane fusion inhibition with
an IC50 of 0.18 mmol/L (106). Unlike SARS-CoV-2-HRP2,
which is designed on a single amino acid, [SARSHRC-PEG4]2-
chol, as a dimeric lipopeptide has better membrane fusion
inhibition and lower cytotoxicity against SARS-CoV-2 entry
(108). After that, one study designed a peptide SBP1 composed
of 23-mer peptides to prevent the virus from entering the host
cell by disrupting the combination of SARS-CoV-2-RBD and
ACE2 (109). To inhibit the combination of viral S protein and
ACE2, a study designed two types of peptide inhibitors, AHB1/2
and LCB1/3, by two de novo synthesis approaches around the
ACE2 helix structure and RBDmotif, which have a strong SARS-
CoV-2 neutralization effect with IC50 values of 35/15.5 nmol/L and
23.54/48.1 pmol/L, respectively (110). A study identified a
fibronectin-derived anticancer peptide ATN-161 from existing
peptides that can prevent the binding of the S protein to ACE2,
thereby reducing SARS-CoV-2 infection with an IC50 of 3.16
mmol/L (111). In light of this, the design of small molecule
inhibitors for the S protein should focus on the protein structure,
amino acid sequence and motif characteristics of the RBD, S1
and S2 subunits. When targeting the host cell ACE2 receptor, it
has recently been suggested that ACE2 inhibitors, such as
captopril and enalapril, may be effective for those who have
experienced SARS-CoV-2-induced pneumonia (112).
Nicotinamide analogs, such as nicotinamide riboside (NR) and
nicotinamide mononucleotide (NMN), are an important class of
natural vitamin derivatives. A relevant study found that it can
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effectively inhibit ACE2, so it is considered a potential inhibitor
for the treatment of COVID-19 (113). However, these are only
theoretical speculations and almost no basic or clinical research
verification. It is possible that such suggestions will gradually
fade out of people’s field of vision. At present, the development of
anti-SARS-CoV-2 drugs targeting ACE2 is mainly focused on
peptides, antibodies and other biochemical products, including
ACE2 antibody, ACE2-scFv, ACE2 nanobody, and ACE2-Fc
(114, 115). Although TMPRSS2 is the gateway for SARS-CoV-
2 host cells to enter, there have not been many breakthroughs in
the research of small molecule inhibitors against this target. The
known TMPRSS2 inhibitor camostat in a clinical trial against
COVID-19 shows excellent abilities to reduce the death risk and
hospital stay (87). Recently, a study demonstrated that the
camostat-like drug nafamostat mesylate can prevent the SARS-
CoV-2 membrane fusion caused by TMPRSS2 at a concentration
of its less than one tenth, suggesting that nafamostat mesylate
may be a promising inhibitor against SARS-CoV-2 infection by
targeting TMPRSS2 (116). Other studies identified a variety of
serine protease experimental inhibitors (DB03782, DB03213,
and DB04107) and potential molecules (Z126202570,
Z46489368, and Z422255982) through homology modeling
and molecular docking/dynamic simulation and embraced
binding free energy calculations that may effectively inhibit the
TMPRSS2, which all contain a positively charged warhead
similar to nafamostat and camostat (117). However, these
molecules need to be determined by in-depth mechanistic
research. A recent study discovered a covalent small molecule
ketobenzothiazole (kbt) serine protease inhibitor, MM3122,
whose structure is completely different from camostat and
nafamostat and is said to be effective (86). All these results
indicate that the study of small molecule inhibitors targeting
TMPRSS2 for SARS-CoV-2 will be a good choice. In addition to
the ACE2-mediated virus entry pathway, CD147-mediated viral
entry is likely to become the second pathway of SARS-CoV-2
invasion. Although still controversial, this does not affect the
research of drugs targeting CD147 in the prevention of SARS-
CoV-2 infection (90). At present, the drugs targeting CD147 are
mainly monoclonal antibodies, and research on small molecule
compounds is rarely involved, which will be a breakthrough in
future research. The latest research suggests that AXL is a
candidate receptor for SARS-CoV-2, which can promote the
infection of lung and bronchial epithelial cells (97). As a receptor
tyrosine kinase (RTK), there is currently no report on the use of
small molecule compounds targeting AXL for the treatment of
SARS-CoV-2 infection, but we can refer to the research of RTK
small molecule inhibitors in tumors to discover potential small
molecule inhibitors of AXL for preventing the entry of SARS-
CoV-2.

When considering inhibiting SARS-CoV-2 replication, the
study found a variety of promising small molecule inhibitors.
3CLpro (nsp5) is one of the most ideal targets for discovering
inhibitors of SARS-CoV-2. The study found that the amino
Cys145 residue in the catalytic pocket of 3CLpro is an effective
target for exploring small molecular covalent inhibitors of SARS-
CoV-2 and other coronaviruses (118). A fluorescence resonance
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energy transfer study found that the 8-aminoquinoline
antimalarial drug tafenoquine can induce the transformation of
3CLpro to expose the hydrophobic pocket and promote the protein
aggregation, ultimately reducing the activity of 3CLpro and
repressing SARS-CoV-2 RNA replication with an IC50 near 2.5
mmol/L, which is appropriately 1/4 that of hydroxychloroquine
(119). Although Lopinavir-Ritonavir (Kaletra) was initially used in
the treatment of SARS-CoV-2 because of its ability to block the
replication of SARS-CoV and MERS by inhibiting 3CLpro, the
latest research results do not support its use in the treatment of
COVID-19 (120). A study screened FDA-approved drug libraries
and found that the anticoagulant dipyridamole (DIP) may bind to
3CLpro to inhibit more than 50% of SARS-CoV-2 replication in
Vero E6 cells at 100 nmol/L. After 2 weeks of DIP treatment, 8
critically ill patients improved significantly (121). With the
continuous understanding of the structure of the 3CLpro protein,
more small molecule inhibitors have been discovered, and some of
them have been in clinical trials. Compounds 11a and 11b have
been screened and confirmed to have a strong inhibitory effect on
SARS-CoV-2 3CLpro, with IC50 values of 0.053 mmol/L and 0.040
mmol/L, respectively; EC50 values of 0.53 mmol/L and 0.72 mmol/L,
respectively; and have good pharmacokinetic properties (122). At
present, 11a (DC402234) has submitted a clinical application
registration declaration and has obtained FDA conditional
clinical trial approval (Phase I: NCT04766931). After screening,
the in vivo antiviral test results of the small molecule compounds
MI-09 and MI-30 showed that oral or intraperitoneal injection of
these compounds can significantly reduce the lung viral load and
lung pathological damage in a SARS-CoV-2-infected transgenic
mouse model (123). Although various research results and
different inhibitors of 3CLpro have been shown in front of
people one after another, the clinical entry is extremely limited;
only the four inhibitors (PF-07304814 [phase III: NCT04501978]
and PF-07321332 [phase III: NCT05047601] developed by Pfizer,
USA; the aforementioned 11a (DC402234 made by Frontiers,
China [phase I: NCT04766931]; and the code-named S-217622
produced by Shionogi Inc., Japan [phase II/III: jRCT2031210350)
are in clinical trial (124). PLpro (nsp3) has also received much
attention due to its important role in the replication and invasion
of SARS-CoV-2. Some noncovalent small molecule inhibitors
(rac3j, rac3k and rac5c) that have been effective against SARS-
CoV can target SARS-CoV-2 PLpro to prevent the self-processing
of nsp3 in cells, thus reducing viral-induced CPE at high
concentrations (33 mmol/L) (125). Based on the crystal structure
of SARS-CoV-2 PLpro, researchers obtained useful data from the
FDA-approved drug database and identified 147 potential
inhibitors of SARS-CoV-2 PLpro. In Vero E6 cells, dronedarone,
an ion channel modifier, has good antiviral activity against SARS-
CoV-2-induced CPE with an IC50 of 4.5 mmol/L (CC50 of 12.1
mmol/L) (126). The naphthalene-based inhibitor, GRL-0617, can
effectively inhibit the activity of SARS-CoV-2 PLpro with an IC50 of
2.2 mmol/L, and its mechanism is not limited to occupying the
substrate pocket but expands to seal the substrate binding entrance
cleft, thereby preventing the binding of the substrate (62). At
present, the crystal structure of PLpro has been completely resolved
(PDB code: 6W9C), and more small molecule compounds will be
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discovered as the crystal structure is fully analyzed. To date, no
small molecule inhibitors against PLpro have entered clinical
studies, which suggests that there is still a long way to go in the
development of PLpro-targeted small molecule inhibitors against
SARS-CoV-2. RdRP (nsp 12) has become an important target for
the development of anti-SARS-CoV-2 drugs because it participates
in the virus replication process as a key enzyme that catalyzes the
synthesis of the SARS-CoV-2 genome. A research group from
Shanghai, China, successfully analyzed the three-dimensional
structure of the RdRP-nsp7-nsp8 complex at near-atomic
resolution (with an overall resolution of 2.9 Å) using cryo-
electron microscopy, which lays a solid foundation for the
design of antiviral inhibitors based on the RdRP structure (127).
As research on SARS-CoV-2 RdRP continues, multiple potential
drugs have been discovered and confirmed. Remdesivir [GS-
5734], a nucleotide analog originally used to fight Ebola virus,
was first proposed for the treatment of COVID-19 patients
because it can be used as a substrate for the RdRP. In Vero E6
cells at a SARS-CoV-2 MOI of 0.05, remdesivir shows an ideal
potential to fight SARS-CoV-2 with IC50 = 0.77 mmol/L, CC50 >
100 mmol/L and SI > 129.87, which also quickly promotes the
quick access of RdRP small molecule inhibitors to global phase III
clinical trials and their direct use in some regions (128). However,
things are always dramatic. The latest clinical trial results
published by the WHO do not seem to be optimistic about this
small molecule inhibitor (129). As far as COVID-19 hospitalized
patients are concerned, it has little or no impact on indicators such
as overall mortality and duration of hospital stay. Regardless of the
outcome, the emergence of remdesivir has provided an important
reference and motivation for the research of small molecule
inhibitors targeting RdRP. A subsequent study screened a
century-old classic drug, suramin, and a variety of derivatives,
which exhibited a more than 20-fold ability to fight SARS-CoV-2
infection with remdesivir by targeting RdRP (66). Another small-
molecule inhibitor called favipiravir (T-705) targets RdRP to
mildly resist SARS-CoV-2 infection with an IC50 of 61.88 mmol/
L, CC50 > 400 mmol/L and SI > 6.46 (130). Several clinical trials
(ChiCTR2000029600/200030254, etc.) have shown that favipiravir
may accelerate virus clearance and alleviate the progression of
COVID-19, which lays a solid foundation for its clinical
application and provides a structural basis and strong evidence
for the development of broad-spectrum antiviral drugs based on
the strategy of “old drugs and new use”. A study reported that the
oral broad-spectrum ribonucleoside analog b-D-N4-
hydroxycytidine [EIDD-1931] showed good anti-SARS-CoV-2
activity in Vero cells with an IC50 of 0.3 mmol/L (131). In
addition, the oral EIDD-1931 prodrug molnupiravir (MK-4482,
EIDD-2801, Merck Sharp & Dohme Corp, USA), due to its ideal
anti-coronavirus effect, has ended phase III clinical trials
(NCT04575584, NCT04575597 and NCT04939428) ahead of
schedule and is expected to be launched in the United States
soon (131). The oral purine nucleotide prodrug AT-527 developed
by Roche is expected to have a good phase III clinical trial
(NCT04889040) result (132). These studies provide hopes and
directions for the development of small molecule inhibitors
targeting RdRP during SARS-CoV-2 infection. At present, there
April 2022 | Volume 13 | Article 834942

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhou et al. Targeted Anti-SARS-CoV-2 Therapy for COVID-19
are already several small molecule inhibitors that target helicases,
such as bananins, 5-hydroxychromone derivatives, and SSYA10-
001, which are expected to be used in SARS-CoV-2-related
experiments (133). In addition, authoritative studies suggest that
the classic old drug clofazimine has the ability to inhibit the
helicase activity of SARS-CoV-2, suggesting that it may play a role
in controlling the current COVID-19 pandemic and the
emergence of CoVs in the future (134). Although there has been
hope, the greatest challenge is the relatively low selectivity of small
molecule inhibitors targeting helicase, and there is no drug
targeting helicase that exceeds preclinical development.
However, the development of small molecule helicase inhibitors
may provide another effective treatment option for the COVID-
19 pandemic.

Studies are also concerned that several small molecule
inhibitors can fight SARS-CoV-2 via immunoregulatory and
inflammatory functions, and the specific details are introduced
in the “Significant Symptomatic Therapeutic Agents” section.

At present, the continuous rapid screening of small molecule
databases based on SARS-CoV-2 potential targets has found
some effective lead compounds or candidate drugs, which will
promote the continuation of basic research and clinical trials of
small molecule inhibitors for COVID-19 (Table 2). In addition,
computer-based drug design is icing on the cake for accelerating
the screening and development of small molecule inhibitors, but
it is conservatively estimated that new targeted interventions will
still take some time. Considering the current spread of the novel
coronavirus disease and the continuing case fatality rate, rapid
screening of FDA-approved and clinical trial drugs is a more
practical method because “old drugs and new use” may reduce
development costs and shorten development time (232). To date,
a large number of small molecule inhibitors against SARS-CoV-2
infection have been screened; however, many of these studies
have not been fully implemented (233). Meanwhile, the safety of
some confirmed promising anti-SARS-CoV-2 small molecule
inhibitors or drugs is also unknown, especially reproductive
toxicity, which imposes more difficulties on the clinical
translation of small molecule inhibitors. Therefore, adequate
research needs to be carried out to maximize safety and avoid
false positive effects. The mutation of the virus and the SARS-
CoV-2 epidemic have made the discovery of vaccines and drugs
more uncertain. In the long run, there is still much work to be
done in the screening, validation, clinical research and clinical
application of specific or broad-spectrum small molecule
inhibitors for SARS-CoV-2 virus entry, replication,
or prevention.

Vaccines
The main therapeutic strategies for infectious diseases include
controlling the source of infection, blocking the route of
transmission and protecting the susceptible. Among them,
vaccines, as an effective means to protect susceptible persons
and block transmission, have always been the main weapon for
humans to fight infectious diseases (234). Given that the current
effective treatments against the new coronavirus are not fully
recognized, the development of vaccines against SARS-CoV-2 is
particularly important. At present, a variety of vaccine platforms
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against SARS-CoV-2 are rapidly being established and
developed, including inactivated vaccines and live attenuated
vaccines and viral vector vaccines and nucleic acid vaccines
(DNA and mRNA) (Figure 5) (235). With the joint efforts of
scientists from all over the world, more than 322 candidate
vaccines have been developed, which are in the preclinical, Phase
I, Phase II through to Phase III efficacy studies and include Phase
IV registered as interventional studies (https://www.who.int/
publications/m/item/draft-landscape-of-covid-19-candidate-
vaccines) (Table 2). The rapid development of vaccine research
has brought dawn to the control of the epidemic, but there are
many shortcomings that need to be considered and improved.

Regarding inactivated vaccines, there are preliminary
statistics of 15 such vaccines that have entered different clinical
trials, including BBIBP-CorV, CoronaVac, WIBP vaccines, and
Covaxin, which have entered Phase III (236). CoronaVac
(Sinovac Biotech, China) can produce a wide range of
neutralizing antibodies against 10 different virus strains in a
variety of animals with a titer of over 90, and it has complete
protection against SARS-CoV-2 infection after three
immunizations (6 mg/dose) in macaques (151). Currently,
CoronaVac is undergoing Phase III clinical trials in Brazil, of
which 90,000 healthy participants are or will be registered.
Another inactivated vaccine, covaxin, developed by an Indian
Pharmaceutical company, has shown good safety and
effectiveness in phase 1/2 clinical trials. At present, Covaxin is
also undergoing phase III clinical trials, of which 26,000
volunteers participated (237). Other candidate inactivated
vaccines are being rapidly developed in China and have been
confirmed to have higher antibody titers and better safety in
phase 1/2 clinical trials. Just now, a Phase III clinical trial with
15,000 participants has been launched in the United Arab
Emirates (238). The development of inactivated vaccines gives
us confidence in the development of vaccines against SARS-
CoV-2. However, we must also recognize some of the
shortcomings of inactivated vaccines and improve them. For
example, the inoculation dose is large, the protection time is
short, the need for multiple vaccinations, and the formation of
antibody-dependent enhancement effects may aggravate
viral infections.

The development of live attenuated vaccines against SARS-
CoV-2 has been slow, mainly due to the limitations of the longer
transformation or screening time of attenuated strains, heavy
workload, and high biosafety protection standards. At present,
only one attenuated influenza virus vector vaccine developed by
China has entered a phase I clinical trial (ChiCTR2000037782),
and three live attenuated vaccines developed by India and
Turkey are undergoing preclinical evaluation (239). However,
we should also realize that live attenuated vaccines can retain the
complete structure of the virus and have good immunogenicity;
they can simulate the natural infection process to induce
humoral and cellular immunity and can produce long-lasting
protection; no adjuvant is required (240). If the transformation
time of attenuated strains can be optimized and biosafety is
ensured, live attenuated vaccines can be an alternative direction.

At present, approximately 20 SARS-CoV-2 vaccines are being
developed around the world that use the viral vector method.
April 2022 | Volume 13 | Article 834942
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TABLE 2 | List of drugs that may be effective in the preclinical and clinical phases for COVID-19.

Drug Name Drug Type Target Study Phase Test Effect Reference Doi

Arbidol Small molecule
compound

S1/S2 subunit of
Spike protein

Phase IV
(NCT04252885;
NCT04260594)

Prevents S1 subunit from falling off and membrane fusion
of S2 subunit, and SARS-CoV-2 entry

Wang et al. (103)

Bictegravir Small molecule
compound

S2 subunit of Spike
protein

Preclinical Prevents the SARS-CoV-2 entry by restricting the
interaction between Spike RBD and ACE2

Sun et al. (102)

Dolutegravir Small molecule
compound

S2 subunit of Spike
protein

Preclinical Prevents the SARS-CoV-2 entry by restricting the
interaction between Spike RBD and ACE2

Sun et al. (102)

Tizoxanide Small molecule
compound

S1/S2 subunit of
Spike protein

Preclinical Prevents the S1 subunit from binding to ACE2, and S2
subunit membrane fusion

Sun et al. (102)

EK1 Peptide Spike protein HR2 Preclinical Against Spike protein-mediated membrane fusion and
pseudovirus infection

Xia et al. (135)

EK1C4 Lipopeptide Spike protein HR2 Preclinical Against Spike protein-mediated membrane fusion and
pseudovirus infection

Xia et al. (106)

IPB02 Lipopeptide Spike protein HR2 Preclinical Against Spike protein-mediated celle-cell fusion and
pseudovirus infection

Zhu et al. (107)

SARS-CoV-2-
HR2P

Peptide Spike protein HR2 Preclinical Against Spike protein-mediated membrane fusion and
pseudovirus infection

Xia et al. (106)

[SARSHRC-
PEG4]2-chol

Dimeric lipopeptide Spike protein HR2 Preclinical Against Spike protein-mediated membrane fusion and
SARS-CoV-2 entry

de Vries et al.
(108)

SBP1 23-mer peptide
fragment

SARS-CoV-2-RBD Preclinical Block the interaction between Spike protein and ACE2,
and SARS-CoV-2 entry

Ucar et al. (109)

AHB1/3 Peptide SARS-CoV-2-RBD Preclinical Inhibit the SARS-CoV-2 attachment between Spike
protein and ACE2, and viral neutralization

Cao et al. (110)

LCB1/3 Peptide SARS-CoV-2-RBD Preclinical Inhibit the SARS-CoV-2 attachment between Spike
protein and ACE2, and viral neutralization

Cao et al. (110)

ATN-161 Integrin binding peptide Spike protein, ACE2 Preclinical Inhibit SARS-CoV-2 attachment through a5b1 integrin-
based mechanism

Beddingfield et al.
(111)

Captopril ACE inhibitor ACE2 Phase II
(NCT04355429)

Inhibit the interaction between Spike protein and ACE2,
and viral neutralization

Milne et al. (136)

Enalapril ACE inhibitor ACE2 Phase III
(NCT04591210)

Inhibit the interaction between Spike protein and ACE2,
and viral neutralization

Bauer, et al. (112)

Camostat
mesylate

Serine protease
inhibitor

TMPRSS2 Phase II
(NCT04455815)

Blocks the TMPRSS2 activity induced Spike protein
priming and SARS-CoV-2 entry

Hoffmann et al.
(137)

Nafamostat
mesylate

Serine protease
inhibitor

TMPRSS2 Phase II/III
(NCT04455815)

Blocks the TMPRSS2 activity induced Spike protein
priming and SARS-CoV-2 entry

Hempel et al. (138)

Z126202570;
Z46489368;
Z422255982

Serine protease
inhibitor

TMPRSS2 Preclinical Blocks the TMPRSS2 activity induced Spike protein
priming and SARS-CoV-2 entry

Alzain and
Elbadwi, et al.
(117)

MM3122 Serine protease
inhibitor

TMPRSS2 Preclinical Blocks the TMPRSS2 activity induced Spike protein
priming and SARS-CoV-2 entry

Mahoney et al.
(86)

Tafenoquine 8-aminoquinoline
antimalarial drug

3CLpro Preclinical Induces the transformation of 3CLpro conception, inhibits
the activity of 3CLpro and represses the SARS-CoV-2
RNA replication

Achutha et al.
(119)

Dipyridamole
(DIP)

Anticoagulant 3CLpro Preclinical Inhibits the activity of 3CLpro and represses the SARS-
CoV-2 RNA replication

Liu et al. (121)

Compound
11a

Pseudopeptide lead
compound

3CLpro Phase I
(NCT04766931)

Inhibits the activity of 3CLpro and represses the SARS-
CoV-2 RNA replication

Dai et al. (122)

Compound
11b

Pseudopeptide lead
compound

3CLpro Preclinical Inhibits the activity of 3CLpro and represses the SARS-
CoV-2 RNA replication

Dai et al. (122)

MI-09 Boceprevir or telaprevir
derivatives

3CLpro Preclinical Inhibits the activity of 3CLpro and represses the SARS-
CoV-2 RNA replication

Qiao et al. (123)

MI-30 Boceprevir or telaprevir
derivatives

3CLpro Preclinical Inhibits the activity of 3CLpro and represses the SARS-
CoV-2 RNA replication

Qiao et al. (123)

PF-07304814 Phosphate prodrug of
PF-00835231

3CLpro Phase I
(NCT04535167)

Inhibits the activity of 3CLpro and represses the SARS-
CoV-2 RNA replication

Yap et al. (139)

PF-07321332 Orally active
pseudopeptide 3CLpro

inhibitor

3CLpro Phase III
(NCT04960202)

Inhibits the activity of 3CLpro and represses the SARS-
CoV-2 RNA replication

Zhao et al. (140)

S-217622 Orally active reversible
covalent 3CLpro

inhibitor

3CLpro Phase II/III
(jRCT2031210350)

Inhibits the activity of 3CLpro and represses the SARS-
CoV-2 RNA replication

https://www.
shionogi.com/jp/
ja/news/2021/10/
211021_2.html
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TABLE 2 | Continued

Drug Name Drug Type Target Study Phase Test Effect Reference Doi

GRL-0617 Naphthalene-based
selective noncovalent
PLpro inhibitor

PLpro Preclinical Inhibits of PLpro to impair the SARS-CoV-2-induced
cytopathogenic effect, maintain the antiviral interferon
pathway and reduce viral replication

Pitsillou et al. (141)
Shin et al. (62)

Remdesivir Monophosphoramidate
prodrug of adenosine
analogue

RdRP Phase II/III
(NCT04431453)

Blocks the RdRP activity to block the SARS-CoV-2
replication and infection, thus reducing the time to
recovery in COVID-19 patients

Kokic et al. (142)

Suramin Non-nucleoside RdRP
inhibitor

RdRP Phase II
(ChiCTR2000030029)

Inhibits the RdRP activity to block the SARS-CoV-2
replication and infection

Yin et al. (143)

Favipiravir Nucleotide analogue RdRP Phase III
(NCT04558463)

Inhibits the RdRP activity to block the SARS-CoV-2
replication and infection

Naydenova et al.
(144)
Ninove et al. (145)

EIDD-1931 Ribonucleoside
analogue

RdRP Phase I/II
(NCT04746183)

Prevents the synthesis of RdRP and promotes the
mutation of SARS-CoV-2 RNA bases to kill the virus,
reduce the viral load and finally clear the infection

Miller et al. (146)
Jena et al. (147)

EIDD-2801
(molnupiravir)

Oral EIDD-1931
prodrug (ribonucleoside
analogue)

RdRP Phase II
(NCT04405570)

Anti-SARS-CoV-2 after being metabolized into EIDD-
1931 in the body

Wölfel et al. (148)
Sheahan et al.
(131)

AT-527 Double Prodrug of a
Guanosine Nucleotide
Analog

RdRP Phase III
(NCT04889040)

It selectively inhibits the RdRP activity to block the
SARS-CoV-2 replication and infection

Good et al. (132)

Bananins Drug-like compound Helicase Preclinical Blocks the virus replication and load by inhibiting the
helicase activity

Spratt et al. (133)

SSYA10-001 Drug-like compound Helicase (nsp13) Preclinical Blocks the virus replication and load by inhibiting the
helicase activity

Spratt et al. (133)

Clofazimine Anti-tuberculosis drug Helicase
Spike protein

Phase II
(NCT04465695)

Inhibits the spike-dependent entry, reduces viral load by
disrupting the helicase induced virus replication, and also
prevents cytokine storm associated with viral infection

Yuan et al. (134)

BBIBP-CorV Inactivated (Vero cells)
vaccine

Spike protein Phase III
(NCT04993560);
Approved for
emergency utilization
worldwide

Elicits high levels of neutralizing antibodies (anti-receptor-
binding domain (RBD) IgG, as well as anti-spike protein
(S) IgG and IgA antibodies) and T cell-mediated immune
responses

Wang (149)
Xia et al. (150)

CoronaVac Inactivated (Vero cells)
vaccine

S1 domain and RBD
of Spike protein

Phase III
(NCT05077176);
Approved for
emergency utilization
worldwide

Elicits the development of humoral immunity against
SARS-CoV-2, particularly Ig anti-RBD

Zhang et al. (151)
Vacharathit et al.
(152)

WIBP vaccine Inactivated (Vero cells)
vaccine

Spike protein Phase III
(NCT04510207)

Elicits high levels of neutralizing antibodies and T cell-
mediated immune responses

Al et al. (153)

BBV152
(Covaxin)

Whole-virion inactivated
(Vero cells) vaccine

Spike protein Phase III
(NCT04641481)

Induces high titres of specific IgG and neutralizing
antibodies and enhances cytokine and chemokine
responses

Ella et al. (154)
Ella et al. (155)

ChAdOx1
nCoV-19/
AZD1222

Non-replicating
adenovirus vectored
vaccine

Spike protein Phase III
(NCT05059106)

Induces high anti-spike neutralizing antibody titers, as
well as Fc-mediated functional antibody responses

Voysey et al. (156)
Ramasamy et al.
(157)

Ad26.COV2.S Non-replicating
adenovirus 26 vectored
vaccine

Spike protein Phase III
(NCT04505722)

Induces high titres and stable neutralizing antibodies and
enhances T-cell responses

Sadoff et al. (158)

Ad5-nCoV Non-replicating
adenovirus type 5
vectored vaccine

Spike protein Phase III
(NCT04540419);
Approved for
emergency utilization
in China

It generates S1 IgG antibodies to induce strong humoral
and cellular immune responses

Guzmán-Martıńez
et al. (159)
Wu et al. (160)

Gam-COVID-
Vac

Non-replicating
adenovirus 5 and 26
vectored vaccine

Spike protein Phase III
(NCT04642339)
Approved for
emergency utilization
in Russia

Induces high titres of specific IgG and neutralizing
antibodies and enhances T-cell responses

González et al.
(161)
Logunov et al.
(162)

GRAd-COV2 Non-replicating
defective Simian
adenovirus vectored
vaccine

Spike protein Phase II/III
(NCT04791423)

Elicits both functional antibodies that neutralize SARS-
CoV-2 infection and block Spike protein binding to the
ACE2 receptor, and a robust, T helper (Th)1 dominated
cellular response

Lanini et al. (163)
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Drug Name Drug Type Target Study Phase Test Effect Reference Doi

VXA-CoV2-1 Non-replicating
adenovirus Ad5
vectored vaccine

Spike protein Phase I
(NCT04563702)

Induces anti-spike IgG and neutralizing antibodies with
the sera demonstrating neutralizing activity

Johnson et al.
(164)

hAd5-S-
Fusion+N-
ETSD

Non-replicating
adenovirus Ad5
vectored vaccine

Spike protein
N protein

Phase I/II
(NCT04845191)

Induces neutralizing antibodies and Th1-prone N- and S-
specific T-cell responses, providing complete protection
of the nasal cavity and lungs against SARS-CoV-2
infection

Gabitzsch et al.
(165)

LV-SMENP-
DC

Minigenes engineered
based on multiple viral
genes, lentiviral
vectored (NHP/TYF)
modified dendritic cell
vaccine

Spike protein Phase I/II
(NCT04276896)

Induces neutralizing antibodies and T-cell responses Mahrosh et al.
(166)

Pathogen-
specific aAPC

Minigenes engineered
based on multiple viral
genes, lentiviral
vectored (NHP/TYF)
vaccine

Antigen presenting
cells

Phase I
(NCT04299724)

Induces neutralizing antibodies and T-cell responses Mahrosh et al.
(166)

DelNS1-
2019-nCoV-
RBD-OPT1

Replicating intranasal
based-RBD flu
vectored vaccine

Spike protein Phase II/III
(ChiCTR2100048316/
ChiCTR2100051391)

Simulates the natural infection pathway of respiratory
viruses to activate local and systemic T-cell immune
response to prevent the SARS-CoV-2 infection

Wang et al. (167)

VSV-DG-
SARS-CoV-2-
S/IIBR-100

Replicating viral VSV
vectored vaccine

Spike protein Phase II/III
(NCT04990466)

It develops spike-specific antibodies in antisera to
prevent the SARS-CoV-2 infection

Yahalom-Ronen
et al. (168)

TMV-083/V-
591

Attenuated measles-
vector based vaccine

Spike protein Phase I/II
(NCT04497298/
NCT04498247); Stop
R&D

Increases the geometric mean titers (GMTs) of anti-
SARS-CoV-2 Spike protein serum neutralizing antibody
to prevent the SARS-CoV-2 infection

Scarabel, Lucia,
et al. (169)

V590 Recombinant VSV-
vector based vaccine

Spike protein Phase I
(NCT04569786);
Stop R&D

Increases the geometric mean titers (GMTs) of anti-
SARS-CoV-2 Spike protein serum neutralizing antibody

Scarabel et al.
(169)

MVA-SARS-
2-S

Nonreplicating modified
vaccinia virus Ankara
vectored vaccine

Spike protein Phase I
(NCT04569383)

The robust expression of Spike protein as antigen to
produce S-specific CD8+ T cells and serum antibodies
binding to Spike protein that neutralized SARS-CoV-2.

Tscherne et al.
(170)

ZyCoV-D DNA vaccine Spike protein Phase I/II
(CTRI/2020/07/
02635);
Approved for clinical
use in India

It encodes and translate the SARS-CoV-2 Spike protein,
which stimulates the host to produce high titres of virus-
neutralizing antibodies and robust T cell immune
response, thereby completely blocking the virus entry
and subsequent infection

Momin et al. (171)
Dey et al. (172)

INO-4800 DNA vaccine Spike protein Phase III
(NCT04642638)

It induces antibodies to block SARS-CoV-2 Spike
protein binding to the host receptor ACE2 and produces
high titres of virus-neutralizing antibodies and robust cell
immune response, thereby completely blocking the virus
entry and subsequent infection

Tebas et al. (173)
Smith et al. (174)

BNT162b2 Nucleoside-modified
mRNA vaccine

Spike protein Phase III
(NCT04955626);
Approved for clinical
use

It mimics and encodes the SARS-CoV-2 spike protein,
which stimulates the host to produce high titres of virus-
neutralizing antibodies and robust T cell immune
response, thereby completely blocking the virus entry
and subsequent infection

Polack et al. (175)
Liu et al. (176)

mRNA-1273 Lipid nanoparticle-
encapsulated mRNA
vaccine

Spike protein Phase III
(NCT04860297)

It mimics and encodes the SARS-CoV-2 spike protein,
which stimulates the host to produce high titres of virus-
neutralizing antibodies and robust immune response,
thereby completely blocking the virus entry and
subsequent infection

Baden et al. (177)
Jackson et al.
(178)

CVnCoV Lipid nanoparticle-
encapsulated naturally
occurring nucleotides
mRNA vaccine

Spike protein Phase III
(NCT04860258)

It mimics and encodes the SARS-CoV-2 surface spike
protein, which stimulates the host to produce high titres
of virus-neutralizing antibodies and robust T-cell
responses, thereby completely blocking the virus entry
and subsequent infection

Alexandersen
et al. (179)
Rauch et al. (180)

ARCT-021 Self-replicating mRNA
and nanoparticle
delivery system vaccine

Spike protein Phase II
(NCT04728347)

It mimics and encodes the virus surface spike protein,
which stimulates the host to produce antibodies to activate
cell-mediated immunity, thereby completely blocking the
entry of SARS-CoV-2 and subsequent infection

Rappaport et al.
(181)
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LNP-
nCoVsaRNA

Self-amplifying mRNA
vaccine

Spike protein Phase I
(ISRCTN17072692)

It mimics the virus surface spike protein gene, triggers
the virus to produce spike protein, stimulates the host to
produce antibodies and completely blocks the entry of
SARS-CoV-2 and subsequent infection

Karpiński et al.
(182)

ARCoV Lipid nanoparticle
thermostable mRNA-
based Vaccine

Spike protein RBD Phase III
(NCT04847102)

It encodes the viral Spike protein RBD to elicit robust
neutralizing antibodies against SARS-CoV-2 as well as a
Th1-biased cellular response against the viral challenge

Zhang et al. (183)

hrsACE2 Human recombinant
soluble ACE2

ACE2 Preclinical It prevents the interaction between Spike protein and
ACE2, reduce early SARS-CoV-2 infections, and
effectively inhibit the viral proliferation in human vascular
organs and kidney organs

Monteil et al. (115)
Abd et al. (184)

LY-CoV555
LY3819253

S protein neutralizing
antibody

Spike protein Phase II/III
(NCT04427501)

It high-affinity binds to the Spike protein RBD to inhibit
the ACE2 binding and reduce the viral replication in the
upper and lower respiratory tract

Chen et al. (185)
Yang et al. (186)

BRII-196
BRII-198

S protein neutralizing
antibody

Spike protein Phase III
(NCT04501978)

It binds to different highly conserved epitope on the
Spike protein to block viral entry and neutralize live
SARS-CoV-2 infection

Yang et al. (186)

SCTA01
HB27

S protein neutralizing
antibody

Spike protein RBD Phase II/III
(NCT04644185)

It engages the Spike protein RBD to efficiently neutralize
SARS-CoV-2 pseudoviruses as well as authentic SARS-
CoV-2

Yang et al. (186)
Li et al. (187)

NVX-
CoV2373

Recombinant
nanoparticle spike
protein subunit vaccine

Spike protein Phase II
(NCT05112848)

It elicits high titer anti-S IgG that blocks hACE2 receptor
binding, neutralize virus infection and antigen-specific-
cells, and protects against SARS-CoV-2 challenge

Tian et al. (188)
Keech et al. (189)

RBD219-
N1C1

Recombinant protein
heterologous vaccine

Spike protein RBD Preclinical Stimulate SARS-CoV-2 to produce IgG neutralizing
antibodies and induce T-cell immunity

Chen et al. (190)
Lee et al. (191)

HR2P
polypeptide

Peptide-based
membrane fusion
inhibitor

Spike protein HR2
domain

Preclinical It can effectively inhibit SARS-CoV-2 replication and the
Spike protein-mediated cell-cell fusion for treating the
viral infection

Xia et al. (192)
Lu et al. (193)

Lianhua
Qingwen
Capsule

TCM multiple targets such
as Akt1, MAPK1, IL6,
HSP90AA1, TNF, and
CCL2, et al

Real World Study The main ingredients can inhibit multiple protein targets
such as Akt1, MAPK1, IL6, HSP90AA1, TNF, and CCL2,
et al, to reduce the inflammatory storm, tissue damage
and help eliminate virus infection

Xia et al. (194)
Yan et al. (195)

Qingfei Paidu
Decoction

TCM 3CLpro, and multiple
targets such as
CXCR4, ICAM1,
CXCL8, CXCL10, IL6,
IL2, CCL2, IL1B, IL4,
et al

Real World Study Multiple main ingredients can inhibit the 3CLpro mediated
SARS-CoV-2 replication, and invasion, and anti-
inflammatory and immune regulation, and repairing body
damage

Yang et al. (196)
Li et al. (197)

Huoxiang
Zhengqi
formula

TCM 3CLpro, PI3K/Akt Real World Study Multiple main ingredients can inhibit the 3CLpro mediated
SARS-CoV-2 replication and improve the PI3K/Akt
mediated inflammatory cytokine release and
inflammatory storm

Du et al. (198)

Xuebijing
injection

TCM 3CLpro, ACE2 Real World Study Multiple components combine with 3CLpro and ACE2 to
act on targets such as IL6, CCL2, TNF and PTGS2 to
reduce SARS-CoV-2 entry inflammation responses and
regulate the immune functions

Qin et al. (199)
Feng et al. (200)

Jinhua
Qinggan
Granules

TCM 3CLpro, ACE2 Real World Study Multiple components combine with 3CLpro and ACE2 to
act on targets such as PTGS2, HSP90AB1, HSP90AA1,
PTGS1, and NCOA2 to shorten the fever time, increase
the recovery rate of lymphocytes and white blood cells,
and improve related immunological indicators

Zhang et al. (201)
Liu et al. (202)

Tanreqing
Injection

TCM 3CLpro, CD3+ T cell Real World Study Multiple main ingredients can inhibit the 3CLpro mediated
SARS-CoV-2 replication and improve the CD3+ T-cell
level to enhance immune function

Zhang et al. (203)

Huashi Baidu
Decoction

TCM 3CLpro, ACE2 Real World Study Blocks the ACE2 receptor mediated SARS-CoV-2 host
cell entry and inhibits the 3CLpro-mediated viral
replication and infection

Tao et al. (204)
Cai et al. (205)

Shufeng
Jiedu
Capsule

TCM 3CLpro, NF-kB Real World Study Inhibits the NF-kB signaling pathway and 3CLpro to
reduce the SARS-CoV-2 load, cytokine storm,
inflammation and regulate immune response

Chen et al. (206)
Xia et al. (207)

Xuanfei Baidu
Decoction

TCM NF-kB signaling
pathway

Real World Study Inhibits the NF-kB mediated cytokine storm and blunts
the THP-1-derived macrophages pinocytosis

Li et al. (208)
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These vector vaccines are mainly divided into two categories:
nonreplicating vector vaccines based on adenovirus and
lentivirus and replicating vector vaccines based on measles,
influenza, etc. The most concerning adenovirus vectors include
ChAdOx1 nCoV-19/AZD1222 (Oxford University &
AstraZeneca, etc., UK; D8110C00001) (241) and Ad26.COV2.S
(Johnson & Johnson, USA; NCT04505722) (242), Ad5-nCoV
(Academy of Military Medical Sciences & CanSino Biologics Inc,
China; NCT04526990) (160) and Gam-COVID-Vac (Gamaleya,
Russia; NCT04656613) (162). In addition, the 2019-nCOV
candidate (Academy of Military Medical Sciences, China;
ChiCTR2000031781) and defective simian adenovirus vector
GRAd-COV2 (ReiThera, Italy; NCT04791423) are in phase II,
with two vaccines: VXA-CoV2-1 (Vaxart, USA; NCT04563702)
and hAd5-S-Fusion+N-ETSD (ImmunityBio, Inc., USA;
NCT04710303) are in phase I. Lentiviral vector-based vaccines
under development include LV-SMENP-DC currently in phase
I/II and pathogen-specific aAPC vaccine in phase I (Shenzhen
Geno-Immune Medical Institute, China; NCT04299724/
Frontiers in Immunology | www.frontiersin.org 17
NCT04276896). Phase II of the clinical trial was the intranasal
influenza virus vector DelNS1-2019-nCoV-RBD-OPT1 (Beijing
Wantai Biological Pharmacy, China; ChiCTR2000039715), and
phase I/II of the clinical trial was the replication VSV vector
rVSV-SARS-CoV-2-S/IIBR-100 vaccine (Israel Institute of
Biology, Israel; NCT04608305) and three replication virus
vector vaccines in Phase I: the intranasal influenza virus vector
the measles vector TMV-083/V-591 (Institut Pasteur & Themis
Bioscience, Austria; NCT04497298) and the VSV vector V590-
001 (MSD Corp., USA; NCT04569786) and modified Ankara
vector MVA-SARS-2-S (Universitätsklinikum Hamburg-
Eppendorf, Germany; NCT04569383). Relying on the
characteristics of few adverse reactions, good safety, and a
mature production system, this type of vaccine has been
developed rapidly. However, neutralizing antibodies of the
vector may exist in the body, which will cause the vector to be
attacked, thereby reducing the vaccine effect. Therefore,
improving the effectiveness will be an important direction for
the improvement of these vector vaccines.
TABLE 2 | Continued

Drug Name Drug Type Target Study Phase Test Effect Reference Doi

Reduning
injection

TCM Carbonic anhydrases
(CAs), matrix
metallopeptidases
(MMPs) and multiple
pathways like PI3K/
Akt, MAPK

Real World Study Inhibits the overexpression of MAPKs, PKC and p65 NF-
kB to reduce cytokine storm, inflammation and lung
damage

Cao et al. (209)
Xu et al. (210)
Jia et al. (211)

Shenmai
injection

TCM Bcl2, MAPK3 and IL-
6

Real World Study Immune regulation for COVID-19 Yang et al. (212)

Quercetin Plant flavonoid active
ingredients of TCM

Multiple enzymes
including 3CLpro,
PLpro, RDRP, Spike
protein and ACE2

Preclinical Inhibits multiple SARS-CoV-2 enzymes mediated viral
replication, attachment and entry and infection

Derosa et al. (213)
Pan et al. (214)
Saakre et al. (215)

Kaempferol The main flavonoid
polyphenols of
kaempferol galanga L

ACE2 and 3CLpro Preclinical Blocks the ACE2 receptor mediated SARS-CoV-2 cell
entry and inhibits the 3CLpro-mediated viral replication
and infection

Khan et al. (216)
Pan et al. (214)

Luteolin Main flavonoid in
honeysuckle

3CLpro and cytokine
storm

Preclinical Blocks 3CLpro-mediated SARS-CoV-2 replication and
infection, inhibits the cytokine storm caused by mast
cells secreting proinflammatory cytokines

Theoharides (217)
Shawan et al.
(218)

Isorhamnetin Flavonoid ingredient
in hippophae
rhamnoides

Spike protein and
3CLpro

Preclinical Inhibits the 3CLpro mediated SARS-CoV-2 replication
and Spike protein mediated viral attachment

Zhan et al. (219)
Tejera et al. (220)

Naringenin Active ingredients of
TCM

3CLpro, cytokine
storm and ACE2

Preclinical Inhibits the 3CLpro mediated SARS-CoV-2 replication,
cytokine production induced cytokine storm and ACE2
mediated viral entry

Clementi et al.
(221)
Maurya et al. (222)
D’Amore et al.
(223)

Wogonin Active ingredients of
TCM

3CLpro and Akt1 Preclinical Inhibits the 3CLpro mediated SARS-CoV-2 replication
and Akt1 induced infection, lung injury and lung
fibrogenesis

Xia, Lu, et al. (207)
Xia et al. (194)

Salvianolic
acid C

Active hydrophilic
compound of Danshen

Spike protein Preclinical Inhibits SARS-CoV-2 infection by blocking the formation
of six-helix bundle core of spike protein and the binding
of its RBD and ACE2

Yang et al. (224)
Wang et al. (225)
Hu et al. (226)

Baicalin Active components of
Scutellaria B.

3CLpro, RdRP and
PLpro

Preclinical Inhibits SARS-CoV-2 replication by interfering the 3CLpro,
RdRP and PLpro

Jo et al. (227)
Zandi et al. (228)
Rehman et al.
(229)

Baicalein Active components of
Scutellaria B.

3CLpro, RdRP, and
Mitochondrial

Preclinical Inhibits SARS-CoV-2 replication by interfering
mitochondrial oxidative phosphorylation, 3CLpro and
RdRP

Huang et al. (230)
Liu et al. (231)
Zandi et al. (228)
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The SARS-CoV-2 nucleic acid vaccine has quickly become the
focus of vaccine research and development due to its simple
development and operation, low production cost, short
development and production cycle, and rapid response (243). At
present, the research of such vaccines is divided into two major
directions, namely, DNA vaccines and mRNA vaccines. Currently,
there are 27 DNA vaccines under research in the world, 11 of
Frontiers in Immunology | www.frontiersin.org 18
which have entered the clinical trial stage, and this number will
slowly increase as the technology continues to mature. ZyCoV-D is
a new type of DNA vaccine candidatemainly composed of plasmid
DNA loaded with the viral spike gene and signal peptide coding
gene (171). The results of clinical trials (CTRI/2020/07/026352)
have verified a good safety profile and induced cellular and
humoral responses, which will support its further development
FIGURE 5 | The design and development model of SARS-CoV-2/COVID-19 vaccines. One of the most important intervention strategies for COVID-19 is vaccine
control. To date, six major types of vaccine candidates (live attenuated vaccines, recombinant protein/peptide vaccines, inactivated vaccines, viral vector vaccines,
nucleic acid vaccines and other types of vaccines) are under development, clinical trials, authorized emergency use, and routine preventive use. These six types of
candidate vaccines represent the direction of SARS-CoV-2 and even the entire coronavirus vaccine research.
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to prevent COVID-19-related infection and death in the global
population. Meanwhile, the emergency use of the ZyCoV-D
vaccine in India has brought more possibilities and hopes for the
development of DNA vaccines. INO-4800 is a DNA vaccine
expressing S protein particles developed by Inovio
Pharmaceuticals (174). Clinical trial (NCT04336410) data prove
that the INO-4800 vaccine maintains one or both cells and
humoral arms of the immune response for the emerging SARS-
CoV-2 variant, which may be the key factor affecting the ongoing
COVID-19 pandemic. Taking into account the advantages of
DNA vaccines, the results of phase I clinical trials of INO-4800
(NCT04447781) and the status of entering phase II/III clinical
trials (NCT04642638) once again brought great encouragement to
the development of DNA vaccines. Although we have seen great
hopes for DNA vaccines against the new coronavirus, we should
also clearly recognize that the challenge for DNA vaccines is that
they need to reach the nucleus all the way, which forces us to do
more research to improve and develop a delivery system to meet
the delivery efficiency of DNA vaccines (244). In addition to DNA
vaccines, the development of mRNA vaccines is also in full swing.
mRNA vaccines can express intracellular antigens similar to DNA
vaccines, but they solve the problem of low immunogenicity of
DNA vaccines and generate nonspecific immunity against the
vector and delivery efficiency, so they have received more attention
from researchers. Currently, two mRNA vaccines have been
approved for marketing, namely BNT162b2 developed by
BioNTech & Pfizer and mRNA-1273 produced by Moderna
(175, 177). The results of clinical trials (NCT04368728/
NCT04470427) show that the effectiveness, safety and
immunogenicity of the two mRNA vaccines meet the ideal
requirements. With further in-depth research on SARS-CoV-2,
moremRNA vaccines have entered clinical trials, such as CVnCoV
(CureVac AG; Phase II: NCT04515047), ARCT-021 (Arcturus
Therapeutics, Inc.; Phase I/II: NCT04480957), LNP-nCoVsaRNA
(Imperial College London; Phase I: ISRCTN17072692) and
ARCoV (Academy of Military Medical Sciences; Phase I:
ChiCTR2000034112), etc., and preclinical research (more than
19 candidate mRNA vaccines). Evidence from clinical trials thus
far shows that mRNA vaccines are very likely to become a new
platform that is fast, safe and efficient. However, to become a viable
clinical alternative to traditional vaccines, mRNA vaccines must
overcome two major problems related to the immunogenicity and
stability of mRNA vaccines (245).

In addition to the above vaccine development strategies,
recombinant protein and peptide vaccines such as human
recombinant soluble ACE2 (hrsACE2), recombinant S protein
nanoparticle vaccine (NVX-CoV2373), recombinant RBD
protein vaccine (RBD219-N1), HR2P polypeptide and EK1C4
vaccine, etc. It can effectively induce humoral and cellular
immunity to produce a wider cross-reaction, which is also an
important choice for the development of SARS-CoV-2 vaccines.
Each vaccine development strategy has many advantages, while
at the same time, there are more or fewer shortcomings (246).
The current main goal is to develop a safe and effective vaccine to
curb the pandemic of SARS-CoV-2. However, we should be
clearly aware that while avoiding the risks of existing vaccines,
the ultimate goal of vaccine development is to develop single or
Frontiers in Immunology | www.frontiersin.org 19
mixed general vaccines for different CoVs or to establish a
research and development and production platform. Only in
this way can we withstand the current and future virus damage.

Traditional Chinese Medicine
Traditional Chinese medicine (TCM) has played an important
role in the prevention and treatment of infectious diseases, and
its theories and methods have been traced in many classic
Chinese medical works (247). Meanwhile, these TCMs
achieved good results in fighting against SARS-CoV infection
in 2003. Moreover, in the 74187 confirmed cases of SARS-CoV-2
infection reported in China, the effective rate of receiving TCM
treatment was more than 90%, and its main effect was to
significantly improve and shorten the course of disease, delay
disease progression, and reduce mortality (248). At the same
time, traditional Chinese medicine has also been confirmed to
have a low incidence of adverse reactions and often self-healing
in the treatment of COVID-19 patients (249). Given that, TCM is
a valuable resource for combating the epidemic of SARS-CoV-2.

Among the abundant resources of TCM, some representative
drugs have shown good anti-SARS-CoV-2 activity in terms of
direct anti-virus, regulation of inflammatory immunity, and organ
protection, as shown in Figure 4. Analysis of cytopathic effects and
plaque reduction showed that the active ingredients of Lianhua
Qingwen capsule significantly inhibited the replication of SARS-
CoV-2 in a dose-dependent manner through Akt signaling (194).
In Vero E6 cells infected with 100 TCID50 SARS-CoV-2, the IC50

value was 411.2 mg/mL (250). In addition, Qingfei Paidu Decoction
has the effect of directly inhibiting the invasion and replication of
SARS-CoV-2 by acting on the host cell ACE2 and 3CLpro,
respectively (251). In addition, the ingredients of Huoxiang
Zhengqi capsule and Xuebijing injection are reported as potential
3CLpro inhibitors, which could inhibit SARS-CoV-2 replication by
targeting PIK3CG and E2F1 through the PI3K/Akt pathway.
Moreover, network pharmacology and molecular docking studies
found that the active ingredients of multiple TCMs, including
Jinhua Qinggan granules, Tanreqing injection and Huashi Baidu
Decoction, can all act on replicating enzymes or host cell receptor
proteins to inhibit the replication and invasion of SARS-CoV-2
(252). In addition to directly blocking the replication and invasion
of SARS-CoV-2, several active ingredients in Qingfei Baidu
Decoction, Xuanfei Baidu Decoction, Huashi Baidu Decoction,
Jinhua Qinggan Granules, Huoxiang Zhengqi Capsules, Lianhua
Qingwen Capsules, Shufeng Jiedu Capsules, Xuebi Jing injection,
Reduning injection, Tanreqing injection and Shenmai injection
have been proven to not only reduce inflammation and
inflammatory storms but also regulate cytokines and immune
dysfunction by regulating multiple signal pathway abnormalities
in patients, thus alleviating SARS-CoV-2-induced COVID-19
(253). In the process of studying the damage of SARS-CoV-2 to
organ function, clinical analysis found that Qingfei Paidu
Decoction, Jinhua Qinggan Granules, Lianhua Qingwen
Capsules, and Shufeng Jiedu Capsules may play a protective role
in organ damage through the effects of expectorant, anti-
inflammatory, antioxidant, and antifibrosis (248, 252).

The mechanisms of TCMs for anti-SARS-CoV-2 and organs
protection are quite complicated. On this basis, it will be a great
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deal for the TCM treatment of SARS-CoV-2 if the specific active
ingredients can be clarified. In this context, based on the TCM
system pharmacology database and analysis platform (TCMSP)
and literature, researchers have discovered that quercetin,
kaempferol, luteolin, isorhamnetin, baicalein, naringenin, and
wogonin (the latter three are in the same ranking) are the most
promising important ingredients for anti-SARS-CoV-2 by
comprehensive analysis using network pharmacology,
bioinformation analysis , molecular docking, animal
experiments, and clinical trials (252). In addition, as many as
401 compounds were found to have antiviral activity, and many
ingredients have shown good therapeutic effects in experiments.
A recent study found that salvianolic acid C, an active
hydrophilic compound of Danshen, can effectively inhibit
SARS-CoV-2 infection and block the formation of the S
protein 6-HB core, with an IC50 value of 3.41 mmol/L (224). In
a cell-based system, baicalin and baicalein, as the key active
components of Scutellaria B., show strong antiviral ability by
significantly inhibiting 3CLpro activity, with IC50 values of 10.27
and 1.69 mmol/L, respectively (254). The above findings suggest
that TCM resources are very abundant, and many ingredients or
compounds can be considered as lead compounds for the
development of anti-SARS-CoV-2 drugs (Table 2). Perhaps the
active ingredients of TCM can form a more promising small
molecule inhibitor library in the future. Therefore, we should pay
attention to and devote certain resources to screening,
discovering and developing promising TCM compounds and
extracts for the treatment of SARS-CoV-2.

We know that TCM prescriptions are produced in long-term
exploration and practice, and their compatibility, toxicity, safety
and other issues can be guaranteed. However, the
abovementioned problems exist when the active ingredients
and monomers of TCM are used (249, 255). We hope that
TCM can be more widely used in the treatment of COVID-19,
but at the same time, safety issues such as compatibility, toxicity,
and adverse reactions of active ingredients and monomers of
TCM should also be more studied and explored (256).

Significant Symptomatic
Therapeutic Strategy
During COVID-19, aggressive inflammation and dysfunctional
immune responses are the most basic, common and important
pathological features that trigger cytokine storms and mediate
multiple organ system damage (257). If not well controlled, the
situation will worsen and even lead to death. In severe cases, most
patients experience severe lung inflammation and thrombosis
(258). Therefore, anti-inflammatory and anticoagulant drugs have
been proposed and implemented, including the application of low
molecular weight heparin to hospitalized patients as one of the
standard symptomatic therapeutic strategies (Figure 4). In the
serum of most COVID-19 patients, the levels of proinflammatory
cytokines, including IL-1b, IL-2, IL-6, IL-8, IL-17, G/GM-CSF,
MCP1, CCL3 and TNF, are significantly elevated, which is
considered a cytokine storm (259). Among these cytokines, IL-6
has become a stable indicator of poor prognosis and has been used
in the neutralization treatment of several inflammatory diseases.
Therefore, targeting serum IL-6 levels to reduce inflammation
Frontiers in Immunology | www.frontiersin.org 20
may become an important symptomatic treatment strategy (260).
One clinical study (ChiCTR2000029765) showed that
tocilizumab, an IL-6 receptor-targeted monoclonal antibody,
could reduce the risk of severe SARS-CoV-2 infection in
patients with invasive mechanical ventilation or death (261). A
randomized double-blind phase III clinical trial (NCT04320615)
showed that tocilizumab (8 mg/kg, intravenous injection) can
significantly shorten the intensive care unit by 5.8 days (9.8 days
of standard care) and shorten the discharge time by 8 days (20
days of standard care) (262). Currently, tocilizumab has registered
more than 70 SARS-CoV-2-related clinical trials. CVL218 was
originally discovered through a data-driven drug reuse framework
that can effectively inhibit the replication of SARS-CoV-2 with an
EC50 of 5.12 mM. In-depth studies have shown that CVL218 (1
and 3 mM) treatment for 12 h can significantly reduce the
production of IL-6 by 50% and 73% in peripheral blood
mononuclear cells induced by CpG (microbial DNA sequence
containing unmethylated CpG dinucleotides), respectively. In
vivo studies have shown that CVL218 is mainly distributed in
lung tissues and has no obvious toxicity (263). The above results
suggest that CVL218 has a significant anti-inflammatory cytokine
effect on SARS-CoV-2-induced immunopathological symptoms.
Based on this, we think that targeted intervention of inflammatory
cytokines is an important SARS-CoV-2 treatment strategy that
can be studied in depth.

Multiple studies suggest that excessive inflammatory
production of proinflammatory cytokines such as IL-6 and TNF-
amay trigger ARDS, which will accelerate disease progression and
increase the risk of death in COVID-19 patients (264, 265).
Therefore, controlling the development of ARDS may also be a
feasible treatment strategy for COVID-19. At present, a number of
clinical studies (NCT04244591/NCT04327401/NCT04476992/
NCT04306393…) are using strategies such as glucocorticoids,
small molecule drugs, recombinant interferon and NO
inhalation to explore the effectiveness of intervening in ARDS to
affect COVID-19 (266, 267). Perhaps this strategy will provide
more evidence for the safety and efficacy of treating COVID-19.

Immunomodulators are an important class of substances that
affect the function of the immune system. Among them,
pegylated interferon-a, which is approved for the treatment of
hepatitis B/C viruses (HBV/HCV), can be used to stimulate the
innate antiviral response of patients infected with SARS-CoV-2
(ChiCTR2000029387) (268). A retrospective study showed that
pegylated interferon-a aerosol (5 million IU, bid) and arbidol
(600 mg/day) treatment can significantly reduce the upper
respiratory tract viral load and shorten the time for the
inflammatory response indicators (IL-6 and CRP) in blood to
return to normal with no obvious adverse reaction (269).
Meanwhile, some clinical trials evaluated the therapeutic effect
of glucocorticoids and found that they can significantly reduce
the cytokine storm and relieve the corresponding tissue damage,
which is beneficial to the treatment of severe COVID-19
(reduced 1/3 of mortality rate in patients using ventilators) and
may affect the clearance of the virus in mild patients (270). The
above results indicate that the use of immunomodulators to
affect immune function will be a symptomatic treatment strategy
for COVID-19 that can be considered. Although it is not given
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priority, the indications, dosage and course of treatment can be
strictly controlled in consideration of the patient’s situation to
ensure the maximum benefit of the patient.

The use of antibodies contained in the plasma of convalescent
patients to suppress viremia for passive immunotherapy is
considered to be a promising option for anti-SARS-CoV-2
infection. Currently, there have been clinical trials to test the
effectiveness of plasma in recovering patients, and a study showed
that the mortality rate of patients receiving convalescent plasma
therapy is significantly lower than that of patients not receiving
plasma therapy (271). In vitro experiments showed that antibodies
in the serum of SARS-CoV-2-infected patients can effectively
neutralize SARS-CoV-2. Moreover, clinical trials of administering
convalescent plasma to 5,000 COVID-19 hospitalized patients in
the early stages have also proven to be safe because the incidence of
serious adverse events is very low (272). Therefore, convalescent
plasma seems to be a good symptomatic treatment strategy in the
case of solving the problems of ionomer safety and whether it needs
a different storage method from ordinary plasma.

In addition, blood purification, NK-cell therapy, MSC
transplantation therapy and Treg cell therapy have also been
mentioned and are being studied. These therapies mainly
alleviate and eliminate the pathological symptoms of patients,
including inflammation, immune dysfunction, organ failure, etc.,
by adjusting immune function, removing inflammatory
cytokines from the body, and directly killing SARS-CoV-2
infections (186). Changes such as lymphopenia and increased
inflammatory cytokines in COVID-19 patients can induce
symptoms of inflammation, immune function, and organ
system dysfunction, which can be considered potential
biomarkers and intervention targets for disease progression
(273). Therefore, symptomatic treatments such as improving
lymphopenia, reducing inflammation, and regulating immunity
will become promising treatment strategies.
PERSPECTIVES AND CONCLUSIONS

The continuous outbreak of SARS-CoV-2 and the endless
emergence of new mutant strains once again emphasize the
urgency of continuing to explore, screen, and prevent COVID-19
globally. All this urgently requires precise target determination
and mechanism elucidation in order to develop specific or broad-
spectrum drugs for SARS-CoV-2 virus entry, replication,
pathological changes or prevention.

While exploring and determining the effective targets for
fighting against SARS-CoV-2, we should highly combine the
experience of the three CoV pandemics, clarify the SARS-CoV-2
genome and structural information, and lay the foundation for
screening targets; comprehensively consider the pathophysiological
characteristics and mechanisms of viral entry, replication,
assembly, infection and pathogenic processes to accurately
analyze the crystal structure of related enzymes and proteins,
and provide direct evidence for the target; and combine omics,
bioinformatics, computer virtual screening and artificial
intelligence and other technologies to explore, screen and
confirm targets with maximum efficiency.
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Furthermore, the development of vaccines and drugs needs to
be carried out at multiple levels. Specifically, considering the
lethality and disability of COVID-19, short-term research focuses
on “old drugs and new use”, rapid screening of FDA-approved
drugs and clinical trials, and cooperation with other medication
considerations to speed up the treatment of patients. After
multichannel experience accumulation, developing innovative
drugs targeted at different populations with good activity and
selectivity against viruses through virtual screening and computer
drug design, candidate drug preclinical research, and
corresponding protective measures are key to future prevention
and treatment. Moreover, it is necessary to minimize the
occurrence and impact of drug resistance to maintain the efficacy
of these innovative drugs; from a long-term perspective, broad-
spectrum anti-CoV drugs should be developed to provide sufficient
R&D experience and test platforms for possible future outbreaks.

Currently, there are only a few clinically approved drugs,
vaccines and corresponding therapeutic strategies for COVID-
19, and we cannot control the long-term consequences.
Therefore, through the existing vaccination prevention, contact
tracing, isolation of infected persons, and effective supportive
treatment of SARS-CoV-2-infected persons, the diagnosis of
symptomatic and asymptomatic persons and their close
contacts as soon as possible is still the key means to prevent
the further spread and control the disease. Furthermore, we
should also realize that focusing on international cooperation
and sharing anti-epidemic experiences will provide new impetus
for the dissemination and confirmation of treatment strategies.
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