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When small proteins such as cytokines bind to their associated receptors on the plasma
membrane, they can activate multiple internal signaling cascades allowing information from
one cell to affect another. Frequently the signaling cascade leads to a change in gene
expression that can affect cell functions such as proliferation, differentiation and homeostasis.
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) and the tumor
necrosis factor receptor (TNFR) are the pivotal mechanisms employed for such
communication. When deregulated, the JAK-STAT and the TNF receptor signaling
pathways can induce chronic inflammatory phenotypes by promoting more cytokine
production. Furthermore, these signaling pathways can promote replication, survival and
metastasis of cancer cells. This reviewwill summarize the essentials of the JAK/STAT and TNF
signaling pathways and their regulation and the molecular mechanisms that lead to the
dysregulation of the JAK-STAT pathway. The consequences of dysregulation, as ascertained
from founding work in haematopoietic malignancies to more recent research in solid oral-
gastrointestinal cancers, will also be discussed. Finally, this review will highlight the
development and future of therapeutic applications which modulate the JAK-STAT or the
TNF signaling pathways in cancers.

Keywords: cytokines, JAK, STAT, oral, gastric, cancer, PROTAC (proteolysis-targeting chimeric molecule), TNF
1 INTRODUCTION-JAK-STAT SIGNALING, REGULATION AND
ASSOCIATED DISEASE SUSCEPTIBILITY

Cells can communicate with each other and this is frequently accomplished by molecules, that are
produced by one cell, then detected and interpreted by another. One class of these signaling
molecules are secreted proteins, including cytokines, interferons and growth factors, otherwise
known as ligands. These are detected by discrete receptor molecules which then initiate a cascade of
signaling responses in the receptor cell that may result in, for example, small or large, acute or
chronic (days to months) and reversible or irreversible changes (live or die) in the receptor cell. It is
rare for particular receptor ligand combinations to work in isolation or to signal only one specific
outcome, i.e. one signaling event may initiate multiple signaling branches that may in turn intersect,
overlap or be affected by other signaling branches occurring concurrently. This makes analysis of
signaling challenging but permits cells to respond with a degree of finesse to environmental cues.
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The term cytokine encompasses interleukins, chemokines,
interferons and tumour necrosis factors and all bind to
corresponding receptors to activate cellular signaling pathways,
including two related and evolutionary conserved signature
signaling entities, the Janus Kinases (JAK: a family of tyrosine
kinases) and the Signal Transducer and Activator of
Transcription (STAT) protein family, which together constitute
the JAK-STAT signaling pathway and has been studied in great
detail (1–5). Another well studied pathway activated by cytokines
is the NF-kB pathway, a family of inducible transcription factors,
required in both innate and adaptive immunity to rapidly
activate cellular responses (6, 7). Over 50 cytokines can signal
through the JAK-STAT pathway, mediated by JAK-mediated
phosphorylation, ultimately regulating a signaling cascade
upstream of multiple cellular activities (8–13). The JAK-STAT
pathway controls a multitude of biological processes;
embryonic and immune-system development, stem cell
continuity and innate and adaptive immune responses,
inflammation and multiple aspects in the pathway to
tumorigenesis (4, 13–15). JAK-STAT signaling therefore serves
as a fundamental mechanism for how cells perceive and respond
to environmental triggers and how they then further
communicate their interpretation of these signals with
other cells to control cellular fate outcomes. It is therefore not
surprising that this pathway it is tightly regulated at multiple
levels (5, 16), with aberrant activation due to dysregulated
expression of cytokines or genetic mutations, gene
amplifications, or gene polymorphisms resulting in chronic
activation of this pathway. This is associated with a variety of
human disease states, including; immunodeficiencies,
interferonopathies, hematologic malignancies, inflammation,
autoimmunity, the cytokine storm associated with COVID-19
mortality (17, 18), predisposition to bacterial and viral infections
and, most relevant to this review, solid cancers (8, 19).

At it’s core, JAK-STAT signaling is quite simplistic, with a few
elements; a cytokine, a receptor (cytokine receptor), a kinase
(JAK kinase) and finally a transcription factor (STAT proteins)
(5, 19), coupled with a regulator, the Suppressor Of Cytokine
Signaling family of proteins (SOCS) (Figure 1). There are four
mammalian members that belong to the JAK family; JAK1,
JAK2, JAK3 and Tyk2, each of which selectively binds to
different receptor chains, each comprising of seven JAK-
homology (JH) domains (20) (Figure 1A). JAKs are capable of
interacting with both types of cytokine receptors (I and II) (5),
this includes receptors for interleukins, IFNs, and multiple others
(21) (Figure 1B). As these receptors have no inherent enzymatic
activity, preferential interaction with distinct JAK isoforms is
required for their downstream signaling and STAT activation (5,
21, 22) (Figure 1C). The STAT family (STAT1–4, STAT5A,
STAT5B, STAT6) is also structurally conserved (Figure 1A), but
individual cytokine receptors preferentially activate distinct
STATs (Figure 1B) through phosphorylation by the JAK
proteins (3, 5, 23). This eventually leads via to exposure of a
nuclear localisation signal (NLS) (Figures 1A, B) (1, 24). Within
the nucleus, dimerized STATs can bind regulatory sequences
such as GAS (Gamma interferon Activation Site) to control
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transcription of many target genes (8, 25, 26)] (Figure 1C) and
integrate inputs from other signaling pathways, such as the NF-
kB pathway.

Importantly, JAK-STAT signaling is controlled by the SOCS
proteins, which function as part of a negative-feedback loop
(19, 27, 28) and are rapidly upregulated upon activation of JAK-
STAT signaling (29, 30). SOCS1 and SOCS3 are the most
mechanistically and functionally defined members of this
family and are potent inhibitors of the JAKs, using a range of
mechanisms, such as phosphorylation inhibition, blocking STAT
recruitment (30, 31) or binding to cytokine receptor complexes
via (Figure 2) shutdown off JAK-STAT signaling (21, 27). JAK
activity is not only regulated by SOCSs proteins but also by
protein tyrosine phosphatases (PTPs) (5, 19). STAT proteins are
also controlled at multiple levels, and in addition to ubiquitin-
mediated degradation, they can be inhibited by, for example,
PIAS (Protein Inhibitors of Activated STAT) in the nucleus (32).
In addition to the endogenous control of the JAK-STAT
pathway, this signalling cascade can be modulated by various
mechanisms, including autocrine/paracrine cytokine production,
JAK protein mutation, upstream cancer-causing genes activating
STATs, or more rarely STAT mutations themselves, possibly
resulting in continuous pathway activation. Mutations and
polymorphisms which dysregulate the JAK-STAT pathway can
result in a variety of human conditions, such as inflammatory
related diseases, an array of leukemias and even solid cancers (8,
15, 33–36).

JAKs are vital components of the JAK-STAT transduction
pathway and their influential role in governing cellular survival,
proliferation, differentiation and apoptosis is well studied (19,
37). Extensive clinical and genetic studies in human and in
murine models have established a role for constitutively
activated JAKs in human inflammatory/autoimmune diseases,
myeloproliferative diseases and select cancers (8, 12, 19, 34, 38–
43). For example, the common V617F mutation (Figure 1A),
which results in constitutively activated JAK2, is associated with
multiple disease syndromes. including elevated erythrocytes and
megakaryocytes. This underlines the importance of JAK
signaling in immune cell activities and haematological
malignancies and provides the starting point for investigations
into solid tumours. The generation of knockout or conditional
knockout mice for each JAK family member has also provided an
understanding of the interconnectedness between JAKs and their
cognate cytokine receptors and the existence of restricted
preferential relationships between cytokine receptors and their
downstream JAK effectors, paralleling the phenotype of
inactivating JAK mutations in humans (reviewed (12, 19, 44–
47). However, functional redundancy exists, whereby in the
absence of a single JAK, another JAK family member can fulfil
the same signaling function (4, 19) (Figure 1B). In addition, the
idea of hierarchical role for JAKs, with one JAK family member
functioning as the upstream activator of a neighbouring
heterotypic JAK family member within a cytokine receptor
complex is another factor contributing to their functional
complexity [reviewed (19)]. JAK1 and JAK3 GOF mutations
occur in human leukemias and multiple myelomas (34, 48) but
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FIGURE 1 | Schematic representation of the generic domain structure of JAKs and STATs. (A) Functional domains of the most important human JAKs and
STATs regulating the progression of solid malignancies; ND, N-terminal; CC, coiled-coil; DBD, DNA-binding; LK, linker; SH2, Src-homology; TAD, transcriptional
activation domain; JH1, kinase; JH2, pseudo-kinase domain with the ezrin, radixin, moesin (FERM) and SH2 domains forming a JAK receptor-binding module
and the PK domain restrains Tyr kinase activity by binding the kinase domain. The common V617F mutation in JAK2 is shown (red line). (B) STATs are activated
by a multitude of cytokines and IFNs. The most important ligands, receptors and pairing of JAKs regulating the progression of solid malignancies are shown.
Shared receptor subunits are indicated by identical coloring. (C) Simplified schematic representation of the JAK-STAT signaling pathway. JAK activation occurs
upon the binding of ligand and receptor multiprotein assembly, at which point two JAKs are brought into close proximity, permitting trans-phosphorylation. Once
activated, the JAKs are capable of phosphorylating further targets, firstly the intracellular tails of the receptors on specific tyrosines, which then act as docking
sites for their preferred substrates, the STAT proteins. Each STAT contains a conserved tyrosine residue near to the C- terminus transactivation domain (TAD),
which is phosphorylated by the JAK proteins. This phospho-tyrosine promotes STAT protein dimerization via binding of an adjacent SRC homology 2, (SH2)
domain and leads to exposure of a nuclear localisation signal (NLS), translocation into the nucleus, where they activate the transcription of genes involved in
many cellular processes.
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also in solid cancers, including breast, gastric, colon, lung and
hepatitis B associated hepatocellular carcinomas, particularly in
the pseudokinase domain and adjoining linker region
(Figure 1A) (8, 16, 19, 34, 35). These clinical and genetic
studies in human and in murine models have established a role
for constitutively activated JAKs in human inflammatory/
autoimmune diseases, myeloproliferative diseases and select
cancers. Unsurprisingly, this role for activated JAKs in human
Frontiers in Immunology | www.frontiersin.org 3
disease has instigated immense interest by pharmaceutical
companies to develop JAK inhibitors (15).

In recent years it has become apparent that the STAT proteins
are linked to a variety of normal biological functions and these
include cell differentiation, cell cycle control and proliferation,
cell death and various aspects of the immune response.
Mutations in STAT1, -2, -3, -5B, -6, while rare are associated
with multiple inherited conditions, particularly primary
June 2022 | Volume 13 | Article 835997
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immunodeficiencies, autoimmune diseases and even cancers (4,
8). Ultimately, the type of disorder developed is dependent on
how STAT signaling is affected and whether the mutation is a
GOF or LOF STAT gene defect. Seven inherited disorders are
known to be caused by mutations in the STAT family of genes
(49), with heterozygous STAT1 GOF mutations linked to
increased susceptibility to certain infections, autoimmunity and
risk for tumor development, while STAT2 insufficiency is
characterized by susceptibility to multiple types of viral
infections. Signaling through STAT3 is mediated through
multiple receptors (Figure 1B), therefore a range of
immunological and phenotypic manifestations is to be
anticipated (8, 49). The contribution of specific STAT family
members to control of normal cellular processes has also been
Frontiers in Immunology | www.frontiersin.org 4
evaluated by homozygous deletion or conditional knockouts.
Probably the most important take home message is the
establishment of a non-redundant role for STAT1 protein in
IFN signaling (50), while STAT2 and STAT3, homozygous
deletion resulted in embryonic lethality (51, 52). Conditional
deletion in mice (53) subsequently established that STAT3 plays
a crucial role in the signal transduction of various cytokines,
including IL-6 (53). Thus, murine STAT proteins, like their
human counterparts have diverse effects in response to
extracellular signaling proteins, achieved by altering gene
transcription in the effector cells.

In terms of human disease, the extended STAT family are also
implicated in many aspects of tumorigenesis in humans as well as
resistance to chemotherapy treatments. The most habitually
A B

FIGURE 2 | Mechanistic diagram of JAK-STAT and TNFR signalling and modes of inhibition. (A) The gp130 receptor complex and signaling pathways for IL-6
and IL-11 are shown as key activators of STAT transcription factors. The intracellular domain of the gp130 receptor contains a membrane-proximal tyrosine
(Y; red), which provides a docking site for the suppressor for SOCSs proteins (e.g. SOCS3) and SHP2, while the membrane-distal tyrosine (Y) sites permits
interactions with the SH2 domain of STAT1/3. The membrane proximal Y sites are phosphorylated by JAKs and upon phosphorylation of the distal Y site,
STAT1 and STAT3 are recruited, homo-dimerise and are translocated into the nucleus, where they bind to specific target genes to regulate their expression.
(B) Simplified schematic diagram of TNF/TNFR1 signaling pathway with downstream interacting proteins indicated. (A, B) Red arrows indicate intervention/
inhibition points within each pathway and red boxes list examples of JAK-STAT or cytokine inhibitors/modifying drugs with their target protein.
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mutated gene from this family in haematopoietic cancers is
STAT3 [reviewed (4, 54, 55)] and to a lesser extent STAT5B
(4, 22, 54). Somatic STAT3 mutation also plays a crucial role in
select solid cancers, including skin cancers, GI and neural
tumors, while STAT1, -2, -4 and -6 appear to have more
limited roles in tumorigenesis (22). The majority of these
diseases result from the consequential dysregulation of this
signaling pathway, particularly related to JAK family member
mutations, but mutation of STATs is not without clinical
consequence (56). While mutations in members of the JAK-
STAT pathway play a role in the development of a variety of
diseases, particularly immunodeficiency syndromes and
predisposition to infections, inflammatory processes themselves
are one of the major drivers of tumor initiation, progression and
metastasis (57, 58). This is in part driven by pro-inflammatory
cytokines binding to their cognate receptors resulting in aberrant
and often increased activation of JAK-STAT or TNF signaling
(Figure 1C), although the exact mechanisms driving the
penultimate stages of oncogenic invasion and metastasis are
unknown (8). These tightly regulated STAT signaling control
mechanisms can be disrupted in cancer cells, altering an
otherwise finely-tuned homeostatic balance, which also occurs
in GI cancers including Oral Squamous Cell Carcinoma (OSCC)
(59), which comes under umbrella term of Head and Neck
Squamous Cell Carcinomas (HNSCC) and Gastric Cancer
(GC) (37, 60). Dysregulated cytokines levels are a hallmark of
many gastrointestinal cancers and this review will focus on the
role of JAK-STAT and introduce the TNF signaling pathways.
Finally, we will discuss how current therapies and those in
development, (eg. cytokine immunotherapy, Smac Mimetics
and PROTACs) may be used modulate these signature
pathways with the aim to increase curative rates for these low
survival cancers.
2 CYTOKINES, JAK-STAT ACTIVATION
AND INFLAMMATION

As outlined above, constitutive triggering of the JAKs and STATs
through elevated cytokine levels is linked to many chronic
inflammatory diseases (61, reviewed; 57, 62). Such chronic
inflammation may assist in promoting the cellular proliferation
of nascent tumor cells, transformation and metastasis or
conversely constraining the anti-tumor response. Cytokines
also act on epithelial cells lining the gastrointestinal tract and
other cell types to regulate secretion, proliferation, and
differentiation (63). Inappropriate cellular epithelial activation
may be one such consequence but may be quite diverse in
different solid cancers (15, 16, recently reviewed 57, 64).
Cytokines and their receptors are also polymorphic, and subtle
genetic variations or single nucleotide polymorphisms (SNPs)
predominantly found in the promotor region of genes such as IL-
1b, 1-Ra, -2, -6, -10, -12, -13, -16, -18, TNF, IFN-g, TGF-b are
linked to functional changes and correlate with increased
susceptibility to infections, autoimmunity, certain cancers and
their differing treatment outcomes (65–67). Cytokine production
Frontiers in Immunology | www.frontiersin.org 5
by tumour infiltrating cells (TILs) or stromal cells such as
endothelia l ce l ls or fibroblasts within solid tumor
microenvironments (TME) mediate communication between
tumor and TILs (57, 62, 68, 69). For example, chronic STAT3
signaling by cytokines such as IL-6 in transformed cancer cells
can induce cell proliferation and activation of MMP’s (matrix
metalloproteinases), thereby promoting tumor invasiveness and
EMT (epithelia-to-mesenchymal transition) and expression of
“master” EMT transcription factors including Twist and Snail
(70) . In addit ion, STAT3 becomes phosphorylated
(hyperactivated) not only in the tumour cells but also in
immune cells and CAFs within the TME (71), which could
impact anti-tumor immunity. Chronic STAT3 activation is also
associated with the elevated expression of factors promoting cell
cycle and cell survival (cyclin D1, survivin and Bcl-xL) (72).
Dysregulated cytokine expression levels and JAK-STAT
signaling are also hallmarks of oral and gastric cancers (73).
Activation of STAT3, STAT5B or JAK2 due to mutational
changes are associated with certain heamatopoietic cancers and
solid cancers (gastric cancer, breast cancer, lung cancer and oral
cancer), while STAT3 and STAT5B are also considered to be
bona fide oncogenes, since constitutively-activated forms induce
cell transformation and invasion of cancer cells in mice (74–79).
However, JAK-STAT signaling is complicated and often has
context dependent effects. In certain situations and in certain cell
types, it may instead have a tumor suppressive role, as is the case
for STAT1 (80) and for STAT5, which may inhibit tumor
progression in the liver but also acts as a tumor suppressor in
fibroblasts (reviewed 76).

2.1 The Role of Cytokines and
JAK-STAT Signaling in Oral Cancer
and Gastric Cancer
Several cytokines are particularly relevant to oral cancer and GC,
such as those having proinflammatory functions; IFNg, IL-6, IL-11
and other cytokines which are predominantly anti-inflammatory,
such as transforming growth factor beta-1 (TGFb), IL-4, IL-10 and
IL-13 which all signal through the JAK-STAT pathway, except
TGFb, which signals through a receptor tyrosine kinase (57, 62).
IL-6 mediated JAK-STAT signaling is required for normal
homeostatic processes and is kept in check by the restricted
pattern of expression of IL-6Ra to a subset of leukocytes and
hepatocytes (81). However, trans-signalling through a soluble
form of the IL-6Ra released from cells by proteolytic cleavage
permits the formation of a IL-6/sIL-6Ra complex, which binds in
trans to activate membrane-anchored gp130 (Figure 2A) (81). It is
this latter signaling that appears to be involved in the
inflammatory response and relevant to this review is involved in
inflammation driven tumor response and T cell proliferation,
leukocyte recruitment and activation of stromal cells (57, 82).
Within the tumor microenvironment IL-6 is produced by a
multitude of cell types including tumor cells, immune cells, and
stromal cells. Elevated triggering of STAT3 by dysregulated IL-6
combined with additional oncogenic driver mutations, such as in
KRAS or TP53, can drive tumor development in the oral cavity
(83) and stomach (84).
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A

B

FIGURE 3 | The role of cytokines and JAK/STAT in OSCC and GC in a step-wise model. The normal epithelium (left) progresses to (A) OSCC or (B) or GC,
through a series of histopathological precursors. During early disease stage the immune system is activated by inflammatory stimuli, resulting in both pro-
tumor and anti-tumor effects mediated by inflammatory cells. The cytokine and JAK-STAT pathway are dysregulated within the cells of the inflammatory
microenvironment and target genes serve as fuel to control both apoptosis and inflammation. Pro-inflammatory cytokine mediators promote neoplastic growth
and development, proliferation, tissue remodeling (EMT), angiogenesis and metastases. During this progression, several alterations in key genes also
accumulate (e.g. KRAS, TP53) to progress tumorigenesis.
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2.2 TNF Signaling; A Common Activation
Mechanisms for Cancers
In addition to cytokines which signal through the JAK-STAT
pathway, initiation and development of inflammation driven
cancers can also be driven by the master proinflammatory
cytokine Tumor Necrosis Factor (TNF), an important
regulator of the immune response in both the steady state and
in disease processes and a critical mediator of carcinogenesis, as
regulator of cellular proliferation, invasiveness and metastasis of
a multitude of cancers (85, 86). Macrophages and T-cells are
major sources of TNF, but other cells such as B-cells, endothelial
cells and neutrophils also produce it (86, 87). TNF binding to its
receptors TNFR1 and TNFR2, can cause a dizzying range of
effects facilitating TIL invasion of tumors and promoting
angiogenesis and tumour cell migration and invasion, but also
promoting cell survival or cell death (88, 89). TNF is expressed as
a type II transmembrane protein but is also liberated into a
soluble form by cleavage by a membrane associated
metalloproteinase, ADAM17 also known as TNF Converting
enzyme (TACE) which also, incidentally, liberates IL6R for
trans-signalling (90). Both forms of TNF interact with TNFR1
and TNFR2 but while membrane TNF stimulates both TNF
receptors, soluble TNF largely fails to stimulate TNFR2 despite
high-affinity binding (91). TNFR1 is widely expressed on most
cell types and stimulates transcription of a host of inflammatory
mediators including other cytokines by activating transcription
and stabilising mRNA in a Nuclear factor of kappa B (NF-kB)
(Figure 2B) and MAP kinase dependent manner (91, 92).
However, in certain circumstances, particularly where
transcription or signalling is interfered with, TNF can also
induce cell death. In general, TNFR2 has a more restricted
expression pattern and is predominantly expressed in myeloid
cells and regulatory T-cells. TNFR2 has no intrinsic cell death
inducing mechanism but stimulates NF-kB signaling and
activation of various kinases and, while it cannot directly
induce cell death it can switch TNFR1 signalling to cell death
(91, 93). Activation of the TNF/TNFR2 pathway has been
established as a critical bio-marker of several cancers including
oral (94) and gastric cancers (63, 95).
3 ORAL SQUAMOUS CELL CARCINOMA

Oral squamous cell carcinoma (OSCC) is one of the most
common human malignancies and a leading cause of
morbidity and mortality world-wide, constituting 4% of all
systemic malignant tumors (96–98) OSCC also constitutes a
major subcategory of HNSCC. These cancers originate in the oral
and oropharyngeal subsites (tongue, lips, gingiva and retromolar
trigone) and account for approximately 90% of all oral cancers
(96). The oral cavity is the first station of digestive tract to be
exposed to a multitude of environmental stimuli, including viral
and bacterial infections and continuous chemical irritation. The
main risk factors for OSCC are entirely predictable and include;
tobacco smoking, alcohol consumption, continuous mastication
of Areca-nut/betel-leaf/tobacco-quid (particularly in Southeast
Frontiers in Immunology | www.frontiersin.org 7
Asia), infection with human papillomavirus (HPV) and the
inflammatory autoimmune condition Oral Lichen Planus
(OLP, especially the erosive form), a possible precursor lesion
of OSCC (96, 99, 100). These carcinogens and inflammatory
agents and conditions contribute to a progressive influx of
inflammatory cells (CD4 and CD8 T cells, B cells, NK cells,
neutrophils, eosinophils, macrophages and plasma cells (101)),
resulting in the accumulation of genetic and epigenetic lesions
throughout the oral mucosa, affecting cell cycle, DNA repair
mechanisms, cell differentiation and apoptosis and resulting in
the transformation of normal keratinocytes to hyperkeratosis,
oral dysplasia, the development of carcinoma in situ, then
invasive cancer (102) (Figure 3A). Indeed, the oral cavity may
be carpeted with pre-cancerous lesions with a high risk for
malignant transformation (96). During the preceding period,
chronic inflammation, driven in part by dysregulated salivary
cytokines, a hallmark of OSCC, drives and maintains neoplastic
transformation; a highly complex multifactorial process
occurring in epithelial cells through the premalignant lesions,
leukoplakia and erythroplakia to epithelial-to-mesenchymal
transition EMT and eventually invasive cancer (Figure 3A)
(94, 96, 100, 103). A direct link between inflammation in the
oral cavity and promotion of tumor invasion has been
established (1, 94, 104), in which elevated cytokines (94) and
dysregulation of the JAK-STAT signaling pathway have been
implicated (105, 106).

Certain syndromes such as Fanconi anemia or Dyskeratosis
congenita can predispose to cancer of the oral cavity, however,
these conditions are rare and usually OSCC occurs
spontaneously in aged individuals (107). The associated
accumulation of genetic and epigenetic alterations due to
chronic inflammation results in oncogenic activation and
inactivation or loss of tumor suppressor genes. These include
frequent DNA copy number gains at chromosomes 3q, 5p and 8q
and copy number losses on 3p and 8p (108). In addition, several
driver/tumor suppressor modifications have been identified in
OSCC, including; TP53, NOTCH1, EGFR (epidermal growth
factor receptor), CDKN2A (cyclin-dependent kinase inhibitor
2a), Cyclin D1, Rb (retinoblastoma), FAT1 and Lama3 (105,
108–113) (Figure 3A).

Despite recent advances in clinical diagnosis and
improvements in systemic therapeutics (cisplatin, 5FU (5-
fluorouracil), docetaxel) and radiotherapy, the 5-year survival
for HNSCC has remained at ~50% for the last 30 years for
regional and more disseminated disease (99, 104). In addition,
both the cancer and its treatment cause considerable morbidity
with acute and long-term toxicity impacting speech, swallowing,
nutrition and appearance (114, 115). The difficulty with early
diagnosis and the high potential for neck lymph node metastasis
with invasive properties continues to account for the high
mortality (103, 116).

3.1 Dysregulation of Cytokines as
Promotors and Mediators of OSCC
Potential novel biomarkers to identify high risk disease individuals,
such as activating JAK mutations have been detected in some solid
June 2022 | Volume 13 | Article 835997
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tumors, such as gastric (77) and for both JAKs and STATs in
haematological malignancies (4, 8). However, these haven’t been
reported to be associated with OSCC (117). Tests of predicted
functional polymorphisms in HNSCC for SOCS3, have been
conflicting; rs2280148 located at the 3′-untranslated region,
indicated a predicted increase in the risk for this cancer, while
rs8064821 located in the promoter region was associated with an
decreased risk (118). Functional polymorphisms affecting gene
expression of IL-4,-6,-8,-10 and TNF have been shown to strongly
associate with increased risk for oral cancer (119). Single nucleotide
polymorphisms (SNPs) in the promoter region of the TNF gene are
linked to HNSCC susceptibility. For example, the TNF-308 position
(AA/GA haplotype) SNP was shown to increase TNF expression
and contribute to greater malignant clinical aggressiveness and
reduced overall survival (120). More recently, patients with the
CC genotype of TNF–1211, were shown to have higher plasma TNF
associated with more severe oral mucositis complications and
reduced survival when administered with chemoradiotherapy
(121). On the other hand, patients with the TNF−238 A/G SNP
homozygous recessive allelic variant had a reduced risk of oral
precancer (122). Overall, these genetic association studies
addressing the predisposition to oral cancer, highlight
susceptibility differences at the population level, possible
predictable treatment outcomes of these cancers and novel target
avenues, which may be tested in animal models and are discussed
later in this review.

Cells of the upper aerodigestive tract epithelium, are
regulated, in part, by multiple cellular growth factors and
OSCC demonstrates inappropriate activation of JAK-STAT
signaling, particularly STAT3 but also STAT-1A, 5A and
-5B (102, 123–125) as discussed in a number of recent
comprehensive reviews (72, 117). However, the mechanistic
links of the JAK-STAT pathway in OSCC are still being
investigated. Inflammatory cytokines and chemokines, which
activate the JAK-STAT pathway have been identified as early
bio-markers and mediators of OSCC [recently reviewed (94)].
Gene expression microarray analysis of OSCC cell lines with
high NF-kB activity and OSCC patient samples identified
dysregulation of genes involved in inflammation, wound
healing, angiogenesis and growth regulation and upregulated
levels of IL-8, CCL5, STAT1, and VEGF in OSCC (102). In this
review we primarily summarize the role of the cytokine IL-6,
which signals through JAK1/JAK2 to activate STAT-1,-3,-5
(Figures 1B, 2A) and TNF (Figure 2B), since these cytokines
play major roles in OSCC initiation and development of OSCC
(94) (Figure 3A).

In general, the early phase of OSCC is asymptomatic,
accounting for both generalized late detection and diagnosis
(97). The identification of early OSCC biomarkers is of great
importance to improving survival rates (126), because early
detection dramatically improves survival but unfortunately it is
exceptionally difficult and lesions are often overlooked (127). To
address this problem, non-invasive salivary secretion diagnostics,
termed a “liquid biopsies”, are being explored. TNF has been
shown to have role in the progression of OLP and meta-analysis
of multiple studies has shown higher levels of TNF in salivary
secretions (128). Initial studies indicated that it was possible to
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distinguish cancer from non-malignant lesions. IFN, IL-1b, IL-2,
IL-6, TNF and IL-8 were amongst the most commonly studied
saliva cytokines, with elevated levels possible predictors of early
malignancy [reviewed (129–131)]. However, differentiating
between inflammatory conditions, such as periodontitis and
OSCC is difficult (130). More recently several systemic and
qualitative reviews from meta-analyses of OSCC case-
controlled studies identified IL-2, IL-6, IL-8, TNF, IL1b and
IL-10 as being significantly upregulated in OSCC patient saliva
by ELISA (129, 132, 133). Except for IL-10, these cytokines were
also higher in OSCC patients and oral, potentially malignant,
disorders such as leukoplakia when this latter group were
compared to healthy controls (132). Overall, the most
promising and reliable diagnostic cytokines for OSCC,
significantly elevated from other oral potentially malignant
disorders from these studies are IL-6, IL-8 and TNF (101, 132,
133) (Figure 3A). While this early screening approach is
promising, there are still many issues to be tackled before it
can be adopted clinically for early diagnosis screening of high-
risk populations.

Saliva cytokine levels of IL-1b, IL-2, IL-6 and TNF are not
only associated with oral inflammation but also with the severity
of oral mucosal damage in cancer patients. For example, a
literature analysis by Uz et al. suggested that overexpression
and elevated serum and/or saliva IL-6 concentrations in patients
with HNSCC are related to poor survival and increased
tumorigenicity (134). TNF also plays additional roles in
promoting tumorigenesis and is overexpressed in human oral
cancer tissues (135). It is also associated with pain, albeit in
murine studies (136). However, HNSCC are a group of cancers
associated with a high prevalence of pain (137) and pre-
treatment for pain may serve as a prognostic factor for patient
survival (138). In vitro studies also suggest that TNF enhances
the invasion and metastasis ability of OSCC cell lines via the NF-
kB signaling pathway (139). In addition, while it is believed that
HPV infection alone may be insufficient for the oncogenic
transformation of normal epithelial cells recent studies suggest
that chronic exposure of TNF to HPV-infected oral keratinocyte
cell lines increases cancer stem cell-like populations and
stemness (140). This would suggest that HPV and TNF may
act in concert to promote oral malignant conversion and that
mechanisms to inhibit TNF may be of benefit for OSCC.

3.2 Dysregulation of the JAK-STAT
Pathway in OSCC
The 2015 TCGA study of head and neck cancers (constituting
62% oral cancers) identified amplifications in several oncogenes
including the JAK-STAT linked receptor tyrosine kinases, EGFR
and IGF1R (105). Nuclear and cytoplasmic interactions between
EGFR and STAT3, increase the expression of several EMT
promotors (iNOS, cyclin D1, c-fos) through direct binding of
the EGFR/STAT3 complex to their promoters [reviewed (141)]
resulting in consistent JAK-STAT triggering in HNSCC (4)
(Figure 3A). IGF1R is also an upstream signal for JAK-STAT
activation, particularly STAT3 (141).

Both HPV+ and HPV- HNSCCs demonstrate aberrant
regulation of JAK-STAT signaling, with upregulation of
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STAT3 and its many gene targets contributing to malignancy
and therapy resistance via cell cycle, cell growth and inhibition of
cell death mechanisms (72, 73, 117, 142) (Figure 3A). Inhibition
of aberrant STAT3 activity has been shown to impede OSCC
growth both in vitro and in vivo, (72), and, coupled with the
association of STAT3 hyperactivation with poor prognosis,
resistance to standard therapies, and immune escape, this
makes it a potential therapeutic target for OSCC (72, 102). IL-
6 is one of the key upstream cytokines implicated in poor clinical
outcomes in OSCC patients (143). STAT3 activity is controlled
in part by the activity of the prototypical pro-inflammatory IL-6/
gp130 signaling cascade (144) (Figure 2A). This STAT3
activation can in turn lead to elevated IL-6 expression creating
a positive feedback loop that fuels the creation of an
inflammatory and a pro-tumorigenic milieu (144). Multiple
STAT3-controlled signal transduction pathways are associated
with OSCC/HNSCC. In addition growth factors including EGF,
TGF-a and platelet-derived growth factor can activate members
of the STAT family, including STAT1 and STAT3 (145).
Overexpression of EGFR and its ligand TGF have been
detected in tumors and cell lines established from OSCC
patients and EGFR protein is required to sustain OSCC cells in
vitro (146). Stimulation of TGF/EGFR activates both STAT1 and
STAT3, however, this TGF-a/EGFR mediated autocrine growth
of transformed OSCC epithelial cells appears to be reliant on
activation of STAT3 but not STAT1 (123).

In solid tumors, STAT1 is generally considered as a tumor
suppressor but there is growing evidence that STAT1 also has a
pro-tumorigenic function, perhaps in a cell-type specific
context (80). The role of STAT1 in OSCC is controversial
(117). Previous studies have shown that in chemotherapy
treated OSCC patients, increased levels of p-STAT1 had a
positive prognostic association, with a predictive increase in
overall survival (147, 148). However, another more recent study
showed the opposite correlation, with higher intra-tumoral p-
STAT1 associated with worse survival (149). Despite these
contradictory studies, microarray analysis of OSCC
transcriptomes recently suggested that STAT1 is an
important contributor to OSCC development, and that
STAT1 might therefore serve as a potential diagnostic
biomarker (150). One issue is that the role of STAT1 in
OSCC may not actually correlate with expression levels
within the tumor itself, but rather with the immune cells
constituting the inflammatory tumor milieu. For example, in
pre-malignant OSCC, CD163+ TAMs (tumor associated
macrophages) are the main cells that express STAT1 and p-
STAT1 (151). Relevant to both OSCC and EBV+-gastric cancer,
JAK2/STAT1 signaling has been shown to mediate respectively
EGFR- or IRF-1, IFNg-induced upregulation of the
programmed cell death-ligand 1 (PD-L1), an inhibitor of T-
cell-mediated tumor cytotoxicity (152, 153) as discussed later in
this review.

STAT3 transforms human epithelial cells and has been
defined as an OSCC oncogene and identified as a negative
prognostic factor in human OSCC (154). A constitutively
activated JAK-STAT pathway, particularly STAT3 is an early
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event in OSCC (124) and shown to be mediated by the autocrine/
paracrine stimulation of the IL-6/gp130 cytokine/receptor (155).
In addition to being a core early event in OSCC, abnormal
STAT3 activation represents a potential risk factor for poor
prognosis in early-stage patients (106, 124) and in later disease
stages correlates with poor tumor differentiation, lymph node
metastasis and reduced survival (16, 106). Expression of a
dominant-negative mutant STAT3 in HNSCC/OSCC cell lines
has been shown to prevent proliferation, trigger apoptosis, and
inhibit the downstream pathways associated with STAT
activation (124). Thus, STAT3 activation is a fundamental
underlying factor in a multitude of malignant behaviours in
OSCC, contributing to cell proliferation, differentiation and
apoptosis resulting in neovascularization, establishment of a
pro-inflammatory state. Hyperactivation of STAT3 is also
implicated in both treatment resistance and immune escape
within the oral cavity (72, 123, 124, 156). In addition, LOF
protein tyrosine phosphatase receptor type T (PTPRT) by
somatic mutation or promoter hypermethylation (31-60% of
HNSCC), increases STAT3 activation and sensitivity to STAT3
inhibition (72, 157). Tumor suppressors that dephosphorylate
STAT3, may also lead to prolonged phosphorylation and
activation of STAT3 (72, 105, 157). Dysregulation of STAT3
and enhanced expression of the active phospho-form not only
within the tumor cells themselves but also within the TILs,
including fibroblasts constituting the tumor microenvironment
can support solid tumor growth (158). Therefore, STAT3
activation most likely engages the communication between
these types in the OSCC microenvironment promoting
tumor progression. In addition to serving as an oncogene in
OSCC, STAT3 is a resistance mechanism for standard
chemotherapeutics and radiation, the current treatment
modalities for this cancer (99).

Cancer-associated fibroblasts (CAFs), are major cellular
components of the OSCC stroma and communicate with
tumor cells to stimulate cancer cell growth, survival, and
invasion and associated with poorer survival outcomes.
Epiregulin (EREG) a member of the Epithelial Growth Factor
(EGF) family promotes tumor development, migration and
invasion (159). We recently showed that EREG is upregulated
in CAFs from OSCC patients, with elevated expression
correlating with the tumor severity and predicted shorter
overall survival (160). Mechanistically, EREG appeared to be
essential for normal fibroblast to CAF transformation and
essential for the induction of tumor cell EMT in a JAK2-
STAT3- and IL-6-dependent manner (160). This recent finding
further underlines the importance of the JAK-STAT pathway in
the progression of OSCC by activating genes important in the
initiation of tumor metastasis.

Compared to STAT3, STAT5 activation plays a relatively
minor role in OSCC/HNSSC but STAT5 can contribute to the
development of tumorigenesis and increased expression of
STAT5 proteins and phospho-STAT5 has been demonstrated
in these tumors (161). SOCS2 protein is significantly
downregulated in OSCC patients, and its levels are inversely
correlated with miR-424-5p expression, through a newly
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described IL-8/miR-424-5p/STAT5 pathway in OSCC (162).
This pathway involves the pro-inflammatory cytokine IL-8
activating STAT5, which then induces SOCS2 (a STAT5
inhibitor) and miR-424-5p. MiR-424-5p expression however
suppressed SOCS2 activity and led to constitutive STAT5
expression. Such elevated STAT5 expression correlated with
increased tumor cell migration and invasion through elevated
matrix metalloproteinase activity in OSCC cancer cells. Copy
number variations were increased in OSCC when compared
with normal or pre-malignant oral lichen planus samples. In 7/
15 samples there was an increase in chromosome 9 sequences
in a region which encompass JAK2, as well as 38 other
genes (163).

3.3 Lessons From Animal Models of OSCC
Clinical and descriptive studies of biopsy samples and analysis of
cell lines from patient OSCC, are informative for later disease
stages but rarely provide insight into disease development.
Animal models of chemical induced oral carcinogenesis and
transgenic animals are useful in this regard and also to assess
therapeutic approaches and the impact of the immune system
(103). The most frequently used chemicals are DMBA (9,10-
dimethyl-1,2-benzanthracene) and 4NQO (4-nitroquinoline-1
oxide). DMBA is highly irritating and produces an
inflammatory response and necrosis. 4NQO, acts similarly but
is more efficacious in inducing tumorigenesis and has been
shown to mimic the process of oral carcinogenesis in humans
(113, 124, 164, 165). These murine cancers, share pathologic and
biochemical features with tobacco-related human OSCC,
including epidermal growth factor receptor (EGFR)
overexpression downregulation of p16 (164), elevated STAT1
(166), STAT3 (164, 165), overexpression of SOCS1, -3 (167),
elevated pro-inflammatory cytokines (IL-1b, IL-6, TNF) and
MMPs (136, 168). Furthermore, as we have shown, loss of NF-
kB signalling accelerates tumorigenesis (169). Regulatory T cell
(Tregs) enrichment and function also appears to be modulated
by STAT3 in response to radiation therapy in a murine oral
orthotopic model with DMBA induced HNSCC/OSCC (170).
Since radioresistance is a major issue with human HNSCC, this
suggests that STAT3 inhibition may benefit patients receiving
this type of therapy.

Moreover, the mutational spectrum of human OSCC was
shown recently to be replicated in the 4NQO mouse model,
including mutations in Tp53, PIK3ca, Notch1, Fat1 and Lama3
with gene ontogeny analysis identifying cytokine signalling as a
major biological process linking the human and murine disease
(113). In addition, a cross-species genomic comparison of
DMBA carcinogen-induced murine and human OSCCs with
indolent or metastatic growth using next gen sequencing also
revealed conservation of the human driver pathway mutations in
mouse OSCC; Tp53,Mapks, Pi3k, Notch, Fat1–4 and the Jak-Stat
pathway (171). There is an opportunity to delve more deeply into
the roles of these factors in initiation and development of oral
cancer because not many studies have used genetically modified
mouse models deficient in cytokines or elements of the JAK-
STAT pathway to explore their roles in these chemical induced
OSCC models (169).
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4 THE ROLE OF CYTOKINES AND
JAK-STAT SIGNALING IN
GASTRIC CANCER

4.1 Gastric Cancer
The stomach is the next station in the alimentary tract down from
the oral cavity and aids in the adsorption of nutrients by secreting
hydrochloric acid and enzymes. As with the oral epithelium, the
gastric epithelium is exposed to multiple exogenous stimuli, which
can result in chronic inflammation. In most human GCs, this
inflammation is initiated by infectious agents, such as Helicobacter
pylori (H. pylori) or Epstein-Barr virus (EBV) infection or prolonged
exposure to gastric irritants, such as a diet high in salt and nitrated
foods (172) (Figure 3B). These agents promote chronic
inflammatory gastritis, subsequently leading to pre-cancerous
alterations in the stomach epithelial lining, which combined with
aging may have an additive role in the promotion of GC (63, 172–
174) (Figure 3B). Gastric cancer (GC) is the 5th most common
human cancer that imposes the 4th highest cause of cancer mortality
world-wide (98). This is in part due to the frequently asymptomatic
nature of this disease which often results in a late-stage diagnosis
with locally advanced or metastatic disease and limited curative
opportunities (172). More than 90% of gastric cancers (GCs) are
adenocarcinomas, which originate from epithelial cells in the
chronically inflamed gastric mucosa. A pathology based,
classification of GC identified diffuse, intestinal or mixed sub-
types (175), which have been subsequently divided into four
molecular sub-types; genomically stable (GS), microsatellite
instability (MSI), EBV+, and a Chromosomal instable type (CIN)
(77). A small proportion of chronic gastritis patients develop gastric
cancer, suggesting additional risk for genetic and environmental
factors in GC development (172). DNA polymorphisms that
increase GC risk have mapped to genes encoding cytokines (63).
Many cytokines secreted by immune cells and epithelial cells during
chronic gastritis have been linked to poor patient outcomes (176).

GC usually occurs spontaneously with only about 8-10% of
cases due to inherited mutations, such as in E-cadherin (CDH1)
resulting in an autosomal dominant GC predisposition (177).
Gastrointestinal polyposis syndromes can also predispose to GC
(178). Multiple studies including the Cancer Genome Atlas
Research Network (77), in addition to the risk factors
described above, have revealed certain genetic alterations and/
or mutations can contribute to GC pathogenesis including;
PIK3CA, TP53, KRAS, APC, STK11, CTNNB1, CDKN2A,
ARID1A, ERBB2, FGFR1, FGFR2, EGFR and MET and
(Figure 3B) (77). A novel recurrent amplification at 9p24.1,
the locus containing JAK2, CD274 (PD-L1) and PDCD1LG2
(PD-L2) were also described in the EBV+ GC subtype (77, 179,
180). CD274 (PD-L1) and PDCD1LG2 (PD-L2) are involved in
immunosuppression by tumor cells to evade cytotoxic T cell
mediated killing and are associated predominantly with the
EBV+ sub-type (77) in a STAT1 driven manner as discussed
later in this review (153).

Hopes that anti-inflammatory drugs andH. pylori eradication
during early disease stages may prevent disease progression, have
not been entirely realised (181) but may reduce risk (182).
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However, current treatments (chemotherapy, radiation, surgical
resection) are often given with palliative intent. High rates of
relapse for GC are indicative of the failure to address the chronic
inflammation that is believed to one of the critical disease drivers.
Both the NF-kB and JAK-STAT pathways are known to promote
inflammation-associated tumorigenesis within the GI tract (7,
60) and deregulation of these pro-inflammatory signaling
pathways, results in gastric intestinal dysplasia and eventually,
over decades results in invasive adenocarcinoma (173).
Significant improvements in overall survival rates of patients,
which currently stand at 30% 5 years post diagnosis have not, to
date, been achieved (98).

4.2 Inflammatory Cytokines Dysregulates
the JAK-STAT Pathway in Gastric Cancer
H. pylori is the leading risk factor for GC, infecting the stomach
lumen. In most cases the immune response is unable to clear the
infection and the inflammation becomes chronic, creating
molecular and cellular changes favouring the transition to
tumorigenesis (174). However, this response is variable and is
dependent upon both host genetics and H. pylori strain (183).
Activation of inflammatory genes and elevated pro-inflammatory
cytokines including IL-1b, IL-1Ra and the neutrophil attracting
cytokine IL-8, IL-10, -11, -17A, -17F, -22 and TNF (reviewed (63,
84, 184) increase the risk for atrophic gastritis and GC (174)
(Figure 3B). Many of these cytokines activate the JAK-STAT and
NF-kB pathways, resulting in their activation and the formation of
an inflammatory microenvironment containing a complex
combination of cytokines and chemokines, which accelerates GC
development and progression (174). Our discussion will centre on
cytokines, since the role of chemokines in GC has been recently
excellently reviewed (185).

A number of DNA polymorphisms in TNF and STAT
controlled cytokine genes have been mapped, including IL-1b,
IL-1R, -8, -6, -17A, 17F, -22, that may mediate differences in
response to chronic H. pylori infection and therefore risk for
gastric cancer (186–191) and reviewed (183). Specifically, a
recent meta-analysis study of 46 publications strengthened the
idea that several TNF polymorphisms may be associated with GC
risk, particularly TNF-857 in Caucasians and TNF-1031 in Asian
populations (192). As a pro-inflammatory cytokine, low-dose
chronic TNF secreted by inflammatory cells sustains
inflammation, chemokine expression, whilst promoting
angiogenesis and inflammation-associated neoplastic
progression (193, 194). A recent analysis of patient GC RNA
transcript levels has shown that many TNF responsive cell
survival genes, (e. g. TRAF2, C-FLIP) are up-regulated favoring
a pro-tumoral effect, while pro-apoptotic genes as caspase-3 and
TNFR1 are down-regulated during GC development
(Figure 2B). This suggests that a disequilibrium between the
cell death and proliferative processes occurs in GC. Whilst TNF
is elevated in H. pylori–infected patients (188) its role in GC still
remains to be rigorously investigated.

The IL-6 family of cytokines mediates their inflammatory or
additional pro-tumor effects through the JAK-STAT signaling
pathway by binding to specific transmembrane signal
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transducers (Figure 1B, 2A). Signalling through Gp130, a
shared receptor element of many of these transducers, is often
dysregulated in GC due to elevated levels of IL-6 and IL-11 (84),
which activates STAT3 in GC and GC stem cells and is associated
with poorer outcomes (195, 196). IL-11, rather than IL-6,
appears to show a greater correlation with elevated STAT3
activation in both human and murine GC (197, 198). Another
inflammatory cytokine IL-22, which is produced by CAFs, has
been shown to enhance the invasive capacity of human GC cells
in vitro by activating both STAT3 and ERK signaling (184).
Elevated IL-11Ra expression is also associated with lymphatic
invasion and blood vessel infiltration (199).

Dysregulation of the JAK-STAT pathway more generally has
also been documented to contribute to gastric tumorigenesis (60,
200). The role of STAT1 in GC is complex as discussed below
and in GC tissues it is regulated in an IFNg-JAK-STAT-
dependent manner (153). Chronic STAT3 activation appears
to be pivotal in GC induction (200) and STAT3 has been shown
to control the production of many pro-inflammatory cytokines
(TNF, IL-1b, IL-6 and IL-22). These factors are known to control
the cellular function of immune cells, resulting in a pro-
inflammatory state and can also impact multiple functions
contributing to nascent tumorigenesis in epithelial cells (201,
202). Active STAT3 is expressed in several established GC cell
lines (203) and its inhibition has been shown to mediate their
apoptosis. STAT3 is also known to promote the formation of
new blood vessels by increasing expression levels of VEGF in GC
(60). A recent study also highlighted the role of H. pylori in the
epigenetic silencing of SOCS1 in GC through hypermethylation
of the promotor region, which in addition to inflammatory
cytokines, further amplifies JAK-STAT signaling in this cancer
(204). Collectively, multiple human GC studies have intimated a
role for JAK-STAT signaling, in particular STAT3 in multiple
cell types associated with tumorigenic phenomena, such as
inflammation, EMT transition and metastasis (60).

4.3 JAK-STAT in GC; Lessons From
Mouse Models
Transgenic and gene knockout technologies have been utilised to
develop murine models of inflammation induced GC, which
have been useful to study the influence of cytokines on the
progression to tumorigenesis, without the influence of
Helicobacter (63, 205). Many of these models include mice
carrying mutations that result in the overexpression of the
JAK-STAT transcription factors, cytokines or modulation of
the NF-kB pathway impacting cytokine and STAT protein
expression (206–209). Constitutive STAT3 activation promotes
gastric tumorigenesis not only in human adenocarcinomas and
but also mouse models (200) (Figure 3B). The common gp130
subunit heterodimerizes with several IL-6 family co-receptors
(Figure 2A) (210). One of the best characterized murine models
to investigate the role of these cytokines is the gp130Y757F/Y757F

(gp130F/F) mouse, which carries a homozygous mutation (Y757

residue) in the gp130 receptor chain (206, 209). This mutation
disrupts the SHP2 and SOCS3 binding site preventing them from
shutting down signalling and resulting in the hyperactivation of
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STAT3, and to a lesser extent STAT1. This in turn leads to
upregulation of many STAT3 target genes, including pro-
inflammatory cytokines (19, 27, 28). The gp130F/F mice
develop spontaneous gastric adenomas, akin to human
intestinal GC (209). Similar to human GC, in this model IL-11
has a more prominent role compared to IL-6 during the
progression to GC and a stronger correlation with elevated
STAT3 activation. This suggests that for GC, targeting IL-11
rather than IL-6 may be a more beneficial option (198, 211).
Excessive STAT3 activation, fuelled and maintained by
tumor-associated IL-11 expression, appears to be sufficient
to trigger neoplastic behaviour of gastric epithelium without
the requirement for additional predisposing genetic alterations
(212). This IL-6/IL-11-dependent increase of STAT3 expression
also contributes to the development and progression of H.pylori-
associated GC (213), while loss of STAT3 or STAT1 prevented
disease (211). Overall, these animal studies have provided
valuable insights into how STAT3-driven inflammation drives
GC tumorigenesis and identify IL-11 as a crucial cytokine
promoting chronic gastric inflammation and associated
tumorigenesis mediated by excessive activation of STAT3 and
STAT1 (197, 212).

H. pylori or EBV infection in addition to activating STAT3
can result in sustained activation of NF-kB. We have recently
shown that mice lacking NF-kB1 (Nfkb1-/-), a member of the
canonical NF-kB signaling pathway develop inflammation-
driven invasive gastric adenocarcinoma (208). GC in Nfkb1-/-

mice mimics the histopathology of the human disease and is
associated with elevated STAT1, and to a lesser extent STAT3, in
the gastric mucosa (208), recapitulating the pathogenic loss-of-
function polymorphisms in NF-kB1 associated with human GC
(207, 214). Similar to the human disease, GC in this mouse
model is associated with elevated pro-inflammatory cytokines
and chemokines such as TNF, IL-6 and IFNg. Consistent with
the foregoing discussion there is an earlier onset of GC in
Nfkb1-/-/gp130+/F mice (207, 208).

As discussed for oral cancer, while STAT1, exerts tumor
suppressive activities, by integrating the anti-proliferative and pro-
cell death signals elicited by interferons, it can also drive tumor
promoting activities in stromal cells. These activities include
inducing an immunosuppressive tumor environment by
regulating immune checkpoint inhibitor expression, such PD-L1
and PD-L2 the ligands for PD-1, which can be induced in tumors by
IFNs, resulting in immune evasion (80). We established a direct link
between NF-kB1 loss-of-function and upregulation of STAT1 pro-
tumorigenic functions and the immune checkpoint PD-L1 (208).
Pertinently, JAK2 is also amplified in human EBV+ GC (77) and
cellular RNA expression of Jak2 is abnormally elevated in the gastric
mucosa of Nfkb1-/- mice before overt GC (208). Moreover, the
mechanism underlying the regulation of PD1 and PD-L1 in human
the EBV+ GC subtype has recently been shown to be controlled by
the JAK-STAT1-IRF3 signaling axis (153). Therefore, the immune
evasion of EBV+GC cells could be regulated by this signaling
pathway, which may be further investigated using these murine
models (215). More recently we showed that IL-6, and IL-22 and the
receptor for IL-11 (IL-11Ra) are dispensable for the development of
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GC in Nfkb1-/- mice (207). However, the loss of IL-11Ra
significantly reduced invasive GC disease and loss of TNF
inhibited GC development in Nfkb1-/- mice but to a lesser extent
than complete loss of STAT1 (207). Notably, the loss of either TNF
or STAT1 reduced gastric inflammation and PD-L1 expression in
the stomach (207). Insights from this model reveal a role for TNF in
GC development, identify a role for IL-11Ra in invasive GC disease
and uncover a link between elevated TNF levels and aberrant
STAT1 activation shaping the gastric immune microenvironment.
These findings suggest that inhibition of IL-11/IL-11Ra signaling
for example by using IL11-Mutein might have clinical benefit (197,
198, 216).While inhibitors of TNF are readily available compared to
STAT1 (currently do not exist), these potential therapies may
extend to a broad range of GCs, not only those with NFKB1 gene
polymorphisms, a topic we will discuss in the final section of
this review.
5 THERAPEUTIC POTENTIAL OF
TARGETING THE CYTOKINE AND JAK-
STAT PATHWAY

Surgery and chemoradiotherapy/radiotherapy (CRT) are the
mainstays for advanced OSCC/HNSCC, because effective and
targeted therapies which are still wanting (142, 217). Similarly,
the prognosis for advanced GC remains abject due to the poor
response to current therapies (chemotherapy, surgery, chemo/
radiotherapy) (60, 96, 218, 219). Due to a deficit of targeted
therapies, additional or adjunct therapies are warranted to
advance treatments for these cancers. Blocking JAK-STAT
signaling may be a solution, either as a single therapy, or in
combination with other anti-cancer agents. There are multiple
potential intervention points for targeting JAK-STAT signaling,
including various cytokines, their receptors, STATs, JAKs, SOCS
(Figure 3) as well as other cytokine signalling pathways, such as
TNF. Inhibitors abrogating the JAK-STAT pathway tested in
pre-clinical and clinical studies have been recently extensively
reviewed (4, 8, 15, 56, 71, 82, 220, 221) and so we will here focus
on HNSCC/OSCC and GC.

5.1 Targeting STATs
Therapeutic targeting of STAT transcription factors is not
without challenges. Transcription factors have been deemed
“undruggable” due to their lack of catalytic function (82, 222).
While there are many studies using conventional small molecule
drugs, unfortunately, both off-target adverse effects and on-target
toxicity have tarnished the progression of these compounds and
few have transited to clinical trials for solid cancers (4, 56, 60, 71,
72, 82, 220, 221) and even more limited for HNSCC/OSCC and
GC (Table 1).

5.1.1 Targeting STAT1
STAT1 inhibitors are still under development using comparative
virtual screening and docking validation (238). An important
point to bear in mind is that STAT1 takes part in IFN signaling
and thus plays important roles in barrier function and host
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defence against infections, therefore its inhibition may not be of
optimal benefit for translation to the clinic (4, 8, 220).

5.1.2 Targeting STAT3
Because of its strong pro-oncogenic function, most STAT
inhibition studies have focused on this transcription factor
with the aim of blocking phosphorylation and/or STAT
dimerization (221). However, inhibition of STAT3 is also
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problematic, since it can be activated by several different
upstream kinases and development of an inhibitor that
specifically targets STAT3 rather than STAT1 to improve
therapeutic efficacy remains challenging (15, 56, 239). While a
number of STAT3-inhibiting compounds have been developed
(4, 71, 221) (Figure 2A), they generally have low potency, poor
specificity and inappropriate pharmacology constraining their
progression into the clinic and approval (71, 82, 239). Newer
TABLE 1 | Clinical Trials for JAK-STAT/TNF Pathway modifiers in HNSCC or GC.

Inhibitor/ Modulator Inhibitor Agent/Adjuvant Therapy Phase Clinical Trial Status (11 Nov.
2021)

Ref/results

STAT3 BBI-608(Napaucasin)/paclitaxel Ib/II NCT01325441 Completed a 223
III NCT02178956 Completed h 224

STAT3 OPB-111077 - SH2 domain binder I NCT01711034 Completed a 225
STAT3 TTI-101/C188-9 – SH2 domain binder I NCT03195699 Recruiting b None
STAT3 AZD9150 (ISIS 481464) – antisense oligo I/II NCT01563302 Completed c 226
STAT3 OPB-31121 - SH2 domain binder I NCT00955812 Completed d 227

I NCT00657176 Unknown d 228
STAT3 OPB-51602 - SH2 domain binder I NCT02058017 Terminated e None

I NCT01423903 Completed a None
I NCT01184807 Completed d None
I NCT01867073 Active, not

recruiting d
None

STAT3 STAT3 decoy - Oligonucleotide 0 NCT00696176 Completed f 229
STAT3 AZD9150/ anti-PD-L1 (Durvalumab) Ib/II NCT02499328 Active, not

recruiting f
Submitted-not

posted
STAT3 IMX-10 (curcumin/doxorubicin) I/II NCT03382340 Recruiting d None
STAT3 PROTAC (KT-333) I NCT05225584 Recruiting c 230
JAK1 Itacitinib (INC039110)/pembrolizumab, anti-PD-

1)
Ib NCT02646748 Active, not

recruiting d
None

JAK1/2 AZD-1480 I NCT01112397 Terminated d 231
I NCT01219543 Terminated g None

Ruxolitinib II NCT03153982 Recruiting f None
0 NCT02593929 Withdrawn f None

IL-6Ra Tocilizumab (anti-IL-6Ra) / atezolizumab (anti-
PD-L1)

II NCT03708224 Recruiting f None

Siltuximab I/II NCT00841191 Completed d 232
IRX-2 biologic (Il-1&beta;, Il-2, IL-6, IFN&gamma;,
TNF, GMCSF)

IRX-2/ cyclophosphamide, pembrolizumab I/II NCT03918499 temporary on hold
h

None

IRX-2/ cyclophosphamide, indomethacin,
omeprazole, zinc

II NCT02609386 Active not
recruiting i

None

IRX-2/ anti-PD-L1 (Durvalumab) I NCT03381183 Active not
recruiting f

None

IRX-2/Nivolumab I NCT03758781 Active not
recruiting j

233

IRX-2/cyclophosphamide, indomethacin,
omeprazole, zinc

II NCT00210470 Completed f 234

EGFR Cetuximab/cisplatin/docetaxel/radiation II NCT00084318 Completed f 235
Cetuximab/cisplatin/bortezomib/radiation I NCT01445405 Completed f None

Cetuximab/pembrolizumab (anti-PD-1)/radiation II NCT02707588 Active not
recruiting f

236

cIAP1/2 Smac-mimetic (Debio1143)/cisplatin/radiation I/II NCT02022098 Active, not
recruiting f

237

cIAP1/2 Smac-mimetiAc (Debio1143)/ Cisplatin/IMRT III NCT04459715 Recruiting f None
Ju
ne 2022 | Volume 1
aAdvanced malignancies.
bHNSCC, gastric adenocarcinoma, plus other solid tumor types.
cAdvanced cancers or hematological malignancies.
dAdvanced cancers and/or solid tumors.
eLocally advanced nasopharyngeal carcinoma
fHNSCC.
gAdvanced solid malignancies, with GC in the expansion phase.
hgastric or gastroesophageal junction cancer.
iSquamous carcinoma of the oral cavity. IMRT (Intensity Modulation Radiation Therapy).
jrecurrent/metastatic solid tumors including HNSCC.
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compounds are being synthesized and evaluated by
computational methods to improve the understanding of the
STAT3 functional mechanism and aid in the design of STAT3
inhibitors as anti-cancer drugs (239, 240). These consist of direct
STAT3 inhibitors (peptides, small molecules, oligonucleotides),
indirect inhibitors (JAKs, IL-6, EGFR) or those that can be
combined with immunotherapy (e.g. immune checkpoint
inhibitors, CAR-T cell therapy, dendritic cell based cancer
vaccine and immunostimulatory Toll Ligand Receptor (TLR)
agonists) (71).

STAT3 is also a major therapeutic target under investigation
for HNSCC/OSCC/GC [reviewed (71, 72, 82)] and while studies
are predominantly at the preclinical or early clinical stage, they
hold some promise. For example, the STAT3 decoy (double-
stranded DNA containing STAT3-binding site) that sequesters
dimeric STAT3 away from endogenous targets has been shown
to increase apoptotic death and reduce tumor growth in
laryngeal squamous cell carcinoma (PCI-37A) (241). This
STAT3 decoy is being tested in the clinic, where the expression
levels of STAT3 target genes were shown to decrease in HNSCC/
OSCC following STAT3 decoy injection (229) (Table 1). STAT3
signaling activity can also be attenuated by Stattic, a small
molecule STAT inhibitor, which targets the SH2 domain,
resulting in the modulation of invasion and migration of
OSCC cell lines (242). In nasopharyngeal carcinoma cell lines
Stattic has been shown to inhibit cell viability and proliferation,
induce apoptosis and enhanced chemo/radio sensitivity (243).

The most successful STAT3 inhibitor to date is napabucasin/
BBI-608 which inhibits JAK2 and STAT3 phosphorylation and
transcription of target genes (244) (Figure 2A; Table 1). It
received orphan designation from the FDA (2016) for gastric
cancer due to early positive results for the phase Ib/II trial (223),
however the phase III (BRIGHTER trial) as a second-line
treatment in combination with paclitaxel in patients with
gastric and pre-treated advanced gastric and gastroesophageal
junction (GEJ) cancer showed no improvement in overall or
progression free survival (224). Subgroup analysis is pending,
and this may provide some insight for better patient selection for
napabucasin in the future.

The Otsuka Pharmaceutical Co. have developed a number of
non-peptide STAT3-SH2 domain inhibitors (OPB-31121, OPB‐
111077, OPB‐51602), which have been documented in many
phase I trials (selected; Table 1). OPB-31121 has been shown to
reduce proliferation of gastric cancer cells and in a xenograft model,
where it was shown to synergize with 5-fluorouracil (5-FU) and
cisplatin (245). This inhibitor also interacts with STAT5 and showed
antitumor activity in various hematopoietic malignancies (246).
However, phase I trials for advanced malignancies were
terminated before many participants had been enrolled (Table 1).
On the other hand, it has undergone successful phase I/II trials for
advanced hepatocellular carcinoma (ClinicalTrials.gov
#NCT01406574) and for solid cancers (Table 1), (227) and is
currently in a phase III trial in combination with 5-FU,
Leucovorin and Irinotecan (FOLFIRI) for metastatic colorectal
cancer (ClinicalTrials.gov #NCT03522649) and in a completed but
yet to be reported trial with nab-paclitaxel and gemcitabine for
metastatic pancreatic ductal carcinoma (CanStem11P trial,
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ClinicalTrials.gov #NCT02993731). OPB‐111077, another novel
inhibitor of STAT3, also exhibits promising anti-cancer activity in
patients with diffuse large B‐cell lymphoma (DLBCL) and modest
efficacy was observed against other tumors, including GC, when
given as a monotherapy (225). Phase I studies with OPB‐51602, have
been disappointing in hematological malignancies (247) and locally
advanced nasopharyngeal carcinoma but are currently in trial for
solid cancers (Table 1).

The small-molecule competitive STAT3 inhibitor TTI-101
(formerly C188-9) developed by Tvardi, targets the pY-peptide
binding site within the SH2 domain (Figure 2A) to prevent
phosphorylation, homodimerization, nuclear translocation and
transcriptional activation (221). TTI-101 has been shown to
inhibit cytokine-stimulated pSTAT3 and reduce constitutive
pSTAT3 activity in multiple HNSCC cell lines, including the
radioresistant HNSCC cell line UM-SCC-17B in a xenograft
model. In this system, TTI-101 prevented tumor growth by
modulating many STAT3-regulated genes affecting oncogenesis
and radio-resistance, as well as radio-resistance genes regulated
by STAT1, due to its potent activity against not only STAT3 but
also STAT1 (248). More recent studies have shown that TTI-101
can be given orally and without toxicity (249) and this STAT3
inhibitor is currently being trialled as a monotherapy for solid
tumors including HNSCC and GC (Table 1).

AZD9150 is a second generation antisense oligonucleotide
targetting the 3’ untranslated region of STAT3. It inhibits mRNA
translation and has shown efficacy in pre-clinical models (226),
where it inhibited tumor growth and expression of STAT3
downstream target genes. It has also shown efficacy in phase I/
Ib clinical trials for both lung cancer and lymphoma (142, 226,
250). A Phase I/II dose-expansion study for the treatment of
patients with advanced cancers, DLBCL and other advanced
lymphomas (ClinicalTrials.gov NCT01563302) has been
completed but no results are available. Another phase II trial
using AZD9150 in advanced solid tumors including metastatic
HNSCC as a monotherapy or combined with MED14736/
Durvalumab immunotherapy (anti-PD-L1) is currently
underway (ClinicalTrials.gov #NCT02499328) (Table 1).

Another method to target STAT3, involves the use of double-
stranded “decoy” oligonucleotides, corresponding to STAT3
response elements, such as those present in the c-fos promoter.
An analogous STAT3 decoy has been shown to block binding of
STAT3 and when used to treat HNCSS cell lines inhibited
proliferation and reduced STAT3-mediated gene expression
(241). A phase 0 trial of this STAT3 decoy (ClinicalTrials.gov
#NCT00696176, Table 1) determined that intra-tumoral
administration in HNSCC patients inhibited STAT3 driven
gene expression. In addition, a kinetic study involving a
xenograft model showed that administration of the STAT3
decoy, but not the mutant control decoy, decreased expression
of STAT3 target genes (Bcl-xL and/or Cyclin D1) (229).

Finally, YHO-1701 a novel quinoline- carboxamide derivative
of STX-0119 and a non-peptide SH2 domain STAT3 inhibitor
has been shown to inhibit the SH2 binding to a p-Tyr peptide
more potently than the original STX-0119 in biochemical assays
(251). YHO-1701 also exhibited strong activity in abrogating
STAT3 signaling in the human OSCC cell line SAS, by inhibiting
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STAT3 dimerization and also suppressing STAT3 promoter
activity. In addition, YHO-1701 showed anti-tumor effects in
SAS xenograft models in combination with sorafenib producing
an anti-proliferative and synergistic effect in SAS OSCC cells,
justifying future clinical follow-up (252). Overall, the studies
evaluating STAT3 inhibitors for OSCC/HNSCC and GC at pre-
clinical and early clinical trial stages suggest that it is unlikely that
they will be used as a monotherapy. However, there is still the
possibility of using them as adjunct therapy, which will be
discussed later in this section.

5.2 Targeting JAKs
The cornerstone of JAK-STAT signaling inhibition are the JAK
family members (Figure 1) and these have been extensively
studied for inflammatory diseases such as rheumatoid arthritis
(253). A variety of JAK inhibitor compounds are available at the
clinical or pre-clinical stage as orally delivered small molecules
targeting the ATP-binding site of the JAK protein, preventing
their phosphorylation and the subsequent phosphorylation of
STATs thus diminishing JAK activity and nuclear signaling (59,
82). Since JAKs are upstream of STATs and therefore might also
interfere with other mechanisms involved in cancer progression
this could explain a perceived improved efficacy of JAK
inhibitors and the popularity of Tofacitinib (JAK1/JAK3
inhibitor) and Baricitinib (JAK1/JAK2 inhibitor) for the
treatment of inflammatory conditions (4, 8, 59, 60, 82, 253,
254). As an interesting aside, a relatively selective JAK1 inhibitor,
Oclacitinib, is used to treat dermatitis in dogs and lacks the side
effects that most JAK inhibitors have in humans (255).
Ruxolitinib, a JAK1/JAK2 inhibitor is FDA approved for the
bone marrow cancer myelofibrosis, polycythemia vera and
topically for atopic dermatitis (59, 71, 82, 254) and has also
shown efficacy in solid cancers, for example in HNSCC cell lines
(256). However, an early phase 0/I trial with ruxolitinib as a
monotherapy administered prior to surgical resection for
operable HNSCC was withdrawn due to adverse events
(ClinicalTrials.gov #NCT02593929), but a phase II trial is
currently recruiting (ClinicalTrials.gov #NCT03153982)
(Table 1). Trials have also recently commenced for a range of
other JAK inhibitors for solid malignancies, but with limited
success (4, 59, 71, 254). For example, AZD140 (JAK1/2 inhibitor)
abrogated STAT3 activation and HNSCC tumor growth in a
patient-derived xenograft preclinical model (257), but a study to
assess the safety and tolerability of AZD140 as an oral
monotherapy in patients with solid tumors (ClinicalTrials.gov
#NCT01112397) (231) and a phase I study including GC in the
expansion phase (ClinicalTrials.gov #NCT01219543) have both
been terminated due to a decision to stop development of this
JAK inhibitor (Table 1). It is noteworthy that JAK inhibitors are
not specific for each JAK and there are issues with off-target
effects (253), thus many clinical trials for solid tumors have been
terminated (59) (Table 1). It is clear that additional JAK
inhibitor specificity is necessary to optimize future therapeutic
applications. In addition, adverse events associated with the
wide-ranging immunological effects of JAKs (258), have been
reported and thus the future of JAK monotherapy applications
may be limited (15, 253). However, novel PROTACs targeting
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the Janus kinase family (JAK1, JAK2, JAK3 and TYK2) have been
recently described which may overcome these shortfalls
(259, 260).

5.3 Inhibiting SOCS
Since SOCS proteins negatively regulate JAK-STAT cytokine
signaling, they can play major roles in limiting the evolution and
subsequent progression of tumorigenesis. Atypical SOCS1 and
SOCS3 expression in established tumor cell lines and also at
advanced clinical stages of cancer is considerably variable (261).
However, SOCS1 mediated negative signaling feedback has been
shown to be important for inflammation reduction (262) and
also to limit nascent tumor growth (263). Similarly, epigenetic
inactivation due to CpG methylation in SOCS1 is frequently
linked to several human solid cancers including GC and may be
involved in its development, progression and even metastasis,
since reduced expression of SOCS1 was associated with lymph
node metastasis and more severe GC tumor stage (264). In
addition, SOCS1 and SOCS3 can control the development and
activation status of immune cells in tumorigenesis but their exact
roles in this process are still unclear (261, 265, 266). Thus, SOCS-
based targeting is in its infancy (267).

Since SOCS seem to inhibit tumor progression different
strategies have been used to either increase or mimic SOCS
activity. For example, SOCS1 and SOCS3 expressing oncolytic
adenovirus (CN305 (AdCN305)-SOCS3) or recombinant, cell-
permeable proteins has been shown to efficiently control
aberrant STAT signaling in hepatocellular carcinoma (268). A
SOCS1 peptide mimetic (containing the KIR domain) which acts
as a pseudosubstrate for JAK1, JAK2, TYK2 and JAK3 and is able
to activate the endogenous SOCS1 protein has also been pursued
for therapeutic applications. Their safety and efficacy particularly
in comparison to JAK inhibitors is yet to be fully evaluated (263).

5.4 Targeting Cytokines
An emerging opportunity for cancer therapy to circumvent the
hazards of targeting intracellular signaling molecules such JAKs,
or STATs is through pharmacologic inhibition of proteins that
activate them, such as pro-inflammatory cytokines (71, 73, 198,
269). Since cytokines are major drivers of several autoimmune/
inflammatory diseases, it is not surprising that cytokine
inhibition has revolutionized therapy for these disorders,
particularly with monoclonal antibodies targeting TNF, IL-1,
IL-2 and IL-6 (116). Cytokine-based immunotherapy for cancer
treatment is encouraging, since cytokines are able to regulate the
host immune response to directly induce cancer cell death (270).
Recently this has led to an interest in the efficacy of cytokine-
based drugs, as single agents or in a combinative approach with
other immunotherapy drugs to improve the anti-tumor
properties of cytokines. Newer second-generation drugs aimed
at improving cytokine activity in the tumour microenvironment
or towards the desired effector immune cells, however, are yet to
reach the clinic (270). In this review we will focus on modulation
of IL-6 and IL-11 which signal through the JAK-STAT pathway
(Figures 1, 2A) and TNF, which signals through the TNF family
(Figure 2B). In addition, we discuss how antagonizing the
activity of these cytokines has merit in overcoming toxicity to
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improve tolerance of cancer immunotherapy, including for
OSCC and GC.

5.4.1 Targeting IL-6 and IL-11
Many therapies target cytokines or their receptors (Figure 2) and
to date, much focus has been placed on antagonizing the activity
of IL-6, since elevated levels of this cytokine can mediate
hyperstimulation of JAK-STAT signaling through the gp130
receptor (197, 269, 271). Antagonistic monoclonal antibodies
such as tocilizumab, against IL-6R, and siltuximab against IL-6
(Figure 2A), were originally developed to treat inflammatory
diseases, and tocilizumab was granted an emergency use
authorization in the US for COVID. Other IL-6 targeting
agents are also in development: sarilumab, ALX-0061,
olokizumab, sirukinumab and clazakinumab (82, 269).
Inhibitors of IL-6 and IL-6Rs are now undergoing clinical trials
for solid cancers: ovarian, renal, prostate, lung, melanoma,
pancreatic and breast (71, 82, 272, 273). However, the IL-6
ligand antibody (siltuximab/CNTO-28) trial for prostate
cancer, did not improve clinical outcomes (274).

A phase I/II trail with siltuximab for select solid advanced solid
tumors, including HNSCC with KRAS mutations, while well
tolerated was without clinical activity (232) (Table 1). Our
preclinical studies in a GC cancer model driven by the absence of
NF-kB1, have shown that genetic deletion of IL-6 is dispensable for
the development of GC, with a minor role for IL-6 at the early stages
of gastric dysplasia (207). Studies antagonizing the activity of IL-6
for HNSCC and GC are not yet forthcoming. However, as indicated
earlier in this review, IL-6 trans-signalling through a soluble form of
the IL-6Ra (81) is involved in inflammation driven tumor response.
This signalling can be selectively inhibited using a soluble form of
gp130 (sgp130) fused to an IgG Fc fragment, as sgp130Fc
(olamkicept/FE 999301/TJ301) (Figure 2A). This first-in-class
decoy protein exclusively blocks IL-6 proinflammatory trans-
signaling and has shown clinical efficacy in early phase IIa trials
for ulcerative colitis/inflammatory bowel disease (IBD) without
immunosuppression but with p-STAT3 reduction in the inflamed
IBD mucosa [ClinicalTrials.gov #NCT03235752), (275). However,
sgp130Fc is yet to be trialled in solid tumors. Other designer
mutants to modulate IL-6 signaling are in early development (197)].

Another IL-6 family cytokine, IL-11 also signals through
gp130 to activate JAKs/STAT3 (Figure 2A). IL-11 is known to
be a pleiotropic in character and to play a role in hematopoiesis,
adipogenesis and platelet maturation (197). In this capacity, IL-
11 predominantly acts as an anti-inflammatory cytokine, with
potential to increase platelet counts in chronic myelogenous
leukemia. More recently its role in several inflammation driven
cancers, such as gastrointestinal cancers has been identified (197,
276), perhaps providing a link between inflammation and cancer.
IL-11 can increase the oncogenic properties of cells, including,
cancer cell proliferation and survival (197, 277). For example,
elevated expression has been linked to several cancers, including
GC, where IL-11 levels are elevated in preclinical models of GC
(277). These findings support a role for IL-11/IL-11Ra signaling
inhibition as an emerging therapeutic opportunity for multiple
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cancers, including GC, perhaps through implementation of IL11-
Mutein, an antagonist of IL11Ra (216). However, our
understanding of how IL-11 impacts the initiation and
progression cancers is still limited and no agent inhibiting IL-
11 is currently approved for the treatment of solid cancers (197).

5.4.2 Targeting TNFR Pathway
The master proinflammatory cytokine TNF can serve as either
therapeutic target or agent. As a therapeutic target, it can be
inhibited with well established anti-TNF biologics, including
etanercept, infliximab, adalimumab, golimumab, and
certolizumab pegol (278) for inflammatory diseases (116). As
discussed in this review, TNF is also important at many stages in
OSCC (94, 136) and GC (63), therefore targeting the TNFR
signaling pathway may be an effective preventive or therapeutic
strategy for solid cancers. Indeed, the use of anti-TNF drugs to
treat cancer has a long and interesting history (58, 85). Some
early preclinical studies were encouraging in this regard; for
example blocking TNF with golimumab reduced tumor growth,
angiogenesis and metastasis of OSCC in a murine model of
orthotopic human OSCC (279), and antagonizing TNF reduced
oral cancer proliferation and cytokine production in mice with
4NQO induced oral cancer (135). TNF/TNFR1 signaling also
been shown to promote gastric tumorigenesis in the Gan mouse
model, in which transgenesis activates both canonical Wnt
signaling and the COX-2/PGE2 pathway (280). Clinical studies
with anti-TNF therapy are yet to be published for OSCC or
GC (273).

Another approach to enlist TNF signaling are the smac-mimetics,
a drug class that antagonises Inhibitor of APoptosis proteins (IAPs:
XIAP, cIAP1, and cIAP2). Several small molecule smac-mimetic
compounds have been developed and many have been or are
currently in clinical trials, including Debio 1143/AT-406/SM-406,
LCL161, APG1387, BI 891065 and ASTX660 (281, 282). These
promote the proteasomal degradation of the cIAPs, resulting in
TNF production in a subset of ‘responsive ‘ cells (283–285). IAP
overexpression is associated with tumorigenesis, chemoresistance
and poor prognosis (281, 286, 287) and the IAPs also positively
(canonical) and negatively (non-canonical) regulate NF-kB
signalling pathway (281) (Figure 2B). We, and others, have shown
that smac-mimetics function by instigating auto-ubiquitylation and
proteasomal degradation of cIAP1 and cIAP2 (284, 285, 288, 289),
which in the presence of a stimulus such as TNF, chemotherapy or
TLR ligand, results in the formation of a RIPK1/caspase-8 complex,
followed by caspase-8 cleavage and the induction of tumor cell death
(281, 285, 290, 291). A number of smac-mimetic compounds have
been developed and due to their limited anti-cancer activities when
used as single agents are now being tested in combination with
immunotherapy and/or chemotherapy (6, 281, 282). For example, a
trial reported in 2020, usingDebio 1143 in combinationwith chemo-
radiotherapy was the first drug combination in more than three
decades to significantly improve overall survival in high riskHNSCC
(includes OSCC) patients (ClinicalTrials.gov NCT02022098) (237)
and a phase III trial is currently recruiting (ClinicalTrials.gov
NCT04459715) (Table 1).
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5.4.3 Immune Checkpoint Inhibitors Coupled With
Cytokine, JAK/STAT Inhibitors
Immune checkpoint dysregulation to escape from immune
system surveillance is used by a number of cancers including
HNSCC/OSCC and GC to allow their development. Immune
checkpoint inhibitor therapy (anti- CTLA-4, PD-1 or PD-L1
antibodies) boosts the cytotoxic activity of tumour antigen-
specific T cells and has revolutionized treatment and increased
survival for a subset of cancers (292, 293). Boosting the immune
response with anti-PD-1 for both HNSCC/OSCC (96, 294) and
GC (215, 295), while proven for subsets of patients is not without
challenges, including patient selection, bio-markers and adverse
events (296, 297). Therapy for OSCC and GC is changing, and
pre-clinical studies suggest that JAK-STAT signaling could play a
role in regulating the activity of Immune Checkpoint Inhibitor
(ICI) therapies (71, 152, 153, 295). The FDA has given approval
for the use of ICI therapies for the MSI sub-type of GC (with
EBV+ also a subtype which might benefit) (77). These subtypes
are generally more immunogenic due to high mutational burden
and ICI exploits this leading to generally better outcomes (215).
However, since IFNg is a major driver of JAK-STAT1 associated
PD-L1 expression (ligand for the immune-checkpoint PD-1),
JAK-STAT therapies, which have the potential to block IFNg
signalling, may result in reduced PD-L1 expression, thereby
diminishing the effects of ICI. However, it may be possible to
circumvent this since it was recently reported that JAK2
inhibitors in combination with ICI had better therapeutic
responses, by blocking JAK signaling and repressing the effects
on PD-L1 (73). These considerations are starting to focus
attention on the immunological context of GC and particularly
STAT1 expression as an immunotherapy biomarker (56, 73,
215, 298).

These new advances are exemplified by a new era of
personalized therapy in the IMMUNOGAST phase II Trial
(ClinicalTrials.gov #NCT04739202) for recurrent GC based on
TCGA sub-type and trialling immunotherapy (anti-PD-L1,
atezolizumab) plus ipatasertib (AKT inhibitor) for EBV+ GC,
which exhibits amplified JAK2, ErbB2, PD-L1 and PD-L2
(Table 1). Similarly, for advanced solid cancers, including
HNSCC, an active phase 1b trial combines pembrolizumab
( a n t i - PD1 ) w i t h t h e JAK1 i n h i b i t o r i t a c i t i n i b
(INCB039110) (ClinicalTrials.gov #NCT02646748) (Table 1;
Figure 2A). APROPOS, a phase II clinical trial for
atezolizumab (anti-PD-L1) in combination with tocilizumab to
modulate T cell infiltration as a pre-surgery immunotherapy
(ClinicalTrials.gov identifier NCT03708224) is currently
recruiting for HNSCC (Table 1). Recent studies also highlight
the potential for smac-mimetics specifically in combination with
ICI and CAR-T-cell therapies (299–301).

Cytokine therapy is challenging because of their high degree
of pleiotropism, resulting in many adverse effects. However, their
real value in cancer therapy, particularly for oral and gastric
cancers may be in enhancing the safety of immunotherapies.
Thus, ICI or CAR-T cell therapy can result in inflammatory
toxicities, such as immune-related adverse events (irAEs) or
cytokine release syndrome (CRS). These are life threatening
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systemic diseases affecting multiple organs (302, 303). By
perturbing the inhibitory control processes of the immune
system, ipilimumab (anti-CTLA-4), atezolizumab (anti-PD-L1),
or nivolumab/pembrolizumab (anti-PD-1) (293) unleash
immune cells potentially resulting in the destruction of healthy
tissues, limiting therapy duration and otherwise durable
remission (302). Serious irAEs manifest with increased
mononuclear cells and elevated levels of inflammatory
cytokines, including IL-6 and TNF (302). In this context,
treatment of advanced GC with nivolumab has been associated
with liver injury accompanied with elevated TNF levels (14),
highlighting an opportunity for anti-TNF to be used in
conjunction with ICIT (193). A recent review on the topic
suggests that short course TNF inhibitors are safe irAE
treatment for cancer patients undergoing ICI therapy (304).
However, the safety profile for long-term TNF inhibitor use for
irAEs is lacking and further clinical studies that directly assess
the effect of TNF inhibitor treatment on ICI efficacy are required.
Data from preclinical studies hint that TNF neutralization in
combination with ICIs reduces clinical irAE and improves
antitumor efficacy in tumor models (305).

5.5 PROTAC Technology a New
Therapeutic Avenue for JAK-STAT
Pathway Inhibition
Improvements in selectivity and prevention of drug resistance in
cancer treatment may be achievable with a novel approach using
Proteolysis Targeting Chimeric (PROTAC) technology
developed by the Crews and Deshaies labs (306, 307). In one
approach, the ubiquitin-proteasome system (UPS) is hijacked for
targeted protein degradation through hetero-functional
molecules linking the target protein ligand to an E3 ubiquitin
ligase (E3) by a functional linker, resulting in the continuous and
rapid deletion of the target protein (181, 308–312). PROTACs
have been developed targeting proteins important in cancer
growth such as BTK (Bruton’s tyrosine kinase), FAK (Focal
adhesion kinase), CDK ’s (Cyclin-dependent kinases),
Bromodomain-containing protein 4 (BRD4), Mcl-1, MDM2
(312–314) for haematological malignancies (315) and solid
cancers, including a photo-controlled BRD4 PROTAC for
tongue squamous carcinoma (314).

To date only two orally available PROTACs have reached
phase II trials using CRBN (cereblon) as the E3 ligase (312).
These PROTACs are showing promising results for prostate
(ARV-110) and breast (ARV-471) cancers, targeting the
androgen or oestrogen receptors respectively (312, 313, 316).
PROTACs are also in clinical development for Bcl-xL
(ClinicalTrials.gov. NCT04886622) using an alternative E3
ligase, VHL (von Hippel-Lindau) for both hematologic and
solid tumours (312). The success of PROTACs for targeted
protein degradation has also progressed from proteasome
strategy to harness additional cellular degradation pathways
(317). Pertinently, newly emerging degradation technologies
are also expanding the scope of PROTACs (312, 318, 319) and
their development looks likely to upend the viewpoint that
transcription factors are “undruggable” and bring proteins
June 2022 | Volume 13 | Article 835997
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such as those within the NF-kB (230) and JAK-STAT (318)
signaling pathways into the druggable orbit.

Despite being considered as a therapeutic target for cancers,
attempts to target STAT3 as we have discussed have not met with
much success, due to poor target specificity and ineffectiveness in
blocking the transcriptional activity of the monomeric form (82,
222, 310, 320). However, STAT3 is an example of the application
of PROTAC technology towards the development of small
molecule STAT3 inhibitors (306, 310, 320, 321). SD-36, the
first described STAT3 PROTAC was designed and developed
by the Wang lab using the cell permeable STAT3 SH2 domain
and transcriptional inhibitor, SI-109, attached to an E3 ligase
analogue of the CRBN ligand lenalidomide (320, 322, 323). SD-
36 selectively degraded STAT3 (Figure 2), including mutated
STAT3 proteins over other STAT proteins, even though they
share a conserved SH2 domain (323) in various leukemia,
lymphoma (323) and glioma cell lines (324). Functionally in
certain leukemia and lymphoma cell lines SD-36 inhibited
STAT3 dimerization, DNA binding and target gene activity
(323). Prolonged tumor regression in mice xenografted with
leukemia, lymphoma cell lines in vivo was also achieved with SD-
36 and was well tolerated, bringing this PROTAC into the realm
of possible therapeutic utility (323). While, SD-36 is yet to enter
clinical trials, excitingly the STAT3 targeting PROTAC
developed by Kymera (KT-333, Figure 2) (321) is recruiting
for a first in human phase I trial (Feb 04, 2022, Clinical
Trials.gov. NCT05225584) for leukemia, lymphoma and non-
specified solid tumors (Table 1). Similar to SD-36, KT-333
showed selective degradation of STAT3 over other STAT
family members, apoptosis upon treatment of tumor cells,
depletion of STAT3 and down-regulation of STAT3 target
proteins (321). In pre-clinical in vivo xenograft studies KT-333,
similar to SD-36 showed a dose dependent growth suppression
of hematologic tumors and was well tolerated (321). The
development and early clinical trials of PROTACs is an
encouraging next phase in the search for STAT3 inhibitors
that may yet provide clinical benefit for STAT3-driven cancers
such as gastric and oral cancers.

Specific inhibition of select JAK family members is a
therapeutic challenge, due to the sequence similarity within
pivotal catalytic domains such as the ATP binding site.
PROTAC drugs, which destroy their target, are not necessarily
constrained to these conserved domains and therefore open up
the possibility of specifically targeting JAK family members.
Efforts are already underway to exploit this with the design of
the first of several series of heterobifunctional PROTAC
compounds targeting the JAK family (JAK1, JAK2, JAK3 and
TYK2), of proximal membrane bound proteins (259, 260, 325).
Solving the structure of JAK inhibitors (e.g. Pyrimidine 1,
Quinoxaline 2 or modification of ruxolitinib or baricitinib)
bound to the JAK2 tyrosine kinase domain enabled the design
and optimization of a series JAK PROTACS t capable of inducing
proteosomal degradation of JAK1 and JAK2 (260, 325). The
PROTACs capable of removing all possible functions of JAK
signaling, rather than just the catalytic activity traditionally
associated with JAK inhibitors themselves (259, 325). The most
Frontiers in Immunology | www.frontiersin.org 18
advanced of the JAK inhibitors are series of cereblon (CRBN)-
directed JAK PROTACs linked to derivatives of the JAK
inhibitors ruxolitinib or baricitinib tested in a panel of
leukemia/lymphoma cell lines and xenograft models of kinase-
driven acute lymphoblastic leukemia (325). These early studies
highlight the potential of JAK-directed protein degradation as a
therapeutic approach in JAK-STAT mediated diseases, however
they are yet to be tested in vivo for solid cancer models or
clinically for any disease. We speculate that PROTAC
development may extend to the targeting of other JAK-STAT
related proteins, such as cytokines (Figure 2) and that they may
be beneficial for the treatment of not only hematologic
malignancies but also extend to solid cancers including oral
and gastric cancer, diseases yet to be explored both in pre-clinical
models and in the clinic. In conclusion, PROTACS are likely to
become a welcome addition to the already available armoury of
other targeted drugs and chem-radio therapy available for
solid cancers.

5.6 Other Mechanisms of Modulating the
JAK-STAT Signaling Pathway
Tumor-induced immune suppression is common in patients
with advanced malignancies, including HNSCC and GC.
Strategies for relieving immunosuppression in HNSCC to
restore anti-tumor immune functions, include the neoadjuvant
IRX-2, derived from stimulating human PBMCs with
phytohemagglutinin (326). IRX-2 contains a cocktail of
cytokines including IL-2, IL-1b IL-6, IL-8, TNFa, GM-CSF,
and IFNg (Table 1). In vitro studies have shown that IRX-2,
enhances DC maturation, T cell activation, and NK cell
stimulation, to overcome tumor-mediated immunosuppression
by activating the tumor environment (326). In clinical settings,
IRX-2 administered with chemotherapy promotes anticancer
immune responses (234). For example, in a phase IIa trial,
patients with previously untreated HNSCC, IRX-2 increased
tumor infiltration of T cells, B cells, and DCs and was
associated with tumor reduction and prolonged patient
survival (Table 1). Follow-up and data analysis are under way
in a multi-center, randomized, phase IIbINSPIRE trial evaluating
the IRX-2 regimen as a stand-alone therapy for activating the
immune system to recognize and specifically destroy OSCC
tumors (ClinicalTrials.gov #NCT02609386). The IRX-2 regime
combined with immune checkpoint therapy is also being trialled
for HNSCC and other solid tumors (ClinicalTrials.gov
#NCT03758781) (233) (Table 1).

One of the few natural compounds tested for treating
tumorigenesis is the polyphenol curcumin (diferuloylmethane),
the yellow pigment found in turmeric. This natural compound
targets many signaling pathways and has been shown to have
multiple anti-inflammatory and anti-tumor qualities including
anti-tumor metastatic activities through a variety of mechanisms
(327). High dose curcumin (30-100mg/kg per day) reduced the
tumor inducing potential of the carcinogen 4NQO when
administered over the same period in a rat model of OSCC,
which was associated with downregulation of STAT3 (327). Oral
cancer patients given the curcumin containing drug APG-157,
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which also contains several other polyphenolic compounds,
showed a reduction of the inflammatory cytokines IL-1b, IL-6,
and IL-8 in salivary fluid, accompanied with elevated immune T
cells in the tumor tissue, suggesting its potential use in
combination with immunotherapy (328). Further studies in
GC have suggested that curcumin can prevent GC cancer cell
proliferation, invasion, metastasis, and angiogenesis, reviewed in
(329). However, it is difficult to extrapolate from these studies
into curcumin consumption due to its various effects on multiple
cellular and molecular mechanisms. In addition, it is evident
from the current and expanding treatment strategies discussed
for both oral (142) and gastric cancer that an appreciation of
patient/tumor genetics, the tumor microenvironment and
possibly the microbiome also need to be considered for further
optimized treatment strategies.
6 CONCLUSIONS

JAK-STAT/cytokine s ignal ing pathways have been
comprehensively studied due to their pivotal roles in both
inflammation and many disease conditions including cancer.
The core JAK unit activating the transcription factor STAT
element is triggered by a variety of receptors and activates a
wide range of downstream targets. Deregulated JAK-STAT
signalling and particularly dysregulation of JAK2, STAT3, Il-6
and TNF are commonly associated with driving inflammation
and carcinogenesis, including both OSCC and GC. Therefore,
the targeting of these signaling pathways with inhibitors holds
potential as clinical interventions for these cancers. There are a
number of specific inhibitors of the JAK-STAT/cytokine cascade
that have already been approved by the FDA for inflammatory
Frontiers in Immunology | www.frontiersin.org 19
conditions and which are being investigated for efficacy in
clinical trials for haematopoietic malignancies and a few select
solid tumors. However, despite promising clinical outcomes in
inflammatory immune diseases and in tumor animal studies,
toxicity issues have hindered adoption of these therapeutic
approaches in the clinic. Investigating other avenues, such as
the addition of cytokine blockade or smac-mimetics may provide
synergy for more efficacious inhibition of OSCC and GC
tumorigenic progression. More recent advances such as
blocking JAK-STAT signaling with small molecules such as
PROTACs may provide even better therapeutic precision in
conjunction with other anti-cancer agents already in the clinic
such as immunotherapy.
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