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Graves’ disease (GD) is a common autoimmune disorder with an elevation in pathogenic
autoantibodies, specifically anti-thyrotropin receptor antibodies (TRAbs), which are
secreted by autoreactive B cells. To date, there has been little research on self-reactive
B cells in GD. In the current study, we reported that a unique B-cell subset, CD11c+ B
cells, was expanded in the peripheral blood (PB) of GD patients, as detected by flow
cytometry. The frequency of CD11c+ B cells was positively correlated with serum TRAb
levels. The flow cytometry data showed that CD11c expression was higher in a variety of
B-cell subsets and that CD11c+ B cells presented a distinct immunophenotype compared
to paired CD11c- B cells. Immunohistochemical and immunofluorescence staining
indicated the presence of CD11c+CD19+ B cells in lymphocyte infiltration areas of the
GD thyroid. Flow cytometric analysis of PB and fine-needle aspiration (FNA) samples
showed that compared to PB CD11c+ B cells, CD11c+ B cells in the thyroid accumulated
and further differentiated. We found that CD11c+ B cells from the PB of GD patients were
induced to differentiate into autoreactive antibody-secreting cells (ASCs) capable of
secreting TRAbs in vitro. Luminex liquid suspension chip detection data showed that
CD11c+ B cells also secreted a variety of cytokines, including proinflammatory cytokines,
anti-inflammatory cytokines, and chemokines, which might play roles in regulating the
local inflammatory response and infiltration of lymphocytes in the thyroid. In addition, we
performed a chemotaxis assay in a Transwell chamber to verify that CD11c+ B cells were
recruited by thyroid follicular cells (TFCs) via the CXCR3-CXCL10 axis. In conclusion, our
study determined that CD11c+ B cells were involved in the pathogenesis of GD in multiple
ways and might represent a promising immunotherapeutic target in the future.
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INTRODUCTION

Graves’ disease (GD), as the most common cause of persistent
hyperthyroidism in adults (1), is an organ-specific autoimmune
disease characterized by diffuse goiter and an elevation in anti-
thyrotropin receptor antibodies (TRAbs). Some patients also
present with extrathyroidal complications, such as Graves’
orbitopathy (GO), and untreated hyperthyroidism is related to
increased risks of osteoporosis (2), fracture (3), stroke (4), and
cardiovascular events (5, 6). For the past 70 years, conventional
treatments for GD, including pharmacotherapy with antithyroid
drugs (ATDs), radioiodine (RAI) therapy, and surgery, have
remained largely unchanged despite many patients exhibiting a
substantial unmet clinical need (1, 7–10). New therapeutic options
need to be combined with greater insight into the autoimmune
pathogenesis of GD.

GD is commonly considered an archetypal B-cell-mediated
autoimmune disorder, occurring via a breach in tolerance that
allows autoreactive B cells to be activated and expand at disease
onset (11). Circulating TRAbs, as pathogenic autoantibodies, are
secreted by self-reactive B cells and behave most often as thyroid-
stimulating antibodies to activate the thyrotropin receptor in thyroid
follicular cells (TFCs), leading to hyperthyroidism (12, 13). Thus, the
elimination of autoreactive B cells may be an ideal therapy to inhibit
the productionofTRAbs inGDpatients. Todate, there is a paucity of
research focusing specifically on autoreactive B cells in GD.

A growing body of evidence shows that CD11c+ B cells, as
autoreactive B cells, have been observed to expand in various
autoimmune diseases (14–17). Transcriptome and IgH repertoire
analyses have identified CD11c+ B cells as a unique B-cell subset
distinct fromnaïve, memory, and plasma cells (18). CD11chi B cells
isolated from the peripheral blood (PB) of systemic lupus
erythematosus (SLE) patients were found to be poised to
differentiate into plasma cells and produce the majority of
autoantibodies. The expansion of CD11chi B cells in SLE was
associated with submanifestations and disease activity scores (19).
Previous studies have shown that the phenotype and frequency of
CD11c+ B cells are heterogeneous among different individuals and
diseases (20). Therefore, the pathogenicity of CD11c+ B cells in GD
patients requires further investigation, as these cells may play
critical roles in the onset and development of GD.

In the current study, we first confirmed the expansion of
CD11c+ B cells in GD patients and characterized the phenotype
of CD11c+ B cells in both the PB and thyroid of GD patients.
Furthermore, we evaluated the TRAb production and cytokine
profiles of PB CD11c+ B cells from GD patients. We found that
CD11c+ B cells were recruited by TFCs via the CXCR3-CXCL10
axis. All the results indicated that autoreactive CD11c+ B cells
were involved in the development of GD, which might represent
a novel immunotherapeutic target in GD.
MATERIALS AND METHODS

Subjects and Sample Collection
All participants were enrolled in this study after informed
consent was obtained; this study was conducted from May
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2019 to October 2021 at Peking University First Hospital.
Seventy-one GD patients (including 23 GO patients) diagnosed
according to the 2016 American Thyroid Association (ATA)
guidelines (21) and the 2021 European Group on Graves’
Orbitopathy (EUGOGO) clinical practice guidelines (22) were
enrolled in the current study. Forty-two healthy donors (HD)
were euthyroid and negative for thyroid autoantibodies,
including anti-thyroglobulin antibodies (TgAbs), anti-thyroid
peroxidase antibodies (TPOAbs) and TRAbs, and they had no
family history of thyroid diseases or relevant medical history.
Participants were excluded from this study if they had any other
autoimmune disorder or coexisting malignancy or were
undergoing immunosuppressive drug or steroid treatment.

Human whole-blood samples were collected from all the
participants. One hundred microliters of PB was taken for flow
cytometry detection, and the remaining blood pellets were
immediately used for cell sorting.

Samples collected by fine-needle aspiration (FNA) were obtained
from thyrotoxic patients who underwent fine-needle aspiration
cytology (FNAC) to determine the etiology of thyrotoxicosis (23–
26). A total of 10 patients were diagnosed with GD.

Surgical thyroid tissue samples were obtained from another 4
GD patients undergoing subtotal thyroidectomy at Peking
University First Hospital. The tissue samples were washed with
phosphate-buffered saline (PBS), immediately fixed with
formalin and embedded in paraffin.

The study complied with the Helsinki Declaration; it was
approved by the Ethics Committee of Peking University First
Hospital and conducted in accordance with approved guidelines.
Witten informed consent was obtained from all participants in
this study (2021-318).

Laboratory Testing of Thyroid
Function and Thyroid Autoantibodies
in GD Patients and HD
The levels of TSH, free triiodothyronine (fT3), free tetraiodothyronine
(fT4) [ADVIA Centaur (Siemens Healthcare Diagnostics,
USA)] , TRAbs , TgAbs and TPOAbs [Cobas e601
analyzer (Roche Diagnostics, Switzerland)] were detected by
chemiluminescence immunoassays.

Flow Cytometric Analysis
PB was collected from GD patients (n=71) and HD (n=42) and
washed for single-cell isolation for flow cytometry. For cell surface
staining, a total volume of 100 ml of single-cell suspension was
stained for surface markers in round-bottom tubes for 30 min at
room temperature (RT). If intracellular staining (T-bet staining)
was performed, cells were then fixed and permeabilized with the
True-Nuclear™ Transcription Factor Buffer Set (BioLegend, USA)
according to the manufacturer’s instructions. The fluorochrome-
conjugated anti-human antibodies were diluted and added to
samples at RT for 20 min. All detailed information on the
antibodies is provided in Supplementary Table S1. Isotype-
matched antibodies were used as negative controls. The above
antibodies were obtained from BioLegend, Inc., unless otherwise
indicated. After staining, the cell pellets were washed twice and
resuspended in 500 ml of PBS for flow cytometric analysis. All flow
March 2022 | Volume 13 | Article 836347
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cytometry experiments were performed on a FACSCanto II flow
cytometer and were analyzed with FlowJo software (Version 10,
FlowJo, USA).

All FNA samples (n=10) from GD patients were immediately
washed with PBS and passed through 40-mm cell strainers to
remove potential clumps for flow cytometry assays according to
the methods described above.

Immunohistochemical Staining
for Human CD11c, CD19 and CXCL10
in GD Thyroid Tissues
Formalin-fixed paraffin-embedded (FFPE) blocks of GD
thyroid tissues (n=4) were cut into 4-mm serial sections for
immunohistochemical staining. Immunostaining for human
CD11c (at a 1:300 dilution, Abcam, Cambridge, UK), human
CD19 (at a 1:400 dilution, Abcam, Cambridge, UK), or CXCL10
(at a 1:200 dilution, Proteintech, China) was performed by 3,3’-
diaminobenzidine (DAB) staining (Zhongshan Jinqiao
Biotechnology, Beijing, China) according to the manufacturer’s
instructions. CD19 antigen repair was conducted using citric
acid solution (pH=6.0) for 15 min by microwave heating. CD11c
and CXCL10 antigen repair was performed with Tris–EDTA
buffer and heated for 15 min in a microwave. Two sections were
prepared as negative controls for each immunostaining batch.

Multiplex Immunofluorescence Staining of
GD Thyroid Tissues
FFPE GD thyroid tissues (n=4) were cut into 4-mm sections for
immunofluorescence staining. Multiplex immunofluorescence
staining was performed by using a PANO 4-plex IHC kit
(Panovue, China) according to the manufacturer’s instructions.
Briefly, sections were deparaffinized and then subjected to
antigen repair. The antigen repair conditions were the same as
immunohistochemical staining for human CD11c and CD19.
Then, primary antibodies were sequentially applied after
blocking, followed by HRP-conjugated antibody incubation.
The details and usage of primary antibodies and the
fluorescent dye in kit were provided in Supplementary Table
S2. After each TSA staining round, the slides were heated in a
microwave to remove all primary and detection antibodies.
Finally, 4’-6’-diamidino-2-phenylindole (DAPI; Sigma–Aldrich,
USA) was used to stain cell nuclei.

Cell Sorting of Total B Cells, CD11c+

B Cells, and CD11c- B Cells From PB
Samples With Immunomagnetic Beads
To detect the functions of total B cells, CD11c+ B cells, and
CD11c- B cells from GD patients, remaining whole human PB
samples were harvested after density gradient centrifugation with
Ficoll-Paque PLUS (GE Life Sciences, USA), and peripheral
blood mononuclear cells (PBMCs) were separated for
subsequent magnetic bead sorting. B cells were isolated using
the MojoSort™ Human B Cell (CD43-) Negative Isolation Kit
(BioLegend, USA) according to the manufacturer’s protocol.
Purified B cells were further stained with PE-conjugated
Frontiers in Immunology | www.frontiersin.org 3
anti-CD11c at 4°C in the dark for 30 min, and then CD11c+ B
cells and CD11c- B cells were sorted by using MojoSort™

Human anti-PE Nanobeads (BioLegend, USA). The purity of
sorted B cells was detected on a FACSCanto II flow cytometer.

Differentiation of B Cells Into
Antibody-Secreting Cells (ASCs) In Vitro
To investigate the IgG secretion of total B cells, CD11c+ B cells,
and CD11c- B cells from the PB of GD patients, we established a
controlled culture system to induce B cells to differentiate into
ASCs. B cells, CD11c+ B cells, and CD11c- B cells isolated from
the PB of GD patients were cultured separately at a density of
1×105 cells per well in a total volume of 200 ml in 96-well round-
bottom plates. A TLR7 agonist (1 µg/ml, R848, resiquimod, In
vivoGen, USA) and 100 U/ml IL-2 (PeproTech, USA) were
added to costimulate the cells to drive the extrafollicular B-cell
response for 9-12 days (27). For continuous detection of total
IgG in the culture supernatant, the differentiation culture was
extended up to 12 days, and the culture supernatant was
collected for subsequent detection. The percentage of
plasmablasts was detected by flow cytometry according to the
procedure described above. The culture medium of the B-cell
differentiation culture experiment was RPMI 1640 medium
supplemented with 10% FBS, 100 U/ml penicillin, 100 U/ml
streptomycin, 2 mM L-glutamine (all from Gibco, USA), and
Insulin Transferrin Selenium (ITS; 1.0 mg/ml insulin, 1.0 mg/ml
transferrin, 3.4 µM selenium, ScienCell, USA). Experiments were
performed at least three times with different donors.

Measurement of IgG and TRAb
Concentrations in Culture
Supernatants In Vitro
The ELISA double-antibody sandwich method was performed to
measure the titers of IgG secreted by B cells, CD11c+ B cells, and
CD11c- B cells from the PB of GD patients into culture
supernatants as previously described (28, 29). Briefly, a 96-well
plain plate was precoated with a human IgG capture antibody
(1:400 dilution, Abcam, UK). After blocking with 3% bovine
serum albumin (BSA, Sigma–Aldrich), the culture supernatant at
the optimal dilution was added to the plate. HRP-conjugated
anti-human IgG (1:2000, Abcam, UK) was incubated with the
sample and reacted with O-phenylenediamine (OPD; Sigma–
Aldrich, USA). The absorbance at 492 nm was determined with a
microplate reader, and the titers of IgG were calculated based on
the absorbance readings of the IgG standard curve.

The titer of TRAbs in culture supernatants was measured with
the Human TSHR-Ab (Anti-Thyroid Stimulating Hormone
Receptor) ELISA Kit (Elabscience, China) according to the
manufacturer’s instructions. In brief, undiluted samples were
added to precoated wells and incubated with a capture antibody
for 90 min at 37°C. The wells were aspirated and then treated
with biotinylated TSHR. Then, streptavidin-HRP was added to
the plate, and 3,3’,5,5’-tetramethylbenzidine (TMB), as the
substrate, was added to the wells and allowed to react for
20 min. Following the addition of a stop solution, the
absorbance at 450 nm was recorded with a microplate reader.
March 2022 | Volume 13 | Article 836347
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Luminex Liquid Suspension Chip for
Detection of the Cytokine Secretion Profile
in Culture Supernatants
To determine the difference in cytokine profiles between CD11c+

B cells and CD11c- B cells, five batches of paired CD11c+ B cells
and CD11c- B cells from 15 GD patients were seeded in a round-
bottom 96-well plate at 2×105 cells/well. Then, the sorted B cells
were activated with 10 µg/ml Phaseolus vulgaris agglutinin (PHA;
Sigma–Aldrich, USA) and cultured in a 37°C incubator with 5%
CO2 for 72 h. Culture supernatant samples for the paired
CD11c+ B cells and CD11c- B cells were collected and stored at
-80°C for Luminex liquid suspension chip detection, which was
conducted by Wayen Biotechnologies (Shanghai, China). The
Bio-Plex Pro Human Cytokine Grp I Panel 27-plex (Bio–Rad,
USA) was used to quantify the concentrations of cytokines
secreted by CD11c+ B cells and CD11c- B cells from GD
patients according to the manufacturer’s instructions. The
lower limits of detection (LLOD) of all cytokines in the
Luminex liquid suspension chip are shown in Supplementary
Table S3.

Transwell Chamber to Evaluate the
Chemotactic Ability of CD11c+ B Cells
To investigate whether CD11c+ B cells from GD patients were
recruited by TFCs, the thyroid gland epithelial cell line Nthy-
ori3-1 stimulated with IFN-g was used to mimic the thyroid
microenvironment of recent-onset GD (30, 31). Nthy-ori3-1 cells
were obtained from the Cell Bank of the Chinese Academy of
Sciences (Shanghai, China) and authenticated at Genetic Testing
Biotechnology Corporation (Suzhou, China). Nthy-ori3-1 cells
were cultured in RPMI 1640 medium supplemented with 10%
FBS and 100 U/ml penicillin and streptomycin and seeded in a
12-well plate at a density of 1×105 cells/ml. Then, 1000 U/ml
IFN-g (PeproTech, USA) was added to stimulate the Nthy-ori3-1
cells for 72 h at 37°C in 5% CO2. The culture supernatants were
centrifuged to remove cells and debris and collected to measure
the concentration of CXCL10 by Human IFN gamma Uncoated
ELISA (Invitrogen, USA) according to the manufacturer’s
instructions. The remaining samples were stored at -80°C.

Twenty-four-well Transwell chambers (Corning, USA) with
8-mm-pore filters were used to analyze the migration of B cells
from GD patients. A total of 1×105 B cells, CD11c+ B cells or
CD11c- B cells in 200 ml of culture medium were added to the
upper chamber. Then, 600 ml of supernatant from a Nthy-ori3-1-
cell culture stimulated with IFN-g was added to the bottom
chamber to mimic the thyroid microenvironment of GD. After
3 h of migration, the cells in both the upper and lower chambers
were collected, counted, and evaluated by flow cytometry
according to the protocol described above. Experiments were
performed at least three times with different donors.

Statistical Analysis
All statistical analyses were performed with GraphPad Prism 8.0
(GraphPad Software Inc., USA). Normally distributed data are
expressed as the mean ± standard deviation (SD); otherwise, data
are expressed as the median and interquartile range (IQR), as
Frontiers in Immunology | www.frontiersin.org 4
appropriate. Count data were analyzed with the chi-square test.
Continuous variables with a normal distribution were assessed
with a paired or unpaired Student’s t test for comparisons
between two groups and with ANOVA for multigroup
comparisons. For nonnormally distributed data, nonparametric
Mann–Whitney U tests were used for two-group comparisons,
and the Kruskal–Wallis test was used for multigroup
comparisons. Correlation analyses were performed using the
Spearman correlation test for nonparametric distributions.
P <0.05 was considered statistically significant.
RESULTS

Expansion of CD11c+ B Cells in GD
Patients Compared to HD Patients
We first compared the demographic and clinical characteristics
of GD patients and HD. As shown in Table 1, the two groups
were well matched with regard to age (P=0.891) and sex
(P=0.173) distributions. The levels of thyroid autoantibodies,
including TRAbs, TPOAbs, and TgAbs, were significantly
higher in GD patients than in HD patients. In regard to
thyroid function, significantly higher levels of fT4 and a lower
level of TSH were observed in GD patients than in HD
patients (P<0.001).

The gating strategy for CD19+ B cells and CD11c+ B cells is
shown in Supplementary Figure S1. In the PB, no significant
difference in the CD19+ B-cell frequency was observed between
GD patients and HD (Supplementary Figure S2). Strikingly, the
frequency of CD11c+ B cells in PBMCs was significantly
increased in GD patients (P<0.001; Figures 1A, B), which
indicated that the expansion of this abnormal B-cell subset
rather than the expansion of total B cells was associated with
the occurrence of GD. We further compared the frequency of
CD11c+ B cells among HD, non-GO patients, and GO patients
and found that CD11c+ B cells were significantly expanded in
both non-GO and GO patients compared to HD (P<0.001)
TABLE 1 | Demographic and clinical characteristics of healthy donors and
Graves’ disease patients.

Group Healthy Donors Graves’ disease p value

n 42 71 –

Sex M/F 9/33 16/55 0.891
Age (years) 49.0 (37.5-57.3) 50.11 (35.00-62.00) 0.173
fT4 (pmol/L) 12.42 (10.86-14.03) 15.78 (13.36-20.30) <0.001
fT3 (pmol/L) 4.87 (4.58-5.19) 5.12 (4.48-6.73) 0.135
TSH (mIU/ml) 2.27 (1.65-3.64) 0.38 (0.01-1.22) <0.001
TRAb (IU/ml) 0.3 (0.30-0.35) 7.34 (2.59-14.96) <0.001
TPOAb (IU/ml) 6.15 (5.00-8.50) 108.10 (23.24-278.1) <0.001
TgAb (IU/ml) 10.00 (10.00-10.55) 107.30 (15.48-483.10) <0.001
March
 2022 | Volume 13 | Article
fT4, free tetraiodothyronine; fT3, free triiodothyronine; TSH, thyroid-stimulating hormone;
TRAb, anti-thyrotropin receptor antibody; TgAb, anti-thyroglobulin antibody; TPOAb, anti-
thyroid peroxidase antibody.
Nonnormally distributed data are expressed as the median and IQR. The counting data were
analyzed by a chi-square test. Continuous variables with nonnormal distributions were
assessed with Mann–Whitney U tests. P <0.05 was considered statistically significant.
836347

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cao et al. B-Cell Participating in GD Pathogenesis
(Figure 1C). No correlation was found between the frequency of
CD11c+ B cells and age in GD patients (Supplementary
Figure S3).

CD11c+ B Cells From the PB of GD
Patients Were Correlated With the Levels
of Thyroid Autoantibodies
We further analyzed the relationships between the frequency of
CD11c+ B cells and the levels of thyroid autoantibodies. In all GD
patients, we found that the frequency of CD11c+ B cells showed a
significantly positive correlation with the titer of TRAbs (r=0.66,
P<0.001) and a weak positive correlation with the titer of TgAbs
(r=0.30, P=0.017). No association was found with the TPOAb
titer (Figures 2A–C). In patients with GO, we found that the
levels of both TRAbs and TgAbs were positively related to the
frequency of CD11c+ B cells (r=0.69 for TRAbs, P<0.001; r=0.47
for TgAbs, P=0.036), but no association was identified between
the TPOAb level and CD11c+ B-cell frequency (Figures 2D–F).
In the group of non-GO patients, a strong correlation was
observed only between the titer of TRAbs and the frequency of
CD11c+ B cells (r=0.64, P<0.0001) (Figures 2G–I). In addition,
no correlations were found between thyroid function and the
frequency of CD11c+ B cells (Supplementary Figure S4).

CD11c Was Expressed at Higher Levels in
a Variety of PB Memory B-Cell Subsets
and ASCs in Both GD and HD Groups
To analyze the expression distribution of CD11c in various B-cell
subsets inbothGDandHDgroups,B cellswerefirst gatedbyCD19,
and then the expression of IgD, CD27, CD38 and CD138 allowed
the distinction of thirteen B-cell subsets (Supplementary Figure
S5), including naïve B cells (CD27-IgD+), unswitched memory B
cells (CD27+IgD+), switched memory B cells (CD27+IgD-), double
negative memory B cells (CD27-IgD-) (32), naïve mature B cells
(CD38-IgD+), activated naïve mature B cells (CD38+IgD+), early
memory mature B cells/germinal center B cells (CD38+IgD-/
CD38highIgD-), resting memory B cells (CD38-IgD-) (33),
transitional B cells (CD38-CD27+), plasmablasts (CD38+CD27+)
(32), transitional-like B cells (CD38+CD27-) (34), memory B-cell
Frontiers in Immunology | www.frontiersin.org 5
precursors (CD38-CD27-) (35, 36), andplasma cells (CD138+) (37).
Compared to total CD19+ B cells, CD11c was expressed at higher
levels in unswitchedmemoryB cells, switchedmemoryB cells, early
memory mature B cells/germinal center B cells, plasmablasts and
plasmacells inGDpatients (Figure3A). In theHDgroup,CD11c in
the B-cell subset showed a similar expression distribution to that in
GD patients (Figure 3B). This result indicated that CD11c+B cells
may share a similar qualitative distribution between GD patients
and healthy donors, which is consistent with the results found in
SLE and primary Sjögren’s syndrome (pSS) (17). Furthermore, we
compared the frequency of CD11c+ cells in various B-cell subsets
between the HD and GD groups. Our data showed that a higher
frequency of CD11c+ B cells was found in some B subpopulations,
including naïve B cells, unswitched memory B cells, double-
negative memory B cells, naïve mature B cells, resting memory B
cells, transitional B cells, transitional-likeB cells, andmemoryB-cell
precursors in GD (Figure 3C).

Phenotypes of CD11c+ B Cells in the PB of
GD Patients
To characterize and fully understand the differentiation stage of
CD11c+ B cells in the PB of GD patients, we examined the cell-
surface expression of conventional B-cell antigens and chemokine
receptors and the intracellular expression of T-bet. The gating
strategy for the analysis of paired CD11c+ B cells and CD11c- B
cells in each sample is shown in Supplementary Figure S6, and
example gating plots of CD11c+ B cells and CD11c- B cells were
generatedas shown inFigure4A. InGDpatients, the frequency and
mean fluorescence intensity (MFI) of the CD38+ B cells, CD27+ B
cells, andCD138+ B-cell compartments were enriched inCD11c+ B
cells compared to paired CD11c- B cells (Figures 4B, C, E),
suggesting that CD11c+ B cells represent a subset of antigen-
experienced B cells. The MFI, but not the frequency of IgD, was
higher inCD11c+ B cells than in pairedCD11c- B cells (Figure 4D).
The percentage and MFI of T-bet+ B cells were particularly
increased in CD11c+ B cells compared to paired CD11c- B cells
(Figure 4F). An unconventional pattern of chemokine receptor
expressionwas found inCD11c+Bcells,with significantly increased
expression of CXCR3 and reduced expression of CXCR5
A B C

FIGURE 1 | Frequency of CD11c+ B cells in healthy donors (HD) and Graves’ disease (GD) patients. (A) Representative flow cytometric plots of HD and GD patients.
(B) Frequency of CD11c+ B cells in CD19+ B cells of HD and GD patients. (C) Frequency of CD11c+ B cells in CD19+ B cells of HD, non-Graves’ ophthalmopathy
(non-GO) patients, and GO patients. Nonnormally distributed data are expressed as the median and IQR, assessed by Mann–Whitney U tests. P < 0.05 was
considered statistically significant. ns, not significant; ****P < 0.0001.
March 2022 | Volume 13 | Article 836347
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(Figures 4G, H), which are involved in migration to sites of
inflammation (38). In addition, the population of CD32b+ B cells
and CD21low B cells, which have been reported to expand as
potential autoreactive B cells in various autoimmune diseases
(39–42), was enriched in CD11c+ B cells compared to paired
CD11c- B cells (Figures 4I, J).

CD11c+ B Cells Infiltrated the Thyroid of
GD Patients With a Phenotype Similar to
That of CD11c+ B Cells in the PB
Immunostaining of serial thyroid sections showed that CD11c+ B
cells were observed in the lymphocyte infiltration areas of the
thyroid of GD patients (Figure 5A). The coexpression of CD11c
(green) and CD19 (red) appeared in yellow (Figure 5B). Those
CD11c-expressing cells that did not colocalize with CD19 may
include dendritic cells, monocytes, macrophages, granulocytes,
and natural killer cells (43, 44), which may play a complex role as
Frontiers in Immunology | www.frontiersin.org 6
antigen presenting cells and immune effector cells (45–47).
Furthermore, we evaluated FNA samples by flow cytometry to
further analyze the phenotype of CD11c+ B cells in the thyroid.
The gating strategy for phenotypic analysis of paired CD11c+ B
cells and CD11c- B cells from FNA samples is shown in
Figure 5C. The frequencies of CD38+, CD27+, and CD138+

cells and the MFI of CD138 were enriched in CD11c+ B cells
from FNA samples compared to paired CD11c- B cells
(Figures 5D, E, G). Neither the positive cell proportion nor
the MFI for IgD was found to be significantly different between
paired CD11c+ B cells and CD11c- B cells (Figure 5F). Both the
positive cell frequency and MFI for T-bet were significantly
increased in CD11c+ B cells compared to paired CD11c- B cells
(Figure 5H). The phenotypic characteristics of CD11c+ B cells in
the FNA samples were consistent with those of CD11c+ B cells
in the PB, which indicated that these cell populations might have
the same origin.
A CB
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FIGURE 2 | Analysis of the correlations between the frequency of CD11c+ B cells and the levels of thyroid autoantibodies. (A–C) Linear correlation analysis
between the levels of anti-thyrotropin receptor antibodies (TRAbs), anti-thyroglobulin antibodies (TgAbs), or anti-thyroid peroxidase antibodies (TPOAbs) and the
frequency of CD11c+ B cells in CD19+ B cells for all enrolled GD patients. (D–F) Linear correlation analysis between the titer of TRAbs, TgAbs, or TPOAbs and
the frequency of CD11c+ B cells in CD19+ B cells for enrolled GO patients. (G–I) Linear correlation analysis between the titer of TRAbs, TgAbs, or TPOAbs and
the frequency of CD11c+ B cells in CD19+ B cells for enrolled non-GO patients. The correlation analyses above were performed using the Spearman correlation
test. P < 0.05 was considered statistically significant.
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FIGURE 3 | Expression distribution of CD11c in a variety of B-cell subsets. (A, B) Total CD19+ B cells were divided into 13 B-cell subsets according to the expression of
IgD, CD27, CD38, and CD138: naïve B cells (CD27-IgD+), unswitched memory B cells (CD27+IgD+), switched memory B cells (CD27+IgD-), double negative memory B cells
(CD27-IgD-), naïve mature B cells (CD38-IgD+), activated naïve mature B cells (CD38+IgD+), early memory mature B cells/germinal center B cells (CD38+IgD-/CD38highIgD-),
resting memory B cells (CD38-IgD-), transitional B cells (CD38-CD27+), plasmablasts (CD38+CD27+), transitional-like B cells (CD38+CD27-), memory B-cell precursors (CD38-

CD27-), and plasma cells (CD138+). Comparison of the frequency of CD11c+ B cells in the above 13 B-cell subsets in 68 GD patients and 18 HD patients. Nonnormally
distributed data are expressed as the median and IQR, assessed by the Kruskal–Wallis multiple comparison test. P < 0.05 was considered statistically significant. *compared to
total B cells, P < 0.05; ** compared to total B cells, P < 0.01; *** compared to total B cells, P < 0.001; **** compared to total B cells, P < 0.0001. (C) The comparison of CD11c+

B-cellcell frequency in 13 kinds of B-cell subsets between the HD group and GD group. Nonnormally distributed data are expressed as the median and IQR, assessed by
Mann–Whitney U tests. P < 0.05 was considered statistically significant. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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FIGURE 4 | Phenotype of paired CD11c+ B cells and CD11c- B cells in the peripheral blood (PB) of GD patients. (A) Representative flow cytometric plots of
CD11c+ B cells and CD11c- B cells in the PB of GD patients. (B–J) Comparative overlapped histograms of the PB example in CD11c+ and CD11c- B cells for
compared markers (left). Comparison between the frequency of subsets of CD11c+ B cells and that of paired CD11c- B cells in each PB sample (middle). Comparison
between the mean fluorescence intensities (MFIs) of the representative phenotype of CD11c+ B cells and that of paired CD11c- B cells in each PB sample (right). The
comparison metrics included conventional antigens (CD38, CD27, IgD, and CD138), an unconventional antigen (T-bet), chemokine receptors (CXCR3 and CXCR5),
and autoimmune-related antigens (CD32 and CD21). Data were compared between two groups with a paired Student’s t test. P < 0.05 was considered statistically
significant. ns, not significant; **P < 0.01; ***P < 0.001; ****P < 0.0001.
Frontiers in Immunology | www.frontiersin.org March 2022 | Volume 13 | Article 8363478

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cao et al. B-Cell Participating in GD Pathogenesis
A

B

C D

E F

G H

FIGURE 5 | CD11c+ B cells in the thyroid of GD patients and phenotypic analysis. (A) Immunohistochemical staining for CD11c and CD19 in serial sections of
thyroid tissue from two GD patients (200-fold magnification). (B) Immunofluorescence staining for CD11c (green) and CD19 (red) and DAPI (blue) in thyroid sections
(200-fold magnification) from two GD patients. (C) Representative flow cytometric plots of paired CD11c+ B cells and CD11c- B cells in FNA samples from GD patients.
(D–H) Comparative overlapped histograms of FNA example in CD11c+B and CD11c- B cells for compared markers (left). Comparison between the frequency of positive
cell populations in CD11c+ B cells and that in paired CD11c- B cells in FNA samples (middle). Comparison between the mean fluorescence intensities (MFIs) of the
representative phenotype in CD11c+ B cells and those in paired CD11c- B cells in FNA samples (right). The comparison metrics included conventional antigens (CD38,
CD27, IgD, and CD138) and an unconventional antigen (T-bet). Data were compared between two groups with a paired Student’s t test. P < 0.05 was considered
statistically significant. ns, no significance; *P < 0.05; **P < 0.01.
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CD11c+ B Cells Further Differentiate in the
Thyroid Compared With the PB in GD
We further compared the phenotype between circulating CD11c+ B
cells in the PB and thyroid-infiltrated CD11c+ B cells in FNA
samples by flow cytometry. The demographic and clinical
characteristics of the enrolled GD patients are shown in Table 2.
Both age (P=0.078) and sex (P=0.857) were well matched. No
significant difference in patient thyroid autoantibody levels was
observed between the PB group and FNA group. A higher
frequency of CD11c+ B cells was observed in the FNA group than
in the PB group (Figure 6A, B), which indicated that CD11c+ B cells
accumulated in the thyroid compared to the PB. Next, we compared
the phenotypes of CD11c+ B cells from PB samples and FNA
samples and found that the percentages of CD27+ B cells and
CD138+ B cells were significantly enriched in FNA samples,
showing a higher MFI, compared to PB samples (Figures 6D, F).
The frequency of IgD+CD11c+ B cells in FNA samples tended to
show a decrease compared to that in the PB (Figure 6E), which
indicated that CD11c+ B cells were postswitching and antigen
experienced (19). In addition, CD11c+ B cells expressed T-bet at a
higher frequency in the thyroid than in the PB (Figure 6G). The
above findings indicated that CD11c+ B cells in the thyroid
underwent further differentiation into ASCs compared to CD11c+

B cells in the PB.

CD11c+ B Cells are Poised to
Differentiate to Plasma Cells
and Produce TRAbs In Vitro
As our evidence suggested that CD11c+ B cells showed a strong
correlation with TRAb levels and that their phenotype was
associated with ASCs, we sorted and induced CD11c+ B cells in
vitro to clarify whether these cells could differentiate into
autoreactive ASCs that produce autoantibodies. We found that
TLR7 agonist-induced total B cells from GD patients differentiated
into ASCs and that IgG in culture supernatants was strikingly
increased on day 9 (Figures 7A, B and Supplementary Figure S7).
Next, we applied the culture system to separately evaluate total B
Frontiers in Immunology | www.frontiersin.org 10
cells, CD11c-B cells, and CD11c+ B cells from GD patients
(Figure 7C). We found that the concentrations of both IgG and
TRAbs were significantly increased in CD11c+ B cells compared to
paired CD11c- B cells (Figures 7D, E). Depletion of CD11c+ B cells
from the total B-cell population substantially attenuated the
secretion of IgG and TRAbs (Figures 7F, G).

Cytokine Secretion Profile of CD11c+

B Cells From GD Patients
To further elucidate the cytokine secretion pattern of CD11c+ B cells
from GD patients, we detected the cytokines in culture supernatants
secreted by PB CD11c+ B cells, including a variety of interleukins,
interferons, chemokines, and growth factors. The cytokine
concentration of all samples was detected above the lower limit of
detection (LLOD) in a Luminex liquid suspension chip assay. Our
data showed that CD11c+ B cells exhibited a cytokine profile distinct
from that of paired CD11c- B cells. All detectable cytokines are
shown as a heatmap in Figure 8A. The levels of proinflammatory
cytokines, including IL-1b, IL-6, IL-17A, IFN-g, and IL-9, were
significantly higher in CD11c+ B cells than in CD11c- B cells (all
P<0.05, Figure 8B). The levels of anti-inflammatory cytokines (IL-
1ra P<0.05, IL-10 P=0.085, Figure 8B) were also increased in the
supernatant of CD11c+ B cells, indicating that these factors may
exert a protective effect to limit immune responses. A number of
chemokines, including IL-8 (CXCL8), CXCL10, RANTES (CCL5),
MIP-1a/b, and monocyte chemoattractant protein-1 (MCP-1,
CCL2), were significantly increased in CD11c+ B cells compared
to paired CD11c- B cells after activation with PHA. These results
indicated that CD11c+ B cells might be involved in the migration of
various immune cells to inflammatory sites in the thyroid. The
concentration of platelet-derived growth factor-BB (PDGF-BB) was
increased in the supernatant of CD11c+ B cells compared to that of
paired CD11c- B cells, which was reported to exacerbate the
immunopathological responses of orbital fibroblasts in GO (48).
The above findings for multiple cytokines indicated that CD11c+ B
cells might play a complex role in the development of GD.

CD11c+ B Cells Were Recruited by TFCs
via the CXCR3-CXCL10 Axis
It has been reported that IFN-g and CXCL10 are increased in both
the thyroid tissue and circulation of recent-onset GD patients and
play critical roles in recruiting CXCR3+ lymphocytes into the
thyroid (49–51). Thus, we speculated that CXCL10 may recruit
CD11c+ B cells by binding to CXCR3. We first confirmed the
presence of CXCL10 in both TFCs and lymphocyte infiltration
areas of GD thyroid tissue (Figure 9A). A thyroid cell line (Nthy-
ori3-1) secreted CXCL10 after stimulation with IFN-g (Figure 9B).
Furthermore, we used a Transwell chamber to determine the
migratory capacity of CD11c+ B cells. Culture supernatants of
Nthy-ori3-1 stimulated with IFN-g (referred to as “IFN-g treated
supernatants”) were placed in the bottom chamber to mimic the
microenvironment of the recent-onset GD thyroid. We found that
the number of migrated B cells showed no significant difference
between GD patients and HD (Figure 9C), but the frequency of
CD11c+ B cells in the bottom chamber was significantly increased
compared to that in the upper chamber (Figure 9D), which
TABLE 2 | Demographic and clinical characteristics of GD patients in the
peripheral blood and fine-needle aspiration (FNA) groups.

Population Peripheral blood group FNA group p value

n 71 10 –

Sex M/F, n 16/55 2/8 0.857
Age (years) 50.11 (35.00-62.00) 35.00 (26.50-51.00) 0.078
TRAb (IU/ml) 7.34 (2.59-14.96) 3.39 (1.60-15.19) 0.438
TPOAb (IU/ml) 108.10 (23.24-278.1) 147.10 (96.72-418.10) 0.212
TgAb (IU/ml) 107.30 (15.48-483.10) 299.10 (19.45-557.40) 0.963
CD11c+B cells
(% in total B cells)

11.20 (5.79-20.10) 35.60 (19.28-59.30) <0.001
TRAb, anti-thyrotropin receptor antibody; TgAb, anti-thyroglobulin antibody; TPOAb, anti-
thyroid peroxidase antibody.
The thyroid autoantibodies in the two groups of participants are presented as serum
concentrations.
Nonnormally distributed data are expressed as the median and IQR. The counting data were
analyzed by a chi-square test. Continuous variables with nonnormal distributions were
assessed with Mann–Whitney U tests. P < 0.05 was considered statistically significant.
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FIGURE 6 | Comparison of CD11c+ B cells between peripheral blood (PB) and fine-needle aspiration (FNA) samples from GD patients. (A) Representative flow cytometric
plots of CD11c+ B cells in PB and FNA samples from GD patients. (B) Frequency of CD11c+ B cells in CD19+ B cells for PB and FNA samples from GD patients. (C–G)
Comparison between the frequency of the positive cell subset in PB CD11c+ B cells and that in FNA CD11c+ B cells (left). Comparison between the mean fluorescence
intensities (MFIs) of the representative phenotype in PB CD11c+ B cells and that in FNA CD11c+ B cells (right). The comparison metrics included conventional antigens
(CD38, CD27, IgD, and CD138) and an unconventional antigen (T-bet). Nonnormally distributed data are expressed as the median and IQR, assessed by nonparametric
Mann–Whitney U tests. P < 0.05 was considered statistically significant. ns, not significant; *P < 0.05; ***P < 0.001; ****P < 0.0001.
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indicated that CD11c+ B cells showed a higher migratory capacity
than other CD19+ B cells. Next, we loaded sorted CD11c+ B cells
and CD11c- B cells from GD patients into the upper chambers, and
IFN-g-treated supernatants were added to the bottom chamber
(Figure 9E). After 3 h, we found that more CD11c+ B cells than
CD11c- B cells migrated, and inhibition with an anti-CXCL10
antibody significantly reduced the percentage of migrated CD11c+

B cells in the bottom chamber (Figure 9F). The above findings
suggested that CD11c+ B cells were recruited by TFCs via the
CXCR3-CXCL10 axis.
DISCUSSION

Here, we identified a unique B-cell subset expressing CD11c that
expanded in the PB and accumulated in the thyroid of GD
Frontiers in Immunology | www.frontiersin.org 12
patients. We found that CD11c+ B cells play an important role in
the pathogenesis of GD in the thyroid, as shown in Figure 10.
Distinct expression patterns of chemokine receptors were
observed in CD11c+ B cells, with increased expression of
CXCR3 and downregulation of CXCR5, which facilitated the
recruitment of these cells to sites of inflammation (49).
Consistent with previous studies (52, 53), our study proved
that TFCs secreted CXCL10 after stimulation with IFN-g,
which recruited CD11c+ B cells by binding to CXCR3. CD11c+

B cells secreted IFN-g after activation, which indicated that
infiltrated CXCR3+CD11c+ B cells and TFCs might form a
positive feedback loop to recruit CXCR3+ lymphocytes to
infiltrate the thyroid gland (53). CD11c+ B cells showed
intrinsically high expression of T-bet, which is essential for the
IFN-g-induced differentiation of ASCs (54), and were poised to
differentiate into autoreactive ASCs that secrete IgG and TRAbs.
A B
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FIGURE 7 | CD11c+ B cells are activated to differentiate into autoreactive ASCs that secrete IgG and TRAbs. (A) Representative flow cytometric plots of
plasmablasts (CD27highCD38high B cells, top right panel) in CD19+ B cells from GD patients before culture (left, day 0) and after 9 days of culture (right, day 9).
(B) The measurement of IgG in culture supernatants was carried out continuously for up to 12 days. Data were assessed by ANOVA, and the groups were
compared between day 0 and days 3, 6, 9, and 12, with the results marked above the histogram bars. (C) Representative flow cytometric plots of total CD19+

B cells, CD11c- B cells, and CD11c+ B cells from GD patients. (D) Comparison of the IgG concentration in culture supernatants between paired CD11c+ B cells
and CD11c- B cells in each batch from different GD patients. (E) Comparison of the TRAb concentration in culture supernatants between paired CD11c+ B cells
and CD11c- B cells in each batch from different GD patients. (F) Comparison of the IgG concentration in culture supernatants between paired total B cells and
CD11c- B cells in each batch from different GD patients. (G) Comparison of the TRAb concentration in culture supernatants between paired total B cells and
CD11c- B cells in each batch from different GD patients. Data are represented as the mean ± SD and were compared between two groups with a paired
Student’s t test. P < 0.05 was considered statistically significant. ns, not significant; *P < 0.05; **P < 0.01; ****P < 0.0001.
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In addition, the unique pattern of chemokines indicated that
CD11c+ B cells played a critical role in recruiting various
lymphocytes into the thyroid, thereby expanding the area of
lymphocyte infiltration and promoting the occurrence and
development of GD. We first demonstrated that CD11c+ B
cells, as an autoreactive and pathogenic B-cell subset, are
involved in the pathogenesis of GD in multiple ways.

Single-cell sequencing of SLE and primary Sjögren’s syndrome
patients in a previous study showed that CD11c+ B cells were
enriched in atypical memory cells (17). In our study, phenotypic
analysis showed that CD11c+ B cells in GD were associated with the
Frontiers in Immunology | www.frontiersin.org 13
populations of memory cells, plasmablasts, and plasma cells.
Remarkably, the frequency of CD11c+ B cells was positively
correlated with the titers of thyroid autoantibodies, especially
TRAbs, which indicated that CD11c+ B cells might participate in
the onset of GD by secreting thyroid autoantibodies. Consistent
with previous studies in other autoimmune diseases (17), some
inhibitory expression patterns, such as the CD21loCD32bhiCD11c+

phenotype, were also observed in the CD11c+ B cells of GD patients.
CD21lo B cells were reported to represent anergic B cells (55) and to
be enriched in a number of autoimmune diseases. CD32b, an
inhibitory receptor, was observed to suppress the activation of
A

B

FIGURE 8 | Cytokine secretion profile of paired CD11c+ B cells and CD11c- B cells from GD patients. (A) Cytokine secretion pattern heatmap of paired CD11c+ B
cells and CD11c- B cells from 5 batches of GD patients evaluated with a Luminex liquid suspension chip. (B) Cytokines with a significant change or notable trend
between paired CD11c+ B cells and CD11c- B cells are displayed. Paired Student’s t test. P < 0.1 was considered indicative of a trend; P < 0.05 was considered
statistically significant. ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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autoreactive B cells with defective central tolerance and restrict ASC
differentiation (56, 57). The inhibitory expression patterns of
CD11c+ B cells may act as self-limited regulatory surface factors
of these autoreactive B cells to maintain a relatively low frequency in
the periphery of HD.

Our data indicated that CD11c+ B cells played a critical role in
the production of autoantibodies in GD. In a previous study, IgH
repertoire analysis indicated that in CD11c+ B cells from SLE
patients, a defect in negative selection during GC transit with
overexpression of V4-34 was present, which was associated with
autoimmune diseases (18, 58, 59). The measurement of somatic
mutation frequencies in CD11c+ B cells from SLE showed the
mutational frequencies typical of a GC experience (18). We found
that CD11c+ B cells showed a greater capacity for IgG secretion than
CD11c- B cells, including but not exclusive to TRAb. A variety of
Frontiers in Immunology | www.frontiersin.org 14
autoantibodies were detected to be significantly correlated with
CD11c+ B cells in SLE (19). The above findings indicate that
CD11c+ B cells that escape central immune tolerance (60, 61)
may lead to the secretion of a wide range of autoantibodies,
including TRAbs, which may be an indicator of individuals with
a high risk of developing other autoimmune diseases.

In addition to the function of autoantibody secretion, CD11c+

B cells also participate in the pathogenesis of GD in multiple
ways by secreting a variety of cytokines, exhibiting significantly
increased secretion of proinflammatory cytokines (IL-1b, IL-6,
IL-17A, IFN-g, and IL-9), anti-inflammatory cytokines (IL-1ra
and IL-10), and chemokines (IL-8, CXCL10, RANTES, MIP-1a/
b, and MCP-1). Marie-Laure Golinski and colleagues (62)
reported that the elevated cytokines in CD11c+ B cells from
HD partly overlapped with our results in GD patients, including
A B
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FIGURE 9 | CD11c+ B cells were recruited to the thyroid via the CXCR3-CXCL10 axis. (A) Immunohistochemical staining for CXCL10 in thyroid sections from GD
patients (400-fold magnification). (B) Concentration of CXCL10 in culture supernatants of Nthy-ori3-1 cells under control conditions or stimulation with IFN-g (1000 U/
ml) for 72 h. (C) Transwell assay performed with total CD19+ B cells from healthy donors (control) and GD patients. After 3 hours, the cells that migrated to the lower
chamber were counted. (D) Representative flow cytometric plots of CD11c+ B cells from the paired upper chamber and lower chamber after 3 h of migration (left).
Comparison of the frequency of CD11c+ B cells in CD19+ B cells between the paired upper chamber and lower chamber (right). (E) Flow cytometric plots of sorted
CD11c- B cells (left) and CD11c+ B cells (right) from GD patients. (F) Transwell assays performed with CD11c- B cells and CD11c+ B cells from GD patients.
Untreated and anti-CXCL10 antibody-treated culture supernatants were added to the lower chamber separately. After 3 h, the cells that migrated to the lower
chamber were counted. Data are represented as the mean ± SD, paired or unpaired Student’s t test. P < 0.05 was considered statistically significant. ns, not
significant; *P < 0.05; **P < 0.01.
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the results for IFN-g, IL-1b, and IL-10. The above findings
indicated the heterogeneous cytokine expression profiles of
CD11c+ B cells among different diseases and populations. In
addition, Kemp EH and colleagues (63) reported that the
expression of various chemokines was significantly increased in
thyroid tissues from patients with autoimmune thyroid diseases
(AITD) compared to those from non-AITD patients, which
highly coincided with the chemokine secretory pattern of
CD11c+ B cells observed in our study. This observation
indicates that CD11c+ B cells may play a critical role in
recruiting inflammatory cells into the thyroid and exacerbating
local lymphocyte infiltration. We speculated that CD11c+ B cells
with heterogeneous cytokine profiles have complex functions
and are involved in multiple biological processes to promote the
development of GD.

Previous studies reported that the accumulation of CD11c+ B
cells was driven by the activation of TLR7 (64–66). In the current
study, after activation of TLR7 in vitro, CD11c+ B cells from GD
patients were induced to differentiate into ASCs capable of secreting
IgG and TRAbs in the microenvironment of GD. A higher intensity
of intracellular TLR7 was observed in GD patients, especially
intractable GD patients, than in HD (67), which may play a
critical role in regulating the extrafollicular B-cell response,
leading to the expansion of self-reactive CD11c+ B cells to
Frontiers in Immunology | www.frontiersin.org 15
breakdown B-cell homeostasis (27). Nagata, K. and colleagues
(68) reported that Epstein–Barr virus (EBV) reactivation was
associated with TRAb production in GD. EBV noncoding
RNAs are recognized by TLR7, a sensor of single-stranded
RNA of B cells (69). EBV infection may be involved in the
differentiation of autoreactive B cells and autoantibody
secretion by activating TLR7. The above findings indicated
that both genetic factors and environmental factors, including
infection, have been proposed as risk factors for Graves’ disease.

The present study had some limitations. First, our study
investigated only CD11c+ B cells in GD and described the multiple
functions of this unique B-cell subset in GD. Since the proportions of
CD11c+ B cells in most HD were relatively low, it was difficult to
further isolate and investigate the function of CD11c+ B cells in HD.
Secondly, we did not obtain PB and FNA samples from the same GD
patient, but the participants in these two groups were successfully
matched for age, sex and titers of thyroid autoantibodies. Last, we did
not evaluate the changes in CD11c+ B cells in a single individual
before and after ATD treatment. A larger population and long-term
follow-up are essential for elucidating the dynamic relationship
between CD11c+ B cells and TRAbs to illuminate the critical role
of CD11c+ B cells in the pathogenesis of GD.

In conclusion, we reported that autoreactive CD11c+ B cells
were expanded in GD patients and involved in the pathogenesis
FIGURE 10 | CD11c+ B cells in the thyroid are involved in the pathogenesis of GD. Infiltrated CD11c+ B cells with high CXCR3 expression were induced to
differentiate into autoreactive antibody-secreting cells (ASCs) that secrete thyroid autoantibodies, including TRAbs. Activated CD11c+ B cells secrete a variety of
cytokines, such as IFN-g, to exacerbate local thyroid inflammation. This process induced thyroid follicular cells (TFCs) to secrete CXCL10, which recruited CXCR3-
expressing lymphocytes, including CD11c+ B cells. Then, CD11c+ B cells and TFCs formed a positive inflammatory feedback loop. In addition, a number of
chemokines were secreted by CD11c+ B cells, which potentiated lymphocyte infiltration into the thyroid of GD patients.
March 2022 | Volume 13 | Article 836347

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cao et al. B-Cell Participating in GD Pathogenesis
of GD by secreting thyroid autoantibodies and a variety of
cytokines, which might exacerbate local inflammation and
lymphocyte infiltration in thyroid tissue. The current
management of GD, including ATD, RAI, and thyroidectomy
(9, 21), either shows limited efficacy in many patients or results
in lifelong thyroid hormone replacement therapy. The demand
for novel therapeutic options has led to the emergence of
immunotherapeutic approaches targeting B cells in GD
patients (70, 71). Therefore, the CD11c+ B-cell subset may be a
promising immunotherapeutic target in the future.
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Supplementary Figure S1 | Gating strategy of CD19+ B cells and CD11c+ B
cells. (A) Single cells were plated for further analysis. (B) Lymphocytes are circled in
the single-cell gate. (C) B cells are circled as CD19+ cells in the lymphocyte gate.
(D) CD11c+ B cells are circled in the CD19+ B-cell gate.

Supplementary Figure S2 | Frequency of CD19+ B cells in HD and GD patients.
Frequency of CD19+ B cells in peripheral blood mononuclear cells (PBMCs)
compared between HD and GD patients. Nonnormally distributed data are
expressed as the median and IQR, assessed by Mann–Whitney U tests. P <0.05
was considered statistically significant. ns, not significant.

Supplementary Figure S3 | Analysis of the correlations between the frequency
of CD11c+ B cells and age in GD patients. Linear correlation analysis between age
and the frequency of CD11c+ B cells in CD19+ B cells for all enrolled GD patients.
The correlation analysis was performed using the Spearman correlation test. P <
0.05 was considered statistically significant.

Supplementary Figure S4 | Analysis of the correlations between the frequency
of CD11c+ B cells and thyroid function. (A–C) Linear correlation analysis between
the frequency of CD11c+ B cells in CD19+ B cells and thyroid function markers
(TSH, fT4, and fT3) in all enrolled GD patients. The correlation analyses above were
performed using the Spearman correlation test.

Supplementary Figure S5 | Global gating strategy for analysis of CD11c
expression distribution. After gating the single cells and lymphocytes, B cells
were circled as CD19+ cells for further analysis. Then, B cells were divided into 13
subsets according to the expression of IgD, CD27, CD38, and CD138. The B-cell
subsets are as follows: Q1-naïve B cells (CD27-IgD+), Q2-unswitched memory B
cells (CD27+IgD+), Q3-switched memory B cells (CD27+IgD-), Q4-double
negative memory B cells (CD27-IgD-), Q5-naïve mature B cells (CD38-IgD+), Q6-
activated naïve mature B cells (CD38+IgD+), Q7-early memory mature B cells/
germinal center B cells (CD38+IgD-/CD38highIgD-), Q8-resting memory B cells
(CD38-IgD-), Q9-transitional B cells (CD38-CD27+), Q10-plasmablasts
(CD38+CD27+), Q11-transitional-like B cells (CD38+CD27-), Q12-memory B-cell
precursors (CD38-CD27-), and plasma cells (CD138+). CD11c+ B cells were
circled in the above B-cell subsets.

Supplementary Figure S6 | Global gating strategy for comparing immune
marker expression between CD11c+ and CD11c- B cells. CD19+ B cells were gated
for the following analysis, and CD11c+/high and CD11c- B cells were circled to
analyze the frequency and MFI of the positive subpopulation among all
immunomarkers, including CD27, CD38, IgD, CD138, T-bet, CXCR5, CXCR3,
CD32, and CD21.

Supplementary Figure S7 | IgG production of B cells stimulated with different
concentrations of R848. Total B cells from GD patients were stimulated with a
concentration gradient of R848 (a TLR7/8 agonist). The culture supernatants were
collected on day 9 and measured by ELISA. Data are presented as the mean ± SD
and were assessed by ANOVA. The 0.1, 1, and 10 mg/ml groups were compared
with the 0 mg/ml group, and the results are marked above the histogram bars. P <
0.05 was considered statistically significant. ns, not significant; ****P < 0.0001.

Supplementary Table S1 | Antibodies used in flow cytometry analysis.

Supplementary Table S2 | Antibodies used in multiplex immunofluorescence
staining.

Supplementary Table S3 | The lower limits of detection (LLOD) of all cytokines in
the Luminex liquid suspension chip.
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