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Liver X Receptors (LXR) control cholesterol metabolism and exert anti-inflammatory actions
but their contribution to humanmacrophage polarization remains unclear. The LXR pathway is
enriched in pro-inflammatory macrophages from rheumatoid arthritis as well as in tumors-
associated macrophages from human tumors. We now report that LXR activation inhibits the
anti-inflammatory gene and functional profile of M-CSF-dependent human macrophages,
and prompts the acquisition of a pro-inflammatory gene signature, with both effects being
blocked by an LXR inverse agonist. Mechanistically, the LXR-stimulated macrophage
polarization shift correlates with diminished expression of MAFB and MAF, which govern
the macrophage anti-inflammatory profile, and with enhanced release of activin A. Indeed,
LXR activation impaired macrophage polarization in response to tumor-derived ascitic fluids,
as well as the expression of MAF- andMAFB-dependent genes. Our results demonstrate that
LXR activation limits the anti-inflammatory human macrophage polarization and prompts the
acquisition of an inflammatory transcriptional and functional profile.

Keywords: innate immunity, macrophage, macrophage polarization, LXR, inflammation
INTRODUCTION

Macrophages defend the organism against endogenous danger signals and exogenous threats, and
initiate and resolve inflammatory responses. To perform these tasks, macrophages can display a
huge spectrum of activation (“polarization”) states, whose acquisition depends on their
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developmental origin, tissue location, and prevailing
extracellular cues (1–3). During inflammation, macrophages
exert pro-inflammatory and resolving effector functions, whose
fine-tuning and sequential occurrence are crucial for tissue injury
repair and return to homeostasis. M-CSF and GM-CSF have
opposite instructing effects on macrophages during
inflammatory responses (4, 5). M-CSF is indispensable for
t i ssue-res ident and monocyte-der ived macrophage
differentiation (6–9), and primes macrophages (M-MØ) for
acquisition of an anti-inflammatory and immunosuppressive
profile (IL10high TNFlow IL23low IL6low) (5, 10–19). By contrast,
GM-CSF is produced at sites of inflammation (6, 7), and primes
macrophages (GM-MØ) for robust antigen-presenting, T cell-
stimulatory and pro-inflammatory activity (IL10low TNFhigh

IL23high IL6high). Thus, M-MØ resemble tissue-resident
‘trophic’ macrophages, whereas GM-MØ represent pro-
inflammatory monocyte-derived macrophages. In line with
their effector functions, M-MØ and GM-MØ exhibit distinct
transcriptional profiles (10, 13, 20–22) that resemble those of
human resident and inflammatory macrophages in vivo (20, 23–
25), and differ in their responsiveness to the immunosuppressant
drug methotrexate (MTX) (26, 27).

LXRa and LXRb (coded for by NR1H3 and NR1H2,
respectively) are ligand-activated transcription factors that
regulate gene expression (positively and negatively) in a ligand-
dependent manner, and that actively control macrophage
differentiation and specialization (28–30). LXR activity is
crucially involved in cellular cholesterol metabolism in most
tissues. Upon binding of ligand (endogenous cholesterol
derivatives, or synthetic agonists like T0901317 and GW3965),
LXR positively control the expression of genes that collectively
inhibit uptake and promote cholesterol efflux, thus contributing
to prevent cellular lipid overload (31–33). LXR ligands also
control inflammation in macrophages by antagonizing the
induction of inflammation-related genes after activation (29,
34) and potentiating apoptotic cell clearance. These results
have led to recognition of LXR as anti-atherogenic and anti-
inflammatory factors (35, 36). However, LXR activation
exacerbates inflammatory responses in human monocytes,
dendritic cells and in a mouse arthritis model (37–40), and
agonist-induced LXR activation elicits anti-tumor activity
through immune-mediated mechanisms (41), specifically
reducing the abundance of immunosuppressive Myeloid-
Derived Suppressor Cells (MDSC) and enhancing anti-tumor
cytotoxic T lymphocytes (CTLs) activation (41).

Of note, several LXR target genes have been observed within
the most enriched pathway in tumor-associated macrophages
from colorectal liver metastasis (42), whose presence correlates
with a worse prognosis (large TAM) (42, 43). In addition, the
LXR pathway is also upregulated in pro-inflammatory
macrophages from rheumatoid arthritis (RA) synovial fluid,
where LXR activity potentiates cytokine release (44). This
apparently discrepancy illustrates the ambiguous contribution
of LXR to inflammatory and immune responses, and raises the
question of the role of LXR in human macrophage polarization
(37, 45). To address this issue, we have now determined the range
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of LXR target genes in M-MØ (13, 20) and in macrophages
generated under the influence of tumor-derived ascitic fluid
(TAF-MØ), and assessed the contribution of LXR to the
functional capabilities of M-MØ through the use of the
established synthetic LXR agonist GW3965 and the inverse
agonist GSK2033. We report that LXR activation impairs the
acquisition of the transcriptional and functional properties of
anti-inflammatory M-MØ and TAF-MØ, and inhibits the
expression of the transcription factors (MAF, MAFB) that
shape the gene and funct ional profi l e of M-CSF-
dependent macrophages.
MATERIALS AND METHODS

Generation of Human Monocyte-Derived
Macrophages In Vitro and Treatments
Human Peripheral Blood Mononuclear Cells (PBMCs) were
isolated from buffy coats from anonymous healthy donors
(provided by the Centro de Transfusiones de la Comunidad de
Madrid) over a Lymphoprep (Nycomed Pharma) gradient
according to standard procedures. Monocytes were purified from
PBMC by magnetic cell sorting using anti-CD14 microbeads
(Miltenyi Biotec). Monocytes (>95% CD14+ cells) were cultured
at 0.5 x 106 cells/ml in Roswell Park Memorial Institute (RPMI
1640, Gibco) medium supplemented with 10% fetal bovine serum
(FBS, Biowest) for 7 days in the presence of 1000 U/ml GM-CSF or
10 ng/ml M-CSF (ImmunoTools) to generate GM-CSF-polarized
macrophages (GM-MØ) or M-CSF-polarized macrophages (M-
MØ), respectively (46). Cytokines were added every two days and
cells were maintained at 37°C in a humidified atmosphere with
5% CO2 and 21% O2. Where indicated, macrophages were
treated at different time points with one dose of LXR agonist
GW3965 (31) (1 mM, Tocris), LXR inverse agonist GSK2033 (32)
(1 mM, Tocris) or both, using dimethyl sulfoxide (DMSO) as
vehicle. In the dual condition, the inverse agonist was added 1-
hour prior to agonist treatment. In some experiments, cells were
exposed to the GSK3b inhibitor CHIR99021 (2 mM) or DMSO as
control. When indicated, Ascitic Fluid from cancer patients
(Tumor-derived Ascitic Fluid, TAF) was added to monocytes
(0.5:1 in culture medium), and cultures were maintained for 72 h.
Ascitic fluids from four metastatic tumors (ovary cancer with
peritoneal metastasis, renal carcinoma, and two from gastric
carcinoma patients) were kindly provided by Dr. Ma Isabel
Palomero (Oncology Department, Hospital General
Universitario Gregorio Marañón) after patients had provided
informed consent (Approval was obtained from the ethics
committee of Hospital General Universitario Gregorio
Marañón, and the procedures used in this study adhere to the
tenets of the Declaration of Helsinki). Samples were centrifuged
(4000g, 15 min) to remove cells and particulate material, sterile-
filtered, aliquoted, and stored at -80°C until use. The patients
provided informed consent and the Hospital General
Universitario Gregorio Marañón ethics committee approved
the study. For macrophage activation, cells were treated with
February 2022 | Volume 13 | Article 835478
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10 ng/ml E. coli 055:B5 lipopolysaccharide (Ultrapure LPS,
Sigma-Aldrich). Human cytokine production was measured in
macrophage supernatants using commercial ELISA [(TNF-a
(BD Biosciences), IL-10, Activin A, CCL19, IL1b, IFNb (R&D
Systems)] according to the procedures supplied by
the manufacturers.
Quantitative Real-Time RT-PCR
(qRT-PCR)
Total RNA was extracted using the total RNA and protein
isolation kit (Macherey-Nagel). RNA samples were reverse-
transcribed with High-Capacity cDNA Reverse Transcription
reagents kit (Applied Biosystems) according to the
manufacturer’s protocol. Real-time quantitative PCR was
performed with LightCycler® 480 Probes Master (Roche Life
Sciences) and Taqman probes on a standard plate in a Light
Cycler® 480 instrument (Roche Diagnostics). Gene-specific
oligonucleotides (Supplementary Table 1) were designed using
the Universal ProbeLibrary software (Roche Life Sciences).
Results were normalized to the expression level of the
endogenous references genes TBP, HPRT1 or GAPDH and
quantified using the DDCT (cycle threshold) method.
Western Blot
M-MØ and GM-MØ cell lysates were subjected to SDS-PAGE
(30-50 mg unless indicated otherwise) and transferred onto an
Immobilon-P polyvinylidene difluoride membrane (PVDF;
Millipore). After blocking the unoccupied sites with 5% non-fat
milk diluted in Tris-Buffered Saline plus Tween 20 (TBS-T),
protein detection was carried out with antibodies against LXRa
(PPZ0412; Biotechne), LXRb (PPK8917; Biotechne), MAFB
(HPA005653, Sigma Aldrich) or c-MAF (sc-7866; Santa Cruz
Biotechnology). Protein loading was normalized using an
antibody against GAPDH (sc-32233; Santa Cruz Biotechnology)
or vinculin (V9131; Sigma-Aldrich). Quimioluminiscence was
detected in a Chemidoc Imaging system (BioRad) using
SuperSignal™ West Femto (ThermoFisher Scientific).
RNA-Sequencing and Data Analysis
RNA was isolated from M-MØ generated from monocytes
exposed to a single dose of DMSO, GW3965, GSK2033 or both
at the beginning of the 7-day differentiation process.
Alternatively, RNA was isolated from CD14+ monocytes
treated with DMSO (vehicle) or 1 mM GW3965 for 1 hour,
and then cultured for 3 days in RPMI 1640 with 10% FBS
supplemented with 50% Tumor-derived Ascitic Fluid (TAF).
Sequencing was done on a BGISEQ-500 platform (https://www.
bgitechsolutions.com). RNAseq data were deposited in the Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under
accession GSE156783 and GSE181313. On average, 88.04 M
reads per sample were generated and clean reads were mapped to
the reference (UCSC Genome assembly hg38) using Bowtie2
(average mapping ratio to reference genome, 91.82%) (47). Gene
expression levels were calculated by using the RSEM software
Frontiers in Immunology | www.frontiersin.org 3
package (48), and differential gene expression was assessed by
using the R-package DESeq2 algorithms using the parameters
Fold Change>2 and adjusted p value <0.05. Plots generated with
the ggplot2 package, and heatmaps and clustering were done
using the Genesis software (http://genome.tugraz.at/
genesisclient/) (49). Differentially expressed genes were
analyzed for annotated gene sets enrichment using ENRICHR
(http://amp.pharm.mssm.edu/Enrichr/) (50, 51), and
enrichment terms considered significant with a Benjamini-
Hochberg-adjusted p value <0.05. For gene set enrichment
analysis (GSEA) (http://software.broadinstitute.org/gsea/index.
jsp) (52), gene sets available at the website, as well as gene sets
generated from publicly available transcriptional studies (https://
www.ncbi.nlm.nih.gov/gds), were used.
Statistical Analysis
For comparison of means, and unless otherwise indicated,
statistical significance of the generated data was evaluated
using the paired Student t test in GraphPad Prism 8. In all
cases, p<0.05 was considered as statistically significant.
RESULTS

Differential Expression of LXRa and LXR-
Regulated Genes in Pro-Inflammatory GM-
MØ and Anti-Inflammatory M-MØ
We have previously defined gene sets whose expression not only
marks human monocyte-derived GM-MØ (“Pro-inflammatory
gene set”) and M-MØ (“Anti-inflammatory gene set”) (13, 20)
(GSE68061) (Figure 1A), but discriminates the gene profiles of
pro-inflammatory and immunosuppressive macrophages in vivo
(24). In fact, the transcriptome of M-MØ shows a very strong
enrichment of genes preferentially expressed by large tumor-
associated macrophages (large TAM) (Figure 1B), whose
presence associates with a lower disease-free survival rate in
colorectal liver metastasis (42), while the transcriptome of GM-
MØ resembles the specific gene profile of “small TAM” (42) and
rheumatoid arthritis synovial fluid macrophages (RASF-MØ)
(53) (Figure 1B). Remarkably, the LXR pathway has been
reported to be highly upregulated in large TAM from
colorectal liver metastasis (42) but also in pro-inflammatory
RASF-MØ (44), thus raising the question of the role of LXR on
human macrophage polarization. To clarify this apparent
discrepancy, we sought to determine the role of LXR in the
generation of monocyte derived macrophages under the
influence of either GM-CSF (pro-inflammatory GM-MØ) or
M-CSF (anti-inflammatory M-MØ). Initial experiments on a
large number of independent samples revealed a higher
expression of LXRa (encoded by NR1H3) in GM-MØ, and a
higher level of NR1H2-encoded LXRb in M-MØ (Figure 1C).
Besides, RNA-seq (GSE188278) (Figure 1D), and the expression
of desmosterol-upregulated genes in GM-MØ or M-MØ (54)
(Figure 1E), showed that the expression of LXR targets is
February 2022 | Volume 13 | Article 835478
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strongly regulated during monocyte differentiation into either
GM-MØ or M-MØ (Figure 1D), with significantly higher
expression of ABCG1, LPL and APOE in GM-MØ, and greater
expression of ABCA1 and ARL4C in anti-inflammatory M-MØ
(Figures 1D, E).
LXR Activation Shifts the M-CSF-
Dependent Differentiation of M-MØ
Towards the Pro-Inflammatory Side
To directly address the involvement of LXR dependency in the
acquisition of the M-MØ transcriptome, monocytes were
exposed to a single dose of either the LXR agonist GW3965,
the LXR inverse agonist GSK2033 or both, at the beginning of the
differentiation process with M-CSF (Figure 2A). RNAseq on the
resulting macrophages (GW-M-MØ, GSK-M-MØ and GW/
GSK-M-MØ) showed that GW3965, and to a lower extent
GSK2033, notably altered the acquisition of the transcriptome
of M-MØ (Figure 2B). GSEA revealed that the most
unambiguous effect was observed in GW-M-MØ, whose
transcriptome indicated a strong under-representation of the
Frontiers in Immunology | www.frontiersin.org 4
M-MØ-specific “Anti-inflammatory gene set” and a very
positive enrichment of the “Pro-inflammatory gene set”
(Figure 2C). Moreover, comparison of the differentially
expressed genes between GW-M-MØ and CNT M-MØ
identified a significant number of genes of the “Anti-
inflammatory gene set” (with reduced expression in GW-M-
MØ, clusters 3 and 4) and the “Pro-inflammatory gene set” (with
enhanced expression in GW-M-MØ) (Figures 2D, E). Indeed,
analysis of a validation set of samples confirmed that
differentiation in the presence of GW3965 impairs the
expression of genes associated to the anti-inflammatory
activities of M-MØ (IGF1, FOLR2, CD163L1, CCL2) and
augments the expression of paradigmatic genes of the “Pro-
inflammatory gene set” (INHBA, PPARG1) (13, 20, 55, 56)
(Figure 2F). Conversely, the opposite effects were seen in the
case of GSK-M-MØ gene profile (Figures 2C–F). Since
expression of LXR target genes (e.g., ABCA1) (54) confirmed
the strong efficacy of GW3965 and GSK2033 in our system
(Figures 2D, F), these results indicate that LXR activation in
monocytes impairs the acquisition of the anti-inflammatory
transcriptional profile during the generation of monocyte-
A CB

D E

FIGURE 1 | Differential expression of LXR and LXR-regulated genes in GM-MØ and M-MØ. (A) Schematic representation of the in vitro generation of pro-inflammatory
(GM-MØ) and anti-inflammatory (M-MØ) macrophages from peripheral blood human monocytes. (B) GSEA of the gene sets that define large TAM and small TAM from
colorectal liver metastasis (42) on the ranked comparison of the M-MØ and GM-MØ transcriptomes. Normalized Enrichment Score (NES) and False Discovery rate q
value (FDRq) are indicated. (C) (Left panel) Protein levels of LXRa and LXRb in four independent samples (1-4) of GM-MØ and M-MØ, as determined by Western blot,
and using vinculin and GAPDH as protein loading controls. (Right panel) LXRa and LXRb expression in GM-MØ and M-MØ. Mean ± d SEM of 16 independent
samples are shown (*p < 0.05; **p < 0.01). (D) Relative expression of NR1H3, NR1H2 and the indicated LXR-dependent genes in monocytes, GM-MØ and M-MØ, as
determined by RNA-Seq (GSE188278) on 3 independent samples (*, adjp<0.05; **, adjp<10-5; ***, adjp<10-10). (E) Heatmap of the expression of desmosterol-
upregulated genes in the gene expression profile of GM-MØ and M-MØ (GSE68061).
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derived macrophages in response to M-CSF, and shifts the M-
CSF-dependent differentiation of M-MØ towards the pro-
inflammatory side. Interestingly, gene ontology analysis
(Enrichr) of the 313 genes downregulated in GW-M-MØ
showed a strong enrichment in MAF- and MAFB-dependent
genes, as well as a highly significant enrichment of the genes that
define the profile of “large TAM” from colorectal liver metastasis
(42) (GSE131353, Figure 2G), thus lending further relevance to
the monocyte-conditioning ability of LXR modulators.

The functional significance of the transcriptional changes
observed in GW-M-MØ and GSK-M-MØ was next weighed by
comparing their respective cytokine profile in resting conditions
and after activation with LPS. Compared to CNT M-MØ,
GW-M-MØ produced lower levels of the anti-inflammatory
cytokine IL-10 and higher levels of the immuno-stimulatory
CCL19 chemokine (Figure 3A). Besides, and compared to GW-
M-MØ, IL-1b production was significantly lower in GSK-M-MØ
and GW/GSK-M-MØ (Figure 3A). This pro-inflammatory
trend was confirmed after LPS stimulation, as GW-M-MØ
secreted higher levels of TNF and IL-1b than CNT M-MØ
(Figure 3B). Moreover, although LPS-treated GW-M-MØ also
secreted higher levels of IL-10, the TNF/IL-10 ratio was
considerably higher in GW-M-MØ than in CNT M-MØ
Frontiers in Immunology | www.frontiersin.org 5
(Figure 3C). Thus, since the pro-inflammatory effects of
GW3965 treatment were impaired or abolished by GSK2033
(GSK-M-MØ and GW/GSK-M-MØ) (Figures 3A–C), these
results confirm that modulation of LXR activity impacts the
inflammatory activity of M-MØ, and that LXR activation
prompts monocytes towards the generation of monocyte-
derived macrophages with a higher pro-inflammatory
transcriptional and cytokine profile.
The Modulatory Action of LXR Activation
Varies Along Monocyte-to-M-MØ
Differentiation and Also Affects the
Expression of Genes Specifically
Associated to M-CSF-Driven
Differentiation
Since LXR synthetic ligands cause a chronic and long-lasting
modulation of LXR activity, we next assessed their effects at
different time points in the monocyte-to-M-MØ differentiation
process. To that end, LXR modulators (GW3965, GSK2033, or
both) were added at day 0, day 2 or day 5 along M-MØ
differentiation (Figure 4A), and the expression of the M-MØ-
A C DB

E

F

G

FIGURE 2 | Identification of LXR-regulated genes in anti-inflammatory M-MØ. (A) In vitro generation of control M-MØ, GW-M-MØ, GSK-M-MØ and GW/GSK-M-MØ
before RNA isolation and RNA-sequencing. Control M-MØ were exposed to DMSO in parallel. (B) Number of differentially expressed genes (|log2FC|>1, adjp<0.05),
relative to control M-MØ. (C) Summary of GSEA of the “Pro-inflammatory gene set” and “Anti-inflammatory gene set” on the ranked comparisons of the indicated
transcriptomes. The color of the circles illustrates the type of enrichment of each comparison (positive, red; negative, blue). The area of each circle is proportional to
the Normalized Enrichment Scores of each comparison, which is also indicated. (D) Unsupervised clustering of differentially expressed genes (|log2FC|>1) between
control M-MØ and the transcriptomes of GW-M-MØ, GSK-M-MØ and GW/GSK-M-MØ. For each gene, mRNA expression level in the three donors are represented
after normalizing gene expression and k-means clustering using Genesis (http://genome.tugraz.at/genesisclient/). The identification of “Pro-inflammatory gene set”,
“Anti-inflammatory gene set” and desmosterol-upregulated genes in each cluster is indicated. (E) Comparison of the “Pro-inflammatory gene set” and “Anti-
inflammatory gene set” with the genes significantly regulated after M-MØ differentiation in the presence of GSK2033 (left panel) or GW3965 (right panel). (F) Relative
mRNA expression of the indicated genes from the “Anti-inflammatory” and “Pro-inflammatory” gene sets in GW-M-MØ, GSK-M-MØ and GW/GSK-M-MØ. ABCA1
expression was evaluated as a readout for LXR activation (*p < 0.05; **p < 0.01; ***p < 0.001). (G) Gene ontology analysis of the genes of the “Anti-inflammatory
gene set” that are significantly (adjp<0.05) downregulated in GW-M-MØ using Enrichr and the indicated databases.
February 2022 | Volume 13 | Article 835478

http://genome.tugraz.at/genesisclient/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


González de la Aleja et al. LXR Promotes Pro-Inflammatory Macrophage Signature
specific “Anti-inflammatory gene set” was determined. As shown
in Figure 4B, the highest inhibitory effect of GW3965 on the
expression of the “Anti-inflammatory gene set” (e.g., IGF1,
FOLR2, CD163L1, CCL2) was found at the beginning of the
differentiation process, and was not significant when added at
later time points. By contrast, although the inverse agonist
GSK2033 had minor effects, it completely prevented the effect
of the agonist at all assayed time points (Figure 4B, GW/GSK-
M-MØ). These results imply that the involvement of LXR on
the M-CSF-dependent acquisition of the transcriptional profile
of M-MØ decreases along M-MØ differentiation, being maximal
at the start of the monocyte-to-M-MØ differentiation process.

As we have previously identified the genes whose expression
is modulated along monocyte-to- M-MØ differentiation
(GSE188278) (Figure 4C), we next checked whether
modulation of LXR activity also affected their expression. As
shown in Figure 4D, 15% of the genes upregulated in the
transcriptome of GW-M-MØ (61 out of 402) were specifically
downregulated along monocyte-to- M-MØ differentiation.
Conversely, 25% of the genes downregulated in the GW-M-
MØ transcriptome (77 out of 313) corresponded to genes
specifical ly upregulated along monocyte-to- M-MØ
differentiation (Figure 4D). In fact, and in agreement with the
analysis of M-MØ-specific genes (Figure 2), a very significant
percentage of the differentiation-associated genes with reduced
expression in GW-M-MØ were MAFB/MAF-dependent, IL-10-
regulated, and preferentially found in “large TAM” from
colorectal liver metastasis (42) (Figure 4D), again emphasizing
that LXR activation results in impaired expression of genes
Frontiers in Immunology | www.frontiersin.org 6
directly linked to the MAF/MAFB-dependent generation of
anti-inflammatory M-MØ.

LXR Activity Modulators Alter the
Expression of the Factors That Determine
the Transcriptional and Functional Profile
of M-MØ (MAF, MAFB, Activin A)
MAFB and MAF are master regulators for the differentiation of
anti-inflammatory M-MØ (46, 57, 58), whose generation is
prevented by activin A (13, 20). Gene ontology analysis using
Enrichr (Figure 2G) or GSEA (Figure 5A) indicate an under-
representation of MAF- and MAFB-dependent genes in the
transcriptome of GW-M-MØ. Compared to CNT M-MØ,
protein analysis revealed that GW-M-MØ has significantly
reduced levels of MAF (Figure 5B) and MAFB (Figure 5C),
although the latter did not reach statistical significance.
Moreover, GSK-M-MØ expressed higher levels of both MAFB
and MAF than CNT M-MØ (Figures 5B, C). Altogether, these
results agree with the predictions of gene ontology analysis and
demonstrate that the pro-inflammatory outcome of LXR activation
(GW-M-MØ) correlates with reduced expression of the factors that
shape the transcriptional and functional profile of M-MØ, whereas
LXR inhibition (GSK-M-MØ) results in enhanced expression of
both MAFB and MAF. Furthermore, GW-M-MØ were also found
to produce slightly higher levels of activin A (Figure 5D), a factor
that impairs the differentiation of M-MØ, further supporting that
the modulation of LXR activation in monocytes ends up altering
the expression of factors that shape the transcriptional and
functional profile of M-MØ.
A

B C

FIGURE 3 | Effect of LXR activation on the cytokine profile of anti-inflammatory M-MØ. (A) Production of the indicated cytokines in GW-M-MØ, GSK-M-MØ and
GW/GSK-M-MØ, as determined by ELISA. Mean ± SEM of six independent donors are shown (*p < 0.05; **p < 0.01). (B) LPS-stimulated (10 ng/ml, 18h) production
of TNF, IFNb1, IL-1b and IL-10 by GW-M-MØ, GSK-M-MØ and GW/GSK-M-MØ, as determined by ELISA. Mean ± SEM of six independent donors are shown (*p <
0.05; **p < 0.01). (C) TNF/IL-10 ratio in LPS-stimulated GW-M-MØ, GSK-M-MØ and GW/GSK-M-MØ.
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To find out whether MAF/MAFB mediate the macrophage
polarizing action of LXR, the expression of both factors was
enhanced by inhibiting GSK3b, which controls the stability of
large MAF transcription factors through phosphorylation of
their transcriptional activation domains (59). Thus,
differentiating M-MØ were treated with the GSK3b inhibitor
CHIR-99021 before exposure to the LXR agonist GW3965
(Figure 5E). As expected, CHIR-99021-treated M-MØ
exhibited an enhanced expression of MAFB after 48 hours
(Figure 5F). More importantly, the GW3965-induced
reduction in the expression of M-MØ-specific genes (FOLR2,
CD163, IL10, IGF1, LGMN) was lower in CHIR-99021-treated
M-MØ, an effect that was statistically significant in the case of
IL10 (Figure 5G). Therefore, the pro-inflammatory influence of
the LXR agonist can be impaired by hindering GSK3b activity,
suggesting that MAF and MAFB mediate the inhibitory effect of
LXR on the expression of genes of the M-MØ-specific “Anti-
inflammatory gene set”.

LXR Activation Modifies the Polarizing
Action of Tumor-Conditioned Medium
LXR target gene expression has been previously found to be the
most enriched pathway in large TAM from colorectal liver
metastasis (42), whose gene profile greatly resembles M-MØ
(Figure 1B). Thus, to find out the potential relevance of
modulating LXR activity under pathological settings, we
evaluated whether altering LXR activity was also capable of
modifying the macrophage-polarizing ability of tumor-derived
ascitic fluids (TAF) of distinct origin. To that end, monocyte-
derived macrophages were differentiated in the presence of TAF,
Frontiers in Immunology | www.frontiersin.org 7
and either with or without GW3695 (Figure 6A). Comparison of
the resulting macrophages (TAF-MØ, GW-TAF-MØ) revealed
that LXR activation greatly modifies the transcriptome of
macrophages generated under the influence of tumor-derived
ascitic fluids, as the expression of almost 1000 genes was
significantly altered (Figure 6B). As expected, GW-TAF-MØ
significantly over-expressed genes regulated by LXR and SREBP
(Figures 6C and 7A) as well as of genes upregulated in GW-M-
MØ and downregulated in GSK-M-MØ (Figures 6C and 7B).
More importantly, GSEA revealed that the gene profile of GW-
TAF-MØ shows a very strong under-representation of M-MØ-
specific genes (Figure 6D) as well as of MAFB-dependent genes
(Figure 6E), a result further supported by gene ontology analysis
using Enrichr (Figure 6F). Indeed, and as shown in Figure 6G,
the expression of representative MAF, MAFB and MAFB-
dependent genes was reduced by GW3965 in all GW-TAF-MØ
samples, where the expression of GW3965-upregulated genes
was higher. Finally, analysis of the transcriptome of GW-TAF-
MØ evidenced a very significant downregulation of the genes
that define the gene profile of “large TAM” (adjp, 7.54e-27), and
a positive enrichment of the genes that characterize “small TAM”
(9.13e-14) from colorectal liver metastasis (42) (Figures 6F and
7B, C). These results confirm that LXR activation exerts a similar
effect on macrophages generated in the presence of either M-CSF
or tumor-derived ascitic fluids, and demonstrate that LXR
activation opposes the polarizing action of pathological
tumor-derived fluids by impairing the acquisition of the
genes that characterize anti-inflammatory (M-CSF-dependent)
macrophages and enhancing the expression of genes that define
pro-inflammatory macrophages.
A B

C D

FIGURE 4 | Time-dependency of the effect of LXR activation on the generation of anti-inflammatory M-MØ. (A) Schematic representation of the generation of M-MØ
after treatment with LXR agonist GW3965 (GW-M-MØ), LXR inverse agonist GSK2033 (GSK-M-MØ) or both (GW/GSK-M-MØ) at distinct long time points during the
differentiation process. (B) Relative mRNA expression of the indicated genes in M-MØ generated under the indicated treatments. ABCA1 expression was evaluated as
a readout for LXR activation. Mean ± SEM of three independent donors are shown (*p < 0.05; **p < 0.01; ***p < 0.001). (C) Schematic representation of the genes
specifically upregulated or downregulated along the monocyte-to-M-MØ differentiation (GSE188278). (D) (Left panel) Comparison of downregulated or upregulated in
GW-M-MØ or GSK-M-MØ with the genes whose expression is upregulated or downregulated along the monocyte-to-M-MØ differentiation. (Right panel) Gene ontology
analysis of the genes downregulated in GW-M-MØ and upregulated along the monocyte-to-M-MØ differentiation, using Enrichr and the indicated databases.
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DISCUSSION

LXR nuclear receptors have a prominent role in lipid and
cholesterol homeostasis, but also regulate the expression of
inflammatory mediators [reviewed in (60)] and are required for
the generation of specialized splenic macrophages (30). To clarify
the role of LXR in human innate cells, we have analyzed the role
of LXR activation in macrophage differentiation and polarization
through pharmacological approaches. Our results indicate that
LXR has a remarkable influence on the acquisition of the
transcriptome that defines anti-inflammatory (M-CSF-
dependent) monocyte-derived macrophages, and that LXR
over-activation promotes the acquisition of a pro-inflammatory
transcriptional and functional profile, whereas abrogation of LXR
activity favors the acquisition of anti-inflammatory capacities.
Frontiers in Immunology | www.frontiersin.org 8
Indeed, LXR modulates the cytokine profile of macrophages and
modifies their T cell activation activity (not shown), a result that,
to our knowledge, has not been previously reported.
Mechanistically, modulation of LXR activity led to altered levels
of the factors that determine the pro- and anti-inflammatory
polarization of human macrophages, namely activin A and MAF/
MAFB, respectively. As a whole, our findings reveal a net pro-
inflammatory effect of LXR during M-CSF-driven macrophage
differentiation. The pathological relevance of our findings is
illustrated by the ability of LXR to modulate the macrophage-
polarizing action of tumor-derived ascitic fluids.

Numerous studies have evidenced that LXR activation by
synthetic ligands suppresses inflammation in the presence of
pathogenic stimuli through direct and indirect mechanisms,
including transactivation of anti-inflammatory genes and
A C DB

E

F

G

FIGURE 5 | Molecular mechanisms underlying the macrophage polarizing effect of LXR activation. (A) GSEA of genes downregulated by siRNA MAFB on the
ranked comparison of the transcriptomes of GW-M-MØ and control M-MØ. Normalized Enrichment Score (NES) and False Discovery rate q value (FDRq) are
indicated. (B) MAF protein levels in GW-M-MØ, GSK-M-MØ and GW/GSK-M-MØ, as determined by Western blot (upper panel) and densitometry (lower panel), and
using CNT M-MØ generated in the presence of DMSO as a control. For protein loading control purpose, vinculin protein levels were determined in parallel. (Lower
panel). Mean ± SEM of the relative MAF protein levels in the four macrophage subtypes from four independent donors are shown (*p < 0.05; **p < 0.01), and a
representative western blot experiment is shown in the upper panel. (C) MAFB protein levels in GW-M-MØ, GSK-M-MØ and GW/GSK-M-MØ, as determined by
western blot (upper panel) and densitometry (lower panel), and using CNT M-MØ generated in the presence of DMSO as a control. For protein loading control
purpose, vinculin protein levels were determined in parallel. (Lower panel). Mean ± SEM of the relative MAFB protein levels in the four macrophage subtypes from
four independent donors are shown (*p < 0.05), and a representative western blot experiment is shown in the upper panel. (D) Production of activin A in GW-M-MØ,
GSK-M-MØ and GW/GSK-M-MØ, as determined by ELISA, and using CNT M-MØ generated in the presence of DMSO as a control. Mean ± SEM of eight
independent donors are shown (*p < 0.05). (E) Schematic representation of the treatment of differentiating M-MØ with GW3965 in the presence of absence of the
GSK3b inhibitor CHIR-99021. (F) MAFB protein levels in three independent samples of GW-M-MØ, CHIR-M-MØ, GW/CHIR-M-MØ and CNT M-MØ, as determined
by western blot (upper panel). For protein loading control purpose, vinculin protein levels were determined in parallel (lower panel). (G) Relative GW3965 effect on the
indicated genes in M-MØ generated in the absence (GW-M-MØ vs. CNT M-MØ) or presence (GW/CHIR-M-MØ vs. CHIR-M-MØ) of the GSK3b inhibitor CHIR-
99021. Mean ± SEM of three independent donors are shown (*p < 0.05).
February 2022 | Volume 13 | Article 835478

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


González de la Aleja et al. LXR Promotes Pro-Inflammatory Macrophage Signature
A D ECB

F
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FIGURE 6 | Effect of LXR activation on the transcriptional profile of macrophages generated in the presence of tumor-derived ascitic fluid. (A) Schematic
representation of the generation of monocyte-derived macrophages in the presence of ascitic fluid from tumor patients, with (GW-TAF-MØ) or without (TAF-MØ)
exposure to GW3965. (B) Number of differentially expressed genes (adjp<0.05) between GW-TAF-MØ and TAF- MØ. (C) Summary of GSEA of the indicated gene
sets on the ranked comparison of the GW-TAF-MØ and TAF-MØ transcriptomes. (D, E) GSEA of the “Anti-inflammatory gene set” (D) and MAFB-regulated gene
sets (E) on the ranked comparison of the GW-TAF-MØ and TAF- MØ transcriptomes, showing representative genes within the indicated leading edges. In (C–E),
Normalized Enrichment Score (NES) and False Discovery rate q value (FDRq) are indicated. (F) Gene ontology analysis of the Top 250 genes downregulated (upper
panel) or upregulated (lower panel) in GW-TAF-MØ using Enrichr and the indicated databases. (G) mRNA expression (RNAseq Read counts) of the indicated genes
in GW-TAF-MØ and TAF-MØ generated using four independent tumor-derived ascitic fluids (TAF1-4).
A

B C

FIGURE 7 | (A) GSEA of the indicated gene sets on the ranked comparison of the GW-TAF-MØ and TAF- MØ transcriptomes. Normalized Enrichment Score (NES)
and False Discovery rate q value (FDRq) are indicated. (B, C) Comparison of the top 250 genes downregulated (B) or upregulated (C) in GW-TAF-MØ with the
genes that characterize the transcriptome of “large TAM” (B) or “small TAM” (C) from colorectal liver metastasis (42), with indication of overlapping genes.
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trans-repression of NFkB- and AP1-dependent genes, and in
vivo results have confirmed the net anti-inflammatory effects of
LXR in the presence of macrophage-stimulating agents [reviewed
in (60)]. The pro-inflammatory action of LXR that we now
report is congruent with those previous studies because we have
assayed the effect of LXR activation on unstimulated monocytes
that were subsequently exposed to M-CSF. Indeed, it is worth
noting that the pro-inflammatory actions of LXR are not
unprecedented and have been previously noted (34). In
addition to the positive correlation between LXR activation
and Rheumatoid Arthritis (38, 39, 44), long term pre-
treatment of primary human macrophages to LXR ligands
results in potentiated LPS responses (37), and LXR activation
leads to increase dendritic cell maturation at the phenotypic,
cytokine and functional levels (40). Further, LXR agonists have
been recently reported to trigger trained immunity in human
monocytes, whereby LXR activation primes macrophages for
enhanced responses towards secondary stimuli (45) and impairs
MDSC-mediated immunosuppression in cancer (41). While
these findings are in line with the enhanced LPS-induced TNF
production by GW3965-M-MØ (Figure 3), they can also be
interpreted as LXR agonist having a macrophage re-polarizing
action, because differentiation of M-MØ in the presence of
GW3965 results in macrophages with an GM-MØ-like
transcriptional and functional profile (enhanced expression of
the “Pro-inflammatory gene set”, diminished levels of MAF/
MAFB, impaired basal IL-10 production). Globally, all these
results illustrate the ability of LXR for macrophage pro-
inflammatory re-programming, and suggest that LXR activity
modulates inflammatory responses in a cell- or activation-
dependent manner, a suggestion that is reminiscent of the
macrophage-specific effects of the LXR ligand desmosterol (54).

In the context of the net pro-inflammatory effect of LXR
during human monocyte-to-macrophage differentiation, the
macrophage re-polarizing action of LXR also shows a high
degree of cell-specificity, as the sensitivity to LXR ligands greatly
differ among monocytes, differentiating and fully differentiated
M-MØ. Altogether, the effect of LXR activity modulators on the
expression of polarization-specific genes diminishes along
monocyte-to-macrophage differentiation and is inversely
correlated with the acquisition of functional polarization. In fact,
the sensitivity to LXR modulation at later stages of differentiation
is only observed when lower doses of cytokines are used (data not
shown). Therefore, the impact of LXR activity on macrophage
polarization and functions is more relevant at the monocyte stage
and diminishes along macrophage differentiation. The more
prominent action of LXR at the beginning of the differentiation
model is compatible with a sequential and ordered involvement of
different factors, including lineage-determining factors and signal-
dependent factors. In our opinion, the potent ligand-activation
effect on LXR activity before the M-CSF trigger, unbalances the
polarization towards a sustained pro-inflammatory profile. It is
possible that activated LXR at the monocyte level promotes its
direct binding to regulatory regions of pro-inflammatory and/or
epigenetic changes that favor the recruitment of other pro-
inflammatory factors.
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One possible mechanism underlying the effect of LXR on
macrophage pro-inflammatory polarization can be interpreted
by our pharmacological analysis. Inhibition of LXR favors the
acquisition of an anti-inflammatory transcriptome and leads to a
significant increase in the expression of MAF and MAFB, both of
which determine the anti-inflammatory polarization of
macrophages and the production of IL-10 (46, 58, 61, 62).
Whether LXR directly controls the expression of MAF/MAFB
in human macrophages would need further investigation. One
possible clue came to our attention through the analysis of
available datasets from other cell lineages, which confirm the
presence of functional LXR-binding sites within GM-MØ-specific
genes (“Pro-inflammatory gene set) that are specifically upregulated
in the presence of GW3965 (http://cistrome.org/db/#/; CistromeDB:
69799) (63). The link between LXR and MAFB has already been
described in the case of the murine osteoclast progenitors, where
LXR agonists increased Mafb expression through Srebp-1c
transactivation of the Mafb promoter, without evidence for direct
LXR binding to the Mafb promoter (64). Therefore, and regardless
of the opposite effect of LXR onMAFB in human macrophages and
mouse osteoclast progenitors, which might reflect species- or cell-
specific differences (65), it appears that LXR is capable of pre-
programming myeloid cells by altering the expression of critical
regulators of differentiation and polarization.

In summary, we describe a role of LXR nuclear receptors
during monocyte-to-macrophage differentiation and in the
acquisition of the transcriptional and functional profile of
human monocyte-derived macrophages, as LXR activation
skews macrophages towards a more pro-inflammatory and
stimulatory phenotype. Thus, considering the enhanced
activity of LXR in animal models and in human RA (38, 39,
44), modulation of LXR appears as a potential therapeutic target,
and LXR-dependent macrophage genes might be considered as
useful prognostic/therapeutic markers for human inflammatory
diseases. In this regard, it is worth mentioning that, when
compared to TAM, RA synovial macrophages display the
highest levels of MMP12, INHBA and CCL17 (24), whose
expression we have now shown to be dependent on LXR.
Therefore, it is tempting to speculate that enhancing the level
of LXR activation might be beneficial in other pathological
settings where the presence of macrophages with deregulated
anti-inflammatory and immunosuppressive functions contribute
to pathology (e.g., cancer).
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