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Neutrophils (polymorphonuclear leukocytes, PMNSs) have a distinctively short lifespan, and
tight regulation of cell survival and death is imperative for their normal function. We
demonstrated previously that Francisella tularensis extends human neutrophil lifespan,
which elicits an impaired immune response characterized by neutrophil dysfunction. Herein,
we extended these studies, including our transcriptional profiling data, and employed
Seahorse extracellular flux analysis, gas chromatography-mass spectrometry metabolite
analysis, flow cytometry and several other biochemical approaches to demonstrate that the
delayed apoptosis observed in F. tularensis-infected neutrophils is mediated, in part, by
metabolic reprogramming. Specifically, we show that F. tularensis-infected neutrophils
exhibited a unique metabolic signature characterized by increased glycolysis, glycolytic flux
and glucose uptake, downregulation of the pentose phosphate pathway, and complex
glycogen dynamics. Glucose uptake and glycolysis were essential for cell longevity,
although glucose-6-phosphate translocation into the endoplasmic reticulum was not,
and we identify depletion of glycogen as a potential trigger of apoptosis onset. In
keeping with this, we also demonstrate that ablation of apoptosis with the pan-caspase
inhibitor Q-VD-OPh was sufficient to profoundly increase glycolysis and glycogen stores in
the absence of infection. Taken together, our data significantly advance understanding of
neutrophil immunometabolism and its capacity to regulate cell lifespan.

Keywords: glycolysis, glycogen, neutrophils (PMNs), apoptosis, inmunometabolism, Francisella tularensis

INTRODUCTION

Polymorphonuclear leukocytes (PMNs, neutrophils) comprise the majority of circulating white
blood cells within the human body and are produced at a rate of approximately 100 billion per day
(1). As one of the first immune cells to be recruited to infection sites, neutrophils are a vital
component of the immune system that rapidly identify, engulf, and eradicate invading microbes
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(1-3). Neutrophils have a uniquely short lifespan of 18-24 hours
in circulation before undergoing constitutive apoptosis, and
disruption of this tightly regulated, pre-programmed cell death
mechanism disrupts neutrophil function and capacity to resolve
infection (4, 5). Mature neutrophils are also metabolically
distinctive, as they rely primarily on glycolysis for energy
production (6). Although it is known that the idiosyncratic
lifespan and metabolism of neutrophils each contribute
distinctly to supporting neutrophil function, the extent to
which neutrophil metabolism influences lifespan, or vice versa
is not well understood (4, 7).

Constitutive apoptosis is tightly regulated and requires global
changes in PMN gene expression (4, 8). Overall, cell viability and
death are governed by the relative abundance of pro-survival and
pro-apoptosis BCL-2 family proteins as well as Inhibitor of
Apoptosis Proteins (IAPs) and calpastatin (9). The key event
in early apoptosis is permeabilization of the outer mitochondrial
membrane by pro-apoptosis BCL-2 proteins BAX and BAK.
Thereafter, cytochrome ¢ released into the cytosol initiates
apoptosome formation for activation of caspase-9, which in
turn activates caspase-3 for execution of cell death. In healthy
cells mitochondrial integrity is maintained by pro-survival BCL-
2 proteins MCL-1 and BCL2A1 which block translocation of
BAX and BAK. At the same time, IAPs such as XIAP prevent
processing activation of procaspase-9 and procaspase-3 by direct
binding. Additional layers of regulation are provided by cIAP-1
cIAP-2, calpastatin, cyclin-dependent kinases, extrinsic pathway
regulators and signaling mediated by growth factor receptors and
inflammatory mediators (4, 9). As survival factors are short-
lived, continued expression of the encoding genes is critical for
PMN viability, but the internal signal that tips the balance
toward apoptosis in aging PMNs is unknown (4, 9).

Francisella tularensis is a Gram-negative facultative
intracellular coccobacillus, the causative agent of the zoonotic
disease tularemia, and one of the most infectious pathogens
known (10-15). One of few bacteria capable of parasitizing
neutrophils, F. tularensis evades elimination via a multifaceted
strategy that includes inhibition of NADPH oxidase assembly
and activity, followed by phagosome escape and replication in
the cytosol (16, 17). At the same time, F. tularensis inhibits
neutrophil apoptosis and accumulation of dysfunctional
neutrophils at the infection site contributes to disease
exacerbation rather than resolution (18-21). These properties
are shared by F. tularensis subspecies tularensis (type A) strains
that are exclusive to North America as well as F. tularensis
subspecies holarctica (type B) strains that are found throughout
the Northern Hemisphere (16). Although it is unequivocal that
F. tularensis extends neutrophil lifespan by delaying apoptosis,
the mechanisms enabling infected cells to override these highly
conserved, tightly regulated apoptosis programs are still
incompletely defined (22-24).

Metabolic regulation of inflammation and immune cell function
is a rapidly growing field of study. Although most studies to date
have focused on macrophages and T lymphocytes, distinct
metabolic states of neutrophils are beginning to be described
(7, 25-30). Thus, recent data demonstrate that neutrophil
metabolism can be reprogrammed and that these adaptations

contribute directly to elimination of infection or disease
progression in a context-specific manner (25-27, 31, 32). On the
other hand, there are limited data regarding potential links between
changes in neutrophil behavior elicited by metabolic
reprogramming and cell lifespan. In previous work, our
laboratory demonstrated that F. tularensis significantly extends
human neutrophil lifespan via effects on apoptosis pathway
signaling and changes in gene expression leading to upregulation
of prosurvival factors such as XIAP, calpastatin and BCL2A1 that
inhibit caspase activation and sustain mitochondrial integrity (23,
24). We undertook the current study as our transcriptional profiling
data suggested that F. tularensis may also manipulate neutrophil
metabolism. Herein, we demonstrate that F. tularensis elicits a
distinct metabolic program that is defined by dynamic changes in
glycolysis and glycogen abundance that are essential for cell
longevity. In addition, we also show that pan-caspase inhibition
can alter metabolism in the absence of infection. Collectively, these
data advance understanding of PMN metabolic plasticity and
support the hypothesis that metabolism and PMN lifespan are
intimately linked.

MATERIALS AND METHODS

Cultivation of Bacteria

F. tularensis subspecies holarctica live vaccine strain (LVS) was
inoculated onto Difco cysteine heart agar (BD Biosciences, East
Rutherford, NJ) supplemented with 9% defibrinated sheep blood
(Hemostat Labs, Dixon, CA) and grown at 37°C in 5% CO, for
48-72 hr. Bacteria were transferred from the plate into 1 ml of
sterile Hank’s Balanced Salt Solution (HBSS) containing divalent
cations (Thermo Fisher Scientific, Waltham, MA) and quantified
by measurement of absorbance at 600 nm. Broth cultures were
started at an ODgoo of 0.01 in 5 ml pH 6.8 Bacto brain heart
infusion (BHI) broth (BD Biosciences) in a 50 ml conical tube.
All broth cultures were incubated at 37°C in 5% CO,, shaking at
200 RPM and grown to mid-exponential phase either by 1) being
incubated for 12 hr, followed by immediate harvest; or 2) by
being incubated for 15-17 hr, diluted to an ODggq of 0.200 in 5 ml
BHI broth and incubated for 2-4 more hr prior to harvest. Mid-
exponential growth phase bacteria were pelleted at 12,000 RPM
for 2 min, washed once in 1 ml HBSS with divalent cations and
quantified by measurement of absorbance at 600 nm.

Ethics Statement

Heparinized, venous blood was obtained from healthy adult
volunteers who provided written informed consent according to
protocols approved by the Institutional Review Board for Human
Subjects at the University of Iowa (#201609850 and #200307026).

Isolation of Neutrophils From Human
Blood

Neutrophils were isolated via sequential dextran sedimentation
(Pharmacosmos, Holbaek, Denmark), density separation through
a Ficoll-Hypaque gradient (GE Healthcare, Chicago, IL) and
hypotonic lysis of erythrocytes (33). This method routinely
yielded >95% neutrophil purity.
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Neutrophil Ultrapurification

As indicated, certain experiments utilized ultrapure PMNs. To
achieve this, neutrophils, isolated as described above, were
counted and centrifuged at 1,100 x g for 5 min. Cells were
resuspended to 5 x 107/ml in PBS without cations supplemented
with 2% fetal bovine serum (Hyclone Laboratories, Pittsburgh,
PA) and 1mM EDTA and transferred to 5 ml round-bottomed
polypropylene tubes in 0.25-2.5 ml aliquots. Neutrophils were
purified using the EasySepTM Human Neutrophil Isolation Kit
from Stem Cell Technologies (Vancouver, Canada), according to
manufacturer’s instructions. Following the ultrapurification
process, neutrophil purity was assessed by staining cells (1 x
10° cells/staining condition) with anti-CD15-Allophycocyanin
(APC) (Invitrogen, Carlsbad, CA) and/or anti-CD16-R-
Phycoerythrin (PE) (Biolegend, San Diego, CA) in flow
cytometry staining (FACS) buffer [HBSS with cations (Thermo
Fisher Scientific), 0.2% human serum albumin (Grifols, Los
Angeles, CA), 0.2% NaNj]. Approximately 10,000 events per
sample were collected using an Accuri C6+ flow cytometer (BD
Biosciences) and the percentage of CD15+/CD16+ cells was
quantified using Accuri C6+ software (BD Biosciences). This
method routinely yielded >99% neutrophil purity.

Infection of Neutrophils With

F. tularensis LVS

Neutrophils were resuspended in HBSS without divalent cations
(Thermo Fisher Scientific) for enumeration and diluted to 2x107/
ml. Unless otherwise stated, neutrophils (5x10%/ml) were
cultured in suspension (1-2 ml) in serum-free HEPES-buffered
RPMI-1640 containing L-glutamine and phenol red (Lonza,
Walkersville, MD). For lactate supplementation experiments,
4.7 mM sodium lactate (Sigma-Aldrich) was added to serum-
free Hepes-buffered RPMI-1640 at time zero. For pyruvate
feeding experiments, neutrophils (5x10°/ml) were cultured in
suspension (1 ml) in serum-free HEPES-buffered SILAC RPMI
1640 Flex Media (Thermo Fisher Scientific) without glucose or
glutamine and supplemented with 2 g/L sodium pyruvate
(Sigma-Aldrich, Burlington, MA). Cultures were incubated in
14 ml polypropylene tubes at 37°C with 5% CO, in the absence
or presence of F. tularensis LVS as we previously described (24,
34). All experimental replicates were generated using neutrophils
from at least three different donors.

RNA Isolation and qRT-PCR

Total RNA was isolated from ultrapurified neutrophils at the
indicated times using a Qiagen RNeasy kit (Hilden, Germany)
according to the manufacturer’s instructions. RNA concentrations
were measured by Nanodrop ND-1000 spectrophotometry. In an
Eppendorf Mastercycler pro (Hamburg, Germany), RNA was
reverse transcribed using the Invitrogen Super Script III First
Strand Kit and ¢cDNA was then amplified with gene-specific
primer pairs (Origene, Rockville, MD) (primer sequences are in
Supplementary Table 1) using Quanta Biosciences Perfecta SYBR
Green Fast Mix (Gaithersburg, MD), all according to the
manufacturer’s instructions. Melting curve analysis was used to
check product specificity. The relative expression level of each

-AACt

transcript was determined using the 2 method and

normalized to B-actin.

Measurement of the Extracellular
Acidification Rate Using

Seahorse Analysis

Neutrophils were resuspended in XF assay media (Agilent
Technologies, Santa Clara, CA) at a concentration of 1x10”/ml
and 5x10° cells per condition were plated onto a XF24 cell plate
(Agilent Technologies) pre-coated with 0.1 mg/ml poly-L-lysine
(Sigma-Aldrich). Plates were incubated at 37°C for 1 hr in the
absence of CO,. ECAR was measured at 8.6-min intervals over a
period of 95 min using a Seahorse XF24 analyzer and the
Glycolysis Stress Test Kit (both from Agilent Technologies)
according to manufacturer’s instructions. All data were
analyzed using Seahorse Wave software (Agilent Technologies).

Measurements of Lactate and Pyruvate

For measurements of lactate, supernatants (1 ml) from neutrophil
cultures (1x10”/condition) were deproteinated by adding 1 ml ice-
cold 0.5 M metaphosphoric acid, vortexing and placing on ice for
5 min. Supernatants were centrifuged at 10,000 x g at 4°C for 5
min to pellet proteins. Deproteinated supernatants were
transferred to tubes containing 100 pl potassium carbonate to
neutralize the acid and centrifuged at 10,000 x g at 4°C for 5 min
to remove any precipitated salts. Samples for measurement of
pyruvate (5x10° cells/condition) were processed in this same
manner. Lactate and pyruvate concentrations were measured
using luminescence assay kits from Cayman Chemical (Ann
Arbor, MI) according to the manufacturer’s instructions.

Measurement of Intracellular ATP

Neutrophils (5x10°/condition) were transferred directly from
culture tubes into a black 96-well plate and ATP concentrations
were measured using a luminescence assay kit (Perkin Elmer,
Waltham, MA) according to the manufacturer’s instructions.

Gas Chromatography-Mass Spectrometry
Metabolite Analysis

At indicated timepoints, ultrapure neutrophils (2.5x10°/
condition) were washed with 1 ml HBSS without cations and
pelleted at 1,000 x g for 5 min. Pellets were snap frozen and
stored at -80°C. Data were obtained using a Trace 1310 Gas
Chromatograph (Thermo Fisher Scientific) coupled with an ISQ
LT Singe Quadrupole mass spectrometer (Thermo Fisher
Scientific) and Xcalibur Software (Thermo Fisher Scientific).
Metabolite peaks were detected using TraceFinder General
Quant (Thermo Fisher Scientific) and metabolites were
identified using a library of standards developed by the
University of Iowa Metabolomics core facility. Metabolomics
data were normalized to total ion signal and analyzed by
MetaboAnalyst (http://www.metaboanalyst.ca).

Quantitation of Apoptosis
At the indicated time points, apoptosis was measured by flow
cytometric analysis of phosphatidylserine (PS) externalization
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using Annexin V-FITC, with addition of propidium iodide (PI)
to detect plasma membrane permeabilization and progression to
late apoptosis/secondary necrosis as we described (23, 34). In
brief, neutrophils (5x10°/condition) were costained with
Annexin V-FITC and PI (both from BioVision, Milpitas, CA)
in binding buffer (10 mM HEPES pH 7.4, 140 mM NaCl, 2.5 mM
CaCl,) for 5 min, in the dark. Approximately 10,000 events per
sample were collected using an Accuri C6+ flow cytometer and
the data were analyzed using Accuri C6+ software.

Inhibitor Treatments

Inhibitors were added to neutrophils at the following final
concentrations 1 hr prior to infection, unless otherwise
indicated: 20 pM WZB-117 (20 mM stock in DMSO, Sigma-
Aldrich), 5 mM 2-deoxy-D-glucose (2-DG) (100 mM stock in
RPMI-1640, Sigma-Aldrich), 50-100 pM 3-(3-pyridinyl)-1-(4-
pyridinyl)-2-propen-1-one (3PO, 100 mM stock in DMSO,
Sigma-Aldrich), 20 pM CP-91149 (20 mM stock in DMSO,
Sigma-Aldrich), or 40 pg/ml chlorogenic acid (40 mg/ml stock
in DMSO, Sigma-Aldrich). Q-VD-OPh (10 mM stock in DMSO,
Cayman Chemical) was added to a final concentration of 10 uM,
at time zero simultaneously with initiation of infection
(no pretreatment).

Immunoblotting

Neutrophils were lysed with 10% NP-40 in Tris-buffered saline
supplemented with protease and phosphatase inhibitors (36.76
pg/ml Aprotinin, 43.2 mM Levamisole, 8.65 mM AEBSF, 40.5
pg/ml Leupeptin, 1.76 mM PMSF, 13.2 nM Pepstatin A, 6.76X
Protease inhibitor cocktail (all Sigma-Aldrich) and 6.76x
phosphatase inhibitor cocktail (Thermo Fisher Scientific).
Proteins were separated on NuPAGE 4-12% Bis-Tris gradient
gels (Invitrogen) and transferred to polyvinylidene difluoride
membranes (Perkin Elmer). Membranes were blocked with 5%
bovine serum albumin in Tris-buffered saline with 0.1% Tween
20, then probed with 1:500 rabbit anti-XIAP (23453-1-AP,
Proteintech, Rosemont, IL), 1:300 rabbit anti-MCL-1 (16225-1-
AP, Proteintech). 1:500 mouse anti-caspase-3 (clone C33, 3004,
BioVision), 1:500 rabbit anti-GBE1 (HPA038073, Sigma-
Aldrich), 1:500 rabbit anti-UGP2 (HPA034697, Sigma-
Aldrich), or 1:500 rabbit anti-GYS1 (3893S, Cell Signaling
Technologies, Danvers, MA). The anti-B-actin (NB600-503SS,
Novus Biologicals, Littleton, CO) loading control was used at
1:2,000. Bands were detected using 1:2000 horseradish-
peroxidase-conjugated secondary antibodies (Cytiva,
Marlborough, MA) and the Pierce SuperSignal West Femto
chemiluminescent substrate (Thermo Fisher Scientific) and the
Odyssey Fc imaging system (LI-COR Biosciences, Lincoln, NE).

Quantitation of Glucose Uptake

Glucose uptake was measured at the indicated time points using
the zero trans method, as previously described (35). Specifically,
neutrophils (2x10°/condition) were centrifuged at 1,400 x g for 5
min, resuspended in glucose-free RPMI-1640 and incubated at
37°C with 5% CO, for 5 min. [3H]2—deoxy—D—glucose (1 uCi/ml)
was added to a final concentration of 100 uM (0.1 uCi/ml, 1 nCi/
sample) and samples were incubated at 37°C for 3 min. Ice-cold

glucose free-RPMI 1640 containing 0.3 mM phloretin (Cayman
Chemical) was added and samples were placed on ice for 5 min
to stop glucose uptake. Samples were centrifuged through a 50 pl
cushion of ice-cold 10% (w/v) bovine serum albumin at 8,800 x g
for 30 sec and cells were lysed in 100 pl of 1% Triton X-100.
Lysates were transferred to scintillation vials along with 5 ml
Econo-Safe Economical Biodegradable Counting Cocktail
(Research Products International, Mount Prospect, IL) and
vials were shaken for 10 sec before counting in a LS6500
Multi-Purpose Liquid Scintillation Counter (Beckman Coulter,
Brea, CA).

Measurement of Intracellular Glycogen
Stores

Neutrophils (1x10%/condition) were lysed with 200 pl ice-cold
ddH,0 and boiled at 95°C for 10 min. Lysates were centrifuged
at 18,000 x g at 4°C for 10 min to remove insoluble material.
Glycogen concentrations were measured by colorimetric assay,
according to kit instructions (BioVision).

Statistical Analyses

All data are plotted as mean + SEM and represent at least three
independent experiments. Data were analyzed using GraphPad
Prism version 8 or 9 with p < 0.05 dictating statistical
significance. Data from experiments with one variable were
analyzed via Student’s f-test. Data from experiments with
multiple variables were analyzed via two-way ANOVA and
Tukey’s multiple-comparisons posttest. Additional details are
provided in the figure legends.

RESULTS

Genes Encoding Glycolytic Enzymes and
Glucose Transporters Are Upregulated by
LVS Infection

We demonstrated previously that both type B (LVS) and type A
(Schu S4) F. tularensis strains significantly delay the onset of
apoptosis as a means to extend human neutrophil lifespan and
this is achieved, at least in part, by transcriptional
reprogramming (22-24). Our prior analysis of the microarray
dataset focused on differential expression of genes encoding
apoptosis regulators and cell survival factors. However, these
data also revealed significant differential expression of ~800
genes linked to metabolism, and glycolysis was among the top
pathways identified by KEGG analysis at all times points
examined 3-24 hours post infection (hpi) (22). Specifically, 10
of 11 genes encoding glycolysis enzymes were induced by LVS
along with the two main glucose transporters (GLUTs) that
human neutrophils express (Figure 1A) (22, 36).

Herein, we validated the microarray data using qRT-PCR and
our data demonstrate that expression of genes encoding
hexokinase-2 (HK2), lactate dehydrogenase (LDHA) and GLUT-3
(SLC2A3) were significantly increased by 6 hpi (Figure 1B).
PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase)
expression followed a similar trend of upregulation but did not
reach statistical significance (Figure 1B). Phosphofructokinase
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FIGURE 1 | LVS significantly upregulates PMN genes encoding glycolytic enzymes and glucose transporters. (A) Glycolysis pathway genes shown in red are
significantly upregulated relative to uninfected cells by microarray analysis (22). (B) Validation of the microarray data by gRT-PCR analysis of SLC2A3 (6 hpi), HK2

(PFKL) expression was significantly higher in LVS-infected
neutrophils immediately following infection and at 6 hpi
(Figure 1B). Thus, our current and published data demonstrate
upregulation of genes linked to glycolysis during LVS infection.

LVS Infection Increases Glycolysis and
Glycolytic Capacity

Based on our gene expression data, we hypothesized that
glycolytic activity was increased in LVS-infected neutrophils.
To address this, we used a Seahorse metabolic analyzer to
measure glycolysis and glycolytic capacity in neutrophils at
various timepoints after infection with comparison to the
uninfected controls (Figure 2). Seahorse curves obtained at 12
hr are shown in Figure 2A. Pooled data show that in agreement
with our microarray data, glycolysis (Figures 2B-D) and
glycolytic capacity (Figures 2E-G) of LVS-infected neutrophils
were significantly increased by 12 hpi (Figures 2C, F) and were
sustained thereafter, although overall responses for both infected
and control cells were lower at 24 hr (Figures 2D, G).

A key outcome of glycolysis is lactate secretion, which drives
ECAR detected by Seahorse analysis. Congruent with the data
shown in Figure 2, lactate progressively increased in neutrophil
extracellular medium and was significantly more abundant
following LVS infection than the uninfected controls
(Figure 3A). Conversely, extracellular pyruvate levels were
significantly reduced (Figure 3B). In addition, LVS-infected
neutrophils contained significantly more intracellular lactate
(p < 0.001) and a significantly higher ratio of lactate to pyruvate
than control neutrophils (p < 0.01) at all timepoints examined
(Supplementary Figure 1). In agreement with the fact that

mature human neutrophils rely primarily on glycolysis for ATP
generation (6), we also show that LVS-infected neutrophils
contained significantly more ATP than their uninfected
counterparts at 24 hpi (Figure 3C). Bacterial lactate, pyruvate,
and ATP were also quantified (Figures 3A-C), and these data
demonstrate that LVS metabolites cannot account for the
differences between control and infected neutrophils. Significant
induction of glycolysis was independently confirmed by
quantitation of metabolites using GC-MS (Figure 4). These
data confirm the differential abundance of lactate and pyruvate
shown in Figure 3 and extend these data to demonstrate that
fructose-6-phosphate and glucose-6-phosphate were also more
abundant in the infected PMNSs by 9 hpi. In contrast, levels of the
TCA cycle intermediates succinate and citrate were unchanged
(data not shown).

KEGG analysis of our microarray data also identified the
pentose phosphate pathway (PPP)/hexose monophosphate
shunt (HMS), but in this case expression of genes encoding
pathway enzymes was significantly downregulated rather than
induced between 6 and 24 hpi, including glucose-6-phosphate
dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase
(PGD), 6-phosphogluconolactonase (6PGLS) and ribose-5-
phosphate epimerase (RPIA) (22). In agreement with this, 6-
phosphogluconate was slightly less abundant in neutrophils after
LVS infection by GC-MS (Figure 4).

Taken together, our biochemical analyses demonstrate
significant induction of glycolysis and glycolytic capacity in
LVS-infected PMNs leading to enhanced ATP production,
lactate release and extracellular acidification that was not
coupled to induction of the PPP.
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FIGURE 2 | LVS infection upregulates PMN glycolysis. Glycolytic function measured by Seahorse analysis as extracellular acidification rate (ECAR) in control and
LVS-infected PMNs, n=3. (A) ECAR curves at 12 hr. Glucose was injected to a final concentration of 10 mM at 20.84 min, oligomycin was injected to a final
concentration of 1 uM at 46.78 min and 2-DG was injected to a final concentration of 50 mM at 72.83 min. Where not visible, error bars are smaller than symbols.
Quantitation of glycolysis (B-D) and glycolytic capacity (E=G) in control and LVS-infected PMNs at 8, 12 and 24 hpi. *p < 0.05. *p < 0.01. ns, not significant.

Glycolysis Inhibition Blocks the Ability of
LVS to Delay PMN Apoptosis

Our next objective was to determine if glycolysis induction
contributed to the ability of F. tularensis to extend neutrophil
lifespan. To interrogate this potential link, we inhibited hexokinase
by treatment with the glucose analog, 2-deoxy-D-glucose (2-DG)
(37), and used our established methods to quantify the kinetics of
PMN apoptosis using Annexin V-FITC/PI co-staining and flow
cytometry (Figure 5A) (24, 34). Consistent with our published
data, significantly fewer LVS-infected PMNs were apoptotic at 24
hpi as compared with the uninfected controls (45.75 + 8.9% vs.
822 £ 3.8%, p < 0.0001, n=4). However, inhibition of PMN
glycolysis with 2-DG prior to infection ablated the ability of LVS
to extend neutrophil lifespan and at the same time accelerated
constitutive apoptosis of uninfected PMNs as indicated by
detection of externalized PS by Annexin V-FITC staining at 10
hr (p < 0.0001) (Figure 5A). Similarly, the PFK and PFKFB3-

inhibitor 3PO (38) undermined PMN survival in a dose-
dependent manner and increased the percentage of cells that
were PI-positive at 24 hr, indicating progression from early
apoptosis to late apoptosis/secondary necrosis (24). Pooled data
are shown in Figure 5B, and representative flow cytometry dot
plots are shown in Supplementary Figure 2. Based on these data,
we conclude that glycolysis was essential for PMN survival and the
ability of LVS to delay apoptosis.

Pyruvate Preferentially Accelerates Death
of LVS-Infected Neutrophils

As neutrophils have the capacity for gluconeogenesis and can
convert pyruvate into glucose-6-phosphate (26), we tested the
ability of pyruvate to support PMN survival. To this end, cells
were cultured in either in normal RPMI-1640 (which contains 2 g/L
glucose) or in medium where glucose was replaced with 2 g/L
pyruvate. Under these conditions, apoptosis of LVS- infected PMNs
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was significantly increased by 6 hpi and glycogen stores and lactate
production were significantly diminished (Supplementary
Figures 3A-C). At this same time point, lactate production by
uninfected PMN was also significantly reduced, but glycogen stores
and apoptosis were unchanged relative to the glucose-fed controls.
These data suggest that pyruvate can sustain viability of uninfected
PMN:ss for at least 6 hr. By 24 hr, nearly all pyruvate fed cells were
Annexin V-positive and ATP depleted (Supplementary Figures 3A,
D). Moreover, a majority of cells had progressed to late apoptosis/
secondary necrosis by 24 hr, but ~80% of infected PMNs were PI-

positive as compared with only ~60% of their uninfected
counterparts (p<0.0001) (Supplementary Figure 3E). These data
identify additional differences between uninfected and infected
PMNs and further support the hypothesis that glycolysis was vital
for neutrophil survival and extended lifespan after LVS infection.

Glucose Uptake Is Also Increased and
Required For Delayed Apoptosis

To understand what could be linking apoptosis and glycolysis,
we sought to determine what fueled the glycolytic upregulation
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in LVS-infected neutrophils. As glucose is the substrate of
glycolysis, and expression of the genes encoding GLUT-1
(SLC2AI) and GLUT-3 (SLC2A3) were significantly increased
after infection (Figures 1A, B) (22), we hypothesized that
glucose uptake may also be enhanced. To test this, we used a
sensitive and quantitative radiolabeled glucose uptake assay (35),
and the data in Figure 6A indicate that by 12 hpi, transport of
glucose into LVS-infected PMNs was significantly increased
relative to the uninfected controls.

WBZ-117 inhibits all glucose transporter isoforms that are
expressed in PMNs [GLUT-1, GLUT-3 and GLUT-4 (39)] and
pretreatment of PMNs with WBZ-117 significantly diminished
the ability of LVS to sustain PMN viability at 18 and 24 hpi, but
unlike 2-DG (Figure 5A) did not accelerate constitutive
apoptosis of the uninfected controls. Pooled data are shown in
Figures 6B, C and representative flow cytometry dot plots are
shown in Supplementary Figure 4. Neutrophils can also store
glucose-6-phosphate in the endoplasmic reticulum for later use,
but we detected no effects on apoptosis when we treated cells
with the glucose-6-phosphate translocase (G6PT) inhibitor,
chlorogenic acid (40) (Supplementary Figure 5). These data
demonstrate that glucose uptake was significantly increased by
LVS and was essential for delayed apoptosis of PMN after
infection, whereas glucose-6-phosphate storage in the
endoplasmic reticulum did not appear to play a role.

Glycogen Dynamics Are Complex and
Differ in Control and Infected Neutrophils
To ascertain the role of glycogen as a candidate regulator of PMN
lifespan, we first quantified glycogen levels at multiple time
points over 48 hr and the data shown in Figure 7 are
noteworthy for several reasons. First, we predicted that LVS-
infected neutrophils would consume more glycogen to fuel
increased glycolysis, and that glycogen levels would therefore
be lower in these cells, but to our surprise LVS-infected
neutrophils contained significantly more glycogen than the
controls at nearly every assayed timepoint. Second, we show
that glycogen was most abundant in all PMNSs at 3 hr, the earliest

time point examined. Thereafter, glycogen stores of the control
PMNs declined progressively. In marked contrast, glycogen
stores of LVS-infected PMNs reached a nadir at 9 hpi but were
then replenished. Thus, at 12-24 hpi, glycogen stores of LVS-
infected PMNs were similar to the control cells at 6 hr and
declined significantly only at 32 and 48 hpi. Taken together, these
data demonstrate that glycogen stores are dynamically regulated,
and that this storage form of glucose was significantly more
abundant in LVS-infected PMNs at both early and later stages of
infection. Nonetheless, genes encoding the three main enzymes
of glycogenesis, UDP-glucose pyrophosphorylase 2 (UGP2),
glycogen branching enzyme (GBEI) and glycogen synthase
(GYSI) were not differentially expressed as judged by qRT-
PCR (Supplementary Figure 6A) and LVS also had no
apparent effect on the levels of each enzyme as judged by
immunoblotting of cell lysates (Supplementary Figure 6B).
Thus, the ability of LVS-infected PMNs to replenish glycogen
stores at 12 hpi cannot be attributed to changes in the abundance
of biosynthetic pathway enzymes.

To demonstrate a definitive link between glycogen abundance
and cell longevity we assessed the extent to which
pharmacologically increasing glycogen affected apoptosis. To
this end, we treated cells with CP-91149, a glycogen
phosphorylase inhibitor that effectively prevents glycogen
breakdown (41). Following CP-91149 treatment we quantified
glycogen levels, apoptosis, and lactate release (Figure 8). As
expected, neutrophils treated with CP-91149 contained
significantly more glycogen at 6 hr (Figure 8A) and 24 hr
(Figure 8B) than their untreated counterparts. Specifically, CP-
91149 increased glycogen levels ~10-fold at 6 hr in the uninfected
PMNs and ~2-fold in the LVS-infected PMNs. At the same time,
CP-91149 treatment significantly delayed apoptosis of both
control and LVS-infected PMNs as indicated by Annexin V-
FITC staining (Figure 8C), and significantly increased glycolysis
as indicated by quantitation of lactate release (Figure 8D). We
therefore conclude that inhibition of glycogen catabolism was
sufficient to delay constitutive apoptosis and increase glycolysis
of uninfected control PMNs and further enhanced the ability of
LVS to extend PMN lifespan and upregulate glycolysis.
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timepoints, n=3-5. **p < 0.01 compared to control PMNs at each timepoint.

Caspase Inhibition Increases PMN
Glycolysis, Glycolytic Capacity, and
Glycogen Stores

To further examine the link between neutrophil metabolism and
apoptosis, we asked if inhibiting caspases pharmacologically with
the pan-caspase inhibitor Q-VD-OPh (42) would phenocopy the
increased glycolysis and glycogen abundance observed in LVS-
infected neutrophils. As shown in Figure 9, Q-VD-OPh
treatment nearly ablated PMN apoptosis over the time course
examined, as 94.13 + 1.7% of drug-treated cells remained viable
at 24 hr (Figure 9A). We next measured glycolytic function
using Seahorse analysis and show that this pan-caspase inhibitor
increased neutrophil glycolysis and glycolytic capacity ~7-fold at
12 hr (Figure 9B). Finally, we demonstrate that Q-VD-OPh-
treated cells also contained significantly more glycogen at 24 hr
(Figure 9C). These data further support the hypothesis that
neutrophil survival and glycolysis are fundamentally linked and
reinforce the notion that glycogen abundance correlates with
delayed apoptosis.

Effects of Lactate and 2-DG on Apoptosis
and Apoptosis Regulatory Factors

Precisely how glycolysis is linked to PMN longevity in our system
is unknown. Thus, we tested whether the amount of lactate
secreted by LVS-infected PMNs (4.7 mM) was sufficient to alter
constitutive apoptosis. Specifically, lactate was added to
uninfected PMNs at time zero, and the rate of apoptosis was
determined using Annexin V-FITC/PI staining over 24 hr. By
this assay, lactate had no discernable effect on constitutive PMN
death (Supplementary Figure 7).

To interrogate the effects of 2-DG, we used western blotting.
As shown in Supplementary Figure 8A, 2-DG treatment
increased processing of procaspase-3 to its cleaved, mature
form in both uninfected and infected PMNs, confirming the
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FIGURE 7 | LVS modulates PMN glycogen dynamics and abundance. Glycogen stores of control and LVS-infected PMNs were quantified at the indicated

flow cytometry data shown in Figure 5A. As XIAP plays a role in
caspase-3 inhibition and is maintained at high level in LVS-
infected PMNs (22), we predicted that levels of this anti-
apoptosis regulatory factor would be diminished in cells
treated with 2-DG. The data in Supplementary Figure 8B
confirm disappearance of XIAP from control PMNs by 24 hr
and its sustained abundance in cells infected with LVS, but to our
surprise, 2-DG did not cause XIAP to disappear from infected
PMN:s. Similarly, 2-DG had no apparent effect on levels MCL-1
(Supplementary Figure 8C).

DISCUSSION

Neutrophils are key mediators of infection resolution that are
inherently short-lived and undergo constitutive apoptosis
approximately 24 hours after release into circulation (4). This
tightly regulated lifespan is intimately linked to cell function, as
disruption of neutrophil turnover can lead to exacerbated disease
and tissue destruction (18, 20, 21). Published data from our
group demonstrate that infection with F. tularensis strains,
including LVS and Schu $4, significantly extends neutrophil
lifespan (16, 22, 23), but the mechanisms enabling infected
neutrophils to override this strictly regulated cell death
program are not fully understood.

The realization that metabolism can directly regulate
inflammation and immune cell function has significant
implications for our understanding of the molecular mechanisms
associated with control or exacerbation of infection as well as
cancer, obesity, autoimmunity and atherosclerosis. A majority of
studies in the rapidly advancing field of immunometabolism have
focused on macrophages and T lymphocytes, and relatively few
have included or focused on neutrophils or other leukocyte types
(7, 25, 26, 28, 30, 31). The central finding of this study is that F.
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tularensis elicits a metabolic program in human neutrophils that is
distinct from other stimuli described to date and is essential for cell
longevity and delayed apoptosis.

Our published data establish that LVS infection significantly
dysregulates over 800 neutrophil genes associated with

metabolism, including upregulation of genes encoding nearly
every glycolytic enzyme and the two main glucose transporters
used by neutrophils (22). PFKL and HK2 are the two most
prominent regulatory enzymes of glycolysis, and we confirm that
in LVS-infected neutrophils HK2 expression increased nearly 6-
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fold and PFKL expression increased ~3-fold by 6 hpi (Figure 1).
Notably, significant induction of PFKL expression was apparent
within minutes of LVS addition (0 hpi), reinforcing the notion
that F. tularensis can act at a distance and begin to alter
neutrophil function at the earliest stages of infection prior to
bacterial binding and phagocytosis (43). At the biochemical level,
changes in PMN gene expression led to increases in glucose
uptake (Figure 6A) as well as glycolysis and glycolytic flux
(Figure 2) that peaked at 12 hpi and were accompanied by
accumulation of pathway intermediates as well as ATP and
lactate (Figures 3, 4; Supplementary Figure 1). The LDHA

isoform of lactate dehydrogenase catalyzes the conversion of
pyruvate to lactate (44), and following LVS infection, LDHA
expression increased ~6-fold by 6 hpi (Figure 1). Furthermore,
increases in lactate and the lactate/pyruvate ratio and reduction
of pyruvate were apparent by GC-MS as early as 3 hpi and were
sustained to at least 24 hpi (Supplementary Figure 1;
Figures 3B, 4), and lactate also accumulated in the
extracellular medium (Figure 3A). The opposing effects of LVS
on lactate and pyruvate abundance contrasts with simultaneous
increases in both metabolites that typically accompany PMN
activation and microbe killing, and it has been proposed that
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changes in the ratio of these metabolites may be a hallmark of
metabolic reprogramming (27, 32).

PMN:s store glucose as glycogen, a branched glucose polymer
that surrounds a glycogenin core. '*C-glucose pulse-chase
experiments demonstrated that glycogen stores are highly
dynamic and are constantly adding and removing glucose units
even at steady state (45). Accordingly, glycogenolysis ensues
immediately in glucose free medium, reducing stores by up to
38% in 60 min, and glycogen is rapidly resynthesized when
exogenous glucose is restored. As little as 5.3 ug glucose/10°
cells/60 min is sufficient to maintain glycogen stores and 74 g/
10° cells supports maximum resynthesis (45). Enzymes that
mediate glycogen synthesis and their encoding mRNAs are long-
lived, and both glycogen synthase and glycogen phosphorylase
bind glycogen (45). It has long been believed that neutrophils use
glycogen for fuel only during phagocytosis and when extracellular
glucose is scarce (6, 7, 46). However, recent reports (26) and the
results of this study (Figure 7) contest this model. We show here
that glycogen levels in uninfected neutrophils declined
progressively as cells aged despite being cultured in glucose-
replete medium. On the other hand, glycogen dynamics of LVS-
infected cells were characterized by waves of net glycogenolysis
and glycogenesis. Glycogen stores were highest at 3 hr and were
more abundant in LVS-infected cells than the uninfected controls.
Although glycogen stores declined to a nadir at 9 hpi, they were
replenished in the infected cells by 12 hpi and then maintained at a
distinct intermediate level, before declining again at 32-48 hpi. To
our knowledge, changes in glycogen stores of aging PMNs have
not previously been reported. As near total glycogen depletion in
control PMNs at 9-12 hr coincides with the onset of caspase-3
activation and progression to apoptosis (Figures 7 and 8C) (23),
our data suggest that the ability of LVS-infected cells to replenish
their glycogen stores 12-24 hpi is critical to their longevity, and as
such suggests that glycogen abundance may be a key determinant
that dictates PMN lifespan.

The results of this study demonstrate that glucose metabolism
and glycolysis are critical for PMN survival. We extend prior
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results of Healy et al. (47) to show that blockade of glycolysis
with 2-DG and replacement of glucose with pyruvate
significantly accelerated apoptosis of both control and LVS-
infected cells. At the same time, the dynamic changes in
glycogen stores reported here and the survival-enhancing
effects of CP-91149 confirm that glycogen is critical for PMN
viability (26), which contrasts markedly with the ability of CP-
91149 to cause death of hepatocellular carcinomas (48). Finally,
the fact that Q-VD-OPh-mediated caspase inhibition was
sufficient to profoundly enhance glycolysis and glycolytic
capacity and markedly increased glycogen stores in parallel
with ablation of apoptosis at 24 hr (Figure 9) is additional
definitive evidence that PMN metabolism and lifespan are
intimately linked. These data are summarized in Figure 10.
Thus far, two direct links between glycolysis and apoptosis
have been described. First, HK2 translocates to mitochondria
and binds VDAC which enhances mitochondrial integrity,
diminishes cytochrome ¢ release and reduces sensitivity to
BAX and other pro-apoptosis BCL-2 proteins (49, 50).
Mitochondrial association of HK correlates directly with
increased glycolytic flux and this may be regulated by
phosphoinositide 3-kinase and Akt pro-survival signaling (49).
Second, PKM2 has been linked to apoptosis resistance via its
ability to phosphorylate and stabilize pro-survival BCL-2 family
proteins (51, 52). PKM2 also translocates into the nucleus to
modulate NF-kB-dependent gene expression and may inhibit
caspase-3 indirectly via effects on miR-143 (51, 53). Our
published data show that mitochondrial integrity is
significantly prolonged by LVS infection, and in keeping with
this, BAX mRNA and protein are diminished and BAX
translocation to mitochondria is significantly delayed (22, 24),
but whether this is attributable to HK2-VDAC interactions at
mitochondrial surfaces and/or phosphoinositide 3-kinase
signaling remains to be determined. In addition, several anti-
apoptosis genes of PMNs are regulated by NF-xB including
BCL2A1, A20, XIAP and MCLI (9). Caspase activation is
inhibited in LVS infection by the concerted actions of XIAP,
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FIGURE 10 | Model. Effects of F. tularensis and Q-VD-OPh on neutrophil metabolism. See Discussion for details.
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cIAPs and calpastatin (22, 24). PKM2 expression is induced by
LVS, but its specific role in our system is currently unknown.
Conversely, HK expression is downregulated during apoptosis
and caspases inhibit PFK and pyruvate kinase to block glycolysis
during cell death (8, 54). To gain further insight into links
between glycolysis and apoptosis we utilized western blotting
to elucidate the effects of 2-DG on caspase-3 processing and the
abundance of XIAP and MCL-1. Although procaspase-3
processing was enhanced, XIAP and MCL-1 were unchanged
(Supplementary Figure 8). Thus, another possibility that must
be considered is the ability of 2-DG to trigger cell death by
inducting oxidative stress (55). Addressing this question in
greater detail is of interest but is beyond the scope of this study.
Lactate is a major end product of glycolysis and is emerging
as a regulator of metabolism with complex, cell type-specific
effects (56-58). Similar to pyruvate, lactate can be used for
gluconeogenesis, but its major established role is as a signaling
intermediate that functions inside and between cells to alter
function and activation state. For example, in monocytes,
macrophages and T lymphocytes, elevated levels of lactate
inhibit glycolysis and have been linked to immunosuppression
as indicated by impaired production of proinflammatory
cytokines by monocytes, changes in macrophage gene
expression leading to M2 polarization, and impaired CD8+ T
cell proliferation and toxicity (57, 58). In contrast, lactate
signaling in tumor cells increases glucose uptake, enhances
expression and activity of glycolysis enzymes and reduces
mitochondrial function via a mechanisms linked to HIF-1cot and
PIK3CA (56). With regard to neutrophils, 10 mM exogenous
lactate is sufficient to induce NETosis, but its effects on other
aspects of cell function are unknown (56, 59). Our data indicate
that the average amount of lactate released by LVS-infected PMNs
over 24 hr (4.7 mM) had no discernable effect on the rate of
constitutive apoptosis in the absence of infection (Supplementary
Figure 7) and did not induce NETs (data not shown).
Although the apoptosis differentiation program of
neutrophils has been extensively studied, the intracellular
trigger that initiates changes in gene expression that lead to
cell death is unknown. Recently, Sadiku et al. showed that the
capacity to synthesize glycogen is required for neutrophil
survival in mice and that blockade of glycogen breakdown with
CP-91149 in glucose-free medium causes PMN death within 12
hr (26). The notion that glycogen levels directly control
neutrophil longevity is also supported by our data which
demonstrate that inhibition of glycogen breakdown by CP-
91149 expanded glycogen stores and extend neutrophil lifespan
(Figures 8A-C). At the same time, the data in Figure 7 lead us to
speculate that depletion of glycogen stores may trigger
constitutive PMN death. Precisely what accounts for this
remains to be determined, as GYS1, UGP2 and GBE1 enzymes
and mRNA are unchanged (Supplementary Figure 6). A
comparison of the data in Figure 8 and Supplementary
Figure 3 confirms that although pyruvate can be used for
gluconeogenesis it is less able to sustain glycogen stores, ATP
production and PMN viability than glucose (26).
Glucose-6-phosphate that is not used for glycolysis or stored
as glycogen can be transported into the ER. Mutations in G6PT

prevent glucose-6-phosphate uptake into the ER, are associated
with apoptosis and neutropenia in patients, and can be mimicked
by treating wild-type cells with the G6PT inhibitor chlorogenic
acid (60). However, Veiga-da-Cunha et al. demonstrated that
PMN death is not due to impaired G6P transport, as has long
been believed (61). Rather, toxicity is due to a long-lived
common dietary glucose analog, 1,5-anhydroglucitol (1,5AG),
that is abundant in blood and serum and is converted to
1,5AG6P by HK after uptake. In the absence of functional
G6PT, 1,5AG6P cannot be further metabolized and
accumulates, leading to inhibition of HK and PMN death. The
lack of effect of chlorogenic acid on PMN viability in our hands
(Supplementary Figure 5) supports this model as all our studies
of F. tularensis and PMNs are performed using serum-free
RPMI-1640 that is devoid of 1,5AG (22-24, 34).

The major metabolic pathways of neutrophils are aerobic and
anaerobic glycolysis, TCA cycle, PPP, fatty acid biosynthesis and
oxidation, glycogenolysis, glycogenesis, glutaminolysis, and in
immature cells oxidative phosphorylation (7, 26, 28). These
pathways are differentially utilized by PMNs under different
conditions, and at least seven metabolic states have been
described that distinguish 1) immature and tumor-associated
neutrophils, 2) resting, mature PMNs, 3) cells undergoing
chemotaxis, 4) phagocytosis, 5) canonical activation and ROS
production, 6) elaboration of NET's or 7) apoptosis (8, 25, 28, 31,
46). Although additional studies are needed, the metabolic
profile of LVS-infected PMNs described here is distinct from
other metabolic profiles described to date. Specifically, the major
metabolic pathways used by immature and tumor associated
PMNs are fatty acid oxidation, TCA cycle and oxidative
phosphorylation, whereas resting mature cells rely on
glycolysis and phagocytosis selectively stimulates
glycogenolysis. Chemotaxis is driven by glycolysis and
mitochondrial purinergic signaling, NET formation requires
glycolysis and PPP, and canonical activation is notable for
glycolysis, glycogenolysis, PPP, TCA and glutaminolysis,
whereas glycolysis and glycogenin synthesis are downregulated
during apoptosis (8, 25, 28). In contrast, LVS-infected PMNss are
notable for sequential glycogenolysis and glycogenesis, as well as
induction of glycolysis and glucose uptake and downregulation
of the PPP. As the PPP supplies NADPH that is essential for
production of superoxide during the respiratory burst,
downregulation of PPP enzymes and intermediates (Figure 4)
(22) is in keeping with the ability of F. tularensis to elicit rapid,
global inhibition of superoxide production via effects on
NADPH oxidase assembly and activation (16, 17).

Metabolic reprogramming does not occur during or following
every phagocytic event or infection, despite phagocytosis consuming
half of a neutrophil’s total ATP (6). Kobayashi et al., demonstrated
that although glycolysis genes are expressed in PMNss at rest, most
are not differentially expressed during constitutive or phagocytosis-
induced apoptosis, though expression of HK and genes linked to
glycogen synthesis declined (8). Among other bacterial pathogens
that persist or replicate in neutrophils, there are relatively little data
regarding their effects on glycolysis or other aspects of host cell
metabolism. Like F. tularensis, Anaplasma phagocytophilum,
Chlamydia pneumoniae and Neisseria gonorrhoeae replicate
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intracellularly and modulate apoptosis (62-64). However, effects of
C. pneumoniae and N. gonorrhoeae on expression of genes linked to
glycolysis have not been reported, and although A. phagocytophilum
elicits upregulation of PFKFB3 and downregulation LDHA,
consequences for cell metabolism, if any, remain to be
determined (62). On the other hand, the periodontal pathogen
Filifactor alocis modulates cholesterol homeostasis and selectively
increases expression of genes linked to glycogen synthesis and
glycosphingolipid metabolism rather than glycolysis (65).
Upregulation of glycolysis has been observed in the context of
infection with Legionella pneumophila or Leishmania donovani (27,
66) and LPS stimulation in vitro (26), but in these models glycolysis
is coupled to PMN activation and bacterial clearance which
contrasts sharply with the ability of F. tularensis to evade
oxidative host defense, escape the phagosome and replicate in
PMN cytosol (16, 17, 23).

The bacterial factors that mediate PMN metabolic
reprogramming remain to be determined. Our published data
demonstrate that maximum extension of neutrophil lifespan is
independent of capsule and LPS and is mediated by the
combined effects of intracellular bacteria along with F.
tularensis lipoproteins and other factors that are rapidly
released into conditioned media (22, 23, 34). Thus, it is
tempting to speculate that bacterial lipoproteins and other
secreted factors may begin to influence PMN metabolism,
including PFKL expression, at the earliest stages of infection, as
noted above. Addressing this knowledge gap is the focus of on-
going studies by our group.

In summary, neutrophil turnover is disrupted during F.
tularensis infection and, consequently, neutrophils contribute
distinctly to tularemia pathogenesis by exacerbating host tissue
destruction. Herein, we extended our previous studies of
apoptosis inhibition to demonstrate neutrophil metabolic
reprogramming by F. tularensis. We show that this bacterium
elicits a distinct metabolic signature in human neutrophils that
differs from other stimuli studied date. At the molecular level,
this response is notable for induction of glycolysis, elevated
lactate/pyruvate ratios, and complex glycogen dynamics.
Although many questions remain unanswered, and other
pathways and intermediates need to be explored, our findings
reinforce links between metabolism and PMN longevity and set
the stage for additional studies that may include other infections
and disease states.
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