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Breast cancers are commonly associated with an immunosuppressive microenvironment
responsible for tumor escape from anti-cancer immunity. Cells of the myeloid lineage
account for a major part of this tumor-promoting landscape. These myeloid cells are
composed of heterogeneous subsets at different stages of differentiation and have
traditionally been described by their cardinal ability to suppress innate and adaptive
anticancer immunity. However, evidence has accumulated that, beyond their
immunosuppressive properties, breast cancer-induced myeloid cells are also equipped
with a broad array of “non-immunological” tumor-promoting functions. They therefore
represent major impediments for anticancer therapies, particularly for immune-based
interventions. We herein analyze and discuss current literature related to the versatile
properties of the different myeloid cell subsets engaged in breast cancer development. We
critically assess persisting difficulties and challenges in unequivocally discriminate
dedicated subsets, which has so far prevented both the selective targeting of these
immunosuppressive cells and their use as potential biomarkers. In this context, we
propose the concept of IMCGL, “pro-tumoral immunosuppressive myeloid cells of the
granulocytic lineage”, to more accurately reflect the contentious nature and origin of
granulocytic cells in the breast tumor microenvironment. Future research prospects
related to the role of this myeloid landscape in breast cancer are further considered.
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HIGHLIGHTS

Beyond their cardinal immunosuppressive properties, many
subsets of myeloid cells are equipped with multiple tumor-
promoting functions impacting most steps of cancer development.
INTRODUCTION

Centered for years on the intrinsic characteristics of tumor cells, the
field of cancer research has evolved toward the notion that cancers
emerge and develop in a dedicated tumor-promoting environment.
The cross-talks between malignant cells and components of this
tumor-specific landscape dictate the fate of cancer (persistence or
elimination) and further shape the nature of this microenvironment
(1, 2). In this context, the influence of the immune system on cancer
development has been widely evidenced, and many strategies have
been developed to induce, restore and enhance anti-cancer
immunity. Successes of these immune-based approaches in
inducing efficient anti-tumor responses and improving cancer
patient survival have brought some of them to the forefront of
cancer therapeutics in recent years (3). However, it has also become
clear that cancers can escape from immune detection and
destruction by many mechanisms resulting in the establishment
of an immunosuppressive tumor environment, which represents a
major obstacle for efficient immunotherapies. Compelling evidences
have indicated that inhibition of these immunosuppressive
networks is an important prerequisite to uncover the full potential
of immune-based interventions. It is noteworthy that, although
several immunotherapies provide clinical benefits in melanoma,
lung, bladder and colon cancers, breast cancer patients have yet to
fully experience these breakthroughs. Indeed, except for triple-
negative cancers which are more immunogenic and have obtained
FDA approval of immunotherapies in the neo-adjuvant (4) and
metastatic (5) settings, most immune-based therapeutic attempts in
breast cancers have ended in failure.

For many years, the environment of breast tumors has been
described as “immunologically cold”, as defined by the sparsity
or absence of tumor-infiltrating lymphocytes (TILs) (6). This
description is somewhat inaccurate insofar as it usually does not
take into account cells of myeloid origin, despite their many
diverse roles in the environment of mammary cancers. The lack
of anti-tumoral immune response in breast cancers has indeed
been associated with a host i le immuno-inhibi tory
microenvironment, the major components of which being cells
of myeloid origin (7). Tumor-associated macrophages (TAMs),
tumor-associated neutrophils (TANs), tolerogenic dendritic cells
(tDC) and immature subsets of myeloid cells endowed with
immunosuppressive properties termed “myeloid-derived
suppressor cells” (MDSCs) have been identified as such
myeloid subpopulations, present not only within the tumor
environment, but also at the sites of priming of antitumoral
immune responses (secondary lymphoid organs), in the
bloodstream and in the pre-metastatic and metastatic sites.

Besides their ability to impair anti-tumor immunity at
different steps of immune responses (initiation, priming,
effector stages), these myeloid cells are also endowed with a
Frontiers in Immunology | www.frontiersin.org 2
large array of “non-immunologic” tumor-promoting functions.
They can indeed contribute to the epithelial-to-mesenchymal
transition (EMT), participate to local tissue invasion at the
primary tumor site, foster blood or lymphatic vessel
intravasation and extravasation of migrating cancer cells,
associate with circulating tumor cells protecting them in the
bloodstream, and prepare the pre-metastatic niches thus
enhancing metastatic processes. Furthermore, these myeloid
cells can also directly promote primary tumor cell survival and
proliferation and foster tumor neoangiogenesis and cancer cell
stemness (Figure 1). The role of breast cancer-induced myeloid
cells in resistance to chemotherapy as well as endocrine therapy
has also been described, making them potential targets for the
development of new immunotherapies.

Recently, major advances in the characterization of the
phenotypes, functions and origins of myeloid cell subpopulations
in breast cancers have been made, particularly by single cell RNA
sequencing approaches. In this review, we discuss the equivocal
identify of some subsets, particularly “polymorphonuclear-
MDSCs” (“PMN-MDSCs”) and “immunosuppressive neutrophils”,
and examine and discuss the polyvalent tumor-promoting functions
of these myeloid cells in the breast cancer environment in light of
recent literature, with a specific emphasis on the “non-immunologic”
pro-tumoral properties of these multitasking cells.
MACROPHAGES IN BREAST
CANCERS: A MULTIFUNCTIONAL
IMPACT ON TUMOR PROMOTION

Macrophage Phenotype and Function in
the Context of Breast Cancer
Macrophages have been one of the most widely studied population
of myeloid cells in cancer, specifically in the context of breast
malignancies. In breast cancer patients, tumor-associated
macrophages (TAM) have been associated with aggressive
features (size ≥ 2 cm, higher tumor grade, higher Ki67) and
estrogen receptor (ER) negative breast cancers (8). However, the
prognostic value of these cells remains controversial and depends
on the cancer subtype, the macrophage subset (M1 vs M2, see
below) and their localization (9). Indeed, some authors have
described an improved survival of ER- or triple-negative breast
cancer (TNBC) patients with a CD163+CD68+ macrophage
infiltrate (10), while others correlated the presence of tumor-
infiltrating CD163+ macrophages with a worse prognosis of
TNBC patients (11). In a gene-expression based study using a
CIBERSORT deconvolution method, macrophages have been
associated with a significant poorer outcome in both ER+ and ER-

BC patients, and were predictive of a worse response to
chemotherapy in ER- patients (12). Independently of BC subtype,
immune population clustering identified 2 clusters enriched in pro-
tumorigenic macrophages, which have been associated with
significantly worse outcome in BC patients (12).

The polyvalent functions and the high degree of plasticity of
macrophages are partly responsible for these conflicting results.
Macrophages have originally been broadly discriminated in two
March 2022 | Volume 13 | Article 838040
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different types with opposite roles. “M1”macrophages have been
described as classically activated, pro-inflammatory, anti-
tumoral effectors, whereas “M2” macrophages correspond to
alternatively activated cells endowed with “wound-healing” and
tumor-promoting functions. M1 and M2 represent in fact two
Frontiers in Immunology | www.frontiersin.org 3
extreme polarization states of a highly plastic differentiation
program controlled by environmental cues (13). M1
macrophages can be induced by TLRs ligands such as LPS,
and/or IFNg. Their differentiation is driven by STAT1, IRF5,
NF-kB (14). M2 macrophages are primarily induced by IL-4 and/
FIGURE 1 | Tumor-promoting myeloid cells critically affect multiple and distinct steps of cancer development. Besides impairing anti-tumor immunity. (A), dedicated
subpopulations of myeloid cells differentially impact primary tumor survival and growth (B), tumor vascularization (C), local tissue invasion (D) cancer stemness (E),
tumor cell intra- (F) and extravasation (G) in and from blood vessels, associate with circulation tumor as beneficial clusters (H), and participate to metastatic site
preparation and development (I). The relative contribution of each myeloid cell subset to a specific process (each illustrated in a separate box) is depicted by the
differential size of the cells. CSC, cancer stem cells; CTC, circulating tumor cells; ECM, extra-cellular matrix; EMT, epithelial-to-mesenchymal transition; IMCGL,
immunosuppressive myeloid cells from granulocytic lineage; Mo-MDSCs, monocyctic myeloid-derived suppressor cells.
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or IL-13 (+/- IL-10) via the IL-4Ra receptor and their
differentiation depend mainly on STAT3, STAT6, IRF4
activation. Different markers have been used to distinguish
between M1 and M2 macrophages, but most of these
molecules are expressed by both types, although at different
levels (14). In immunohistochemical studies, CD68 is often used
as a “pan-macrophages” marker. M1 are described as iNOS-
expressing cells, with high expression of MHC class II and
detectable co-stimulatory molecules CD80 and CD86. M2
macrophages conventional markers include CD163, the
scavenger receptor CD204 and mannose receptors CD206, as
well as a high expression of Arg1 (9). However, this M1/M2
dichotomy has been challenged and it may not be fully relevant
in the context of chronic, non resolutive inflammation such as
cancer (14). In fact, recent transcriptomic data, RNA sequencing
and mass-cytometry analyses argue for a more complex and
heterogeneous phenotypic identity of breast cancer-associated
macrophages. A single-cell RNA-seq analysis of 8 tumors
(matched to healthy tissues from the same patients) uncovered
numerous clusters of immune cells. Among them, three different
clusters of TAMs were described (15). Whether TAM may
originate from bone-marrow-derived monocytes or from
tissue-resident macrophages, which derive from embryonic
macrophages that colonize developing organs during the
process of embryogenesis and that persist in mature developed
adult organs, has been debated. The abovementioned study
indicated that the three identified distinct TAM clusters
originate ei ther from monocytes or from resident
macrophages. Interestingly, among these TAMs, the M1 gene
signature correlated with that of M2, advocating for a
simultaneous activation of these different genes (15). Along
these lines, a mass-cytometry analysis of 144 breast tumors
(compared with 46 matched juxta-tumoral tissue and four
mammoplasties from cancer-free individuals) defined 19
clusters of myeloid cells and highlighted a frequent co-
expression (although at different levels) of phenotypic markers
of both M1 and M2 by TAMs such as CD169, CD86, CD204,
CD206 and CD163 (16). Consistent with these studies, a RNA-
seq analysis indicated that TAMs from breast and endometrial
cancers did not exhibit typical M2 gene signatures (17). In this
study, TAMs from these two different types of cancers revealed
very small similarities, emphasizing the crucial role of the TME
in differentially shaping macrophage phenotype and function
(17). These data thus indicate that TAMs in breast cancers
exhibit complex overlapping phenotypic and functional
characteristics and cannot be simplistically categorized as
conventional M1 vs M2. With regard to the origin of TAMs in
breast cancers, the aforementioned single-cell RNA-seq analysis
indicated that these cells can originate either from resident
macrophages or from monocyte differentiation (15).

TAMs at the Primary Tumor Site
At the primary tumor site, crosstalks between macrophages and
cancer cells contribute to the recruitment and activation of
TAMs, which in turn foster tumor progression through many
mechanisms. Particularly, the immunosuppressive activity of
Frontiers in Immunology | www.frontiersin.org 4
these cells has been extensively described. Indeed, macrophages
can suppress anti-tumoral T lymphocytes responses via their
catabolism of L-arginine and/or tryptophan (expression of iNOS,
IDO, arginase), production of immunosuppressive cytokines
such as IL-10, IL-4, IL-17, CXCL1, or the expression of ligands
for immune checkpoint inhibitory receptors such as PD-L1.
They also produce chemoattractant chemokines that further
recruit immunosuppressive cells such as neutrophils, immature
DCs and/or Tregs [reviewed in (18)]. Along these lines, IL-1ß
production by TAM has been shown to participate to the
recruitment of immunosuppressive cells and thus to overall
suppression of adaptive immune responses (19, 20). In mice,
specific targeting of these immunosuppressive macrophages or
inhibition of their immunoinhibitory functions can restore anti-
tumor immune responses (21).

However, tumor-associated macrophages can also display
pro-angiogenic functions and can promote cancer cell
stemness. For instance, the transcription factor POU class 1
homeobox 1 (POU1F1, also known as Pit-1), a protein expressed
by breast cancer cells, has been reported to increase macrophage
recruitment and to promote their polarization towards VEGFA-
expressing tumor-promoting macrophages. In turn, these
macrophages foster tumor growth, angiogenesis and
extravasation of breast cancer cells in a CXCL12-dependent
manner in vitro (22). Likewise, the expression by breast cancer
cells of the ID4 protein (a member of inhibitors of differentiation
family of proteins), which is associated with a basal, stem-like
phenotype and poor prognosis in TNBC, induces the activation
of a pro-angiogenic program in macrophages with upregulation
of angiogenesis-related transcripts (23). It is noteworthy that
pro-tumorigenic TAM infiltration is more prominent in
inflammatory breast cancer (IBC), a disease with a very poor
prognosis, compared to other breast cancer subtypes. These
macrophages are recruited and polarized into a pro-tumoral
phenotype (upregulation of CD206, CD163 and CD209) by CSF-
1, CXCL2, VEGFA and CCL18 produced by cancer cells (24). In
hypoxic zones, breast cancer cells produce Oncostatin M (OSM)
that induces macrophage polarization toward a tumor-
promoting phenotype (higher expression of CD163, CD206,
Arg1 and Cox-2) (25). Hypoxia enhances TAM expression of
galectin-3, a ß-galactoside binding protein modulating TAM
apoptosis, migratory and adhesive properties. These
macrophages have been shown to promote the proliferation,
invasion and migration of MDA-MB-231 breast cancer cells and
angiogenesis in vitro. Furthermore, in vivo experiments in Balb/c
mice exposed to hypoxia indicate that targeting Galectin-3
decreases lung metastasis burden and reduces endothelial cell
in the primary tumor (26). The presence of sexual steroids in the
TME, particularly the presence of estrogens, is a specificity of
breast malignancies as breasts are made of adipose tissues
producing sexual steroids in the environment. ER+ breast
cancers arising in this environment are uniquely capable of
responding to these signals and grow. Interestingly, it has been
reported that in BC patients, estrogens induce the production of
CCL2 and CCL5 within the tumor beds, leading to the
recruitment and polarization of macrophages towards a pro-
March 2022 | Volume 13 | Article 838040
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tumorigenic phenotype (27). The reversal of estrogen effects
using Tamoxifen led to a reduced infiltration of these pro-
tumoral macrophages in the primary tumor, a finding further
confirmed in murine models (28).

Macrophages recruited and accumulating at the tumor site
also contribute to tumor development through the promotion of
cancer cell stemness via secretion of IL-8 and CXCL1, 2 and 3
(24). Cancer stem cells (CSCs) are described as “tumor-initiating
cells” with the capability of self-renewal and asymmetric
proliferation, and are characterized by a reduced sensitivity to
drugs and irradiation compared to non-CSCs. These CSCs are
critical for cancer dissemination and metastasis (29). The
acquisition of stemness properties by cancer cells has been
associated with the induction of the EMT (epithelial-to-
mesenchymal transition) program. EMT is controlled by
transcription factors such as TWIST, ZEB1, SNAIL, or SLUG,
and is characterized by specific phenotypic changes whereby
epithelial cancer cells acquire a mesenchymal-like phenotype,
which increases their invasive and migratory potency (29). CCL2
and CXCL12 produced by breast cancer-associated fibroblasts
and tumor cells promote the recruitment and differentiation of
monocytes into immunosuppressive TAMs. In turn, these TAMs
upregulate the expression of Vimentin, decrease the expression
of E-cadherin, and induce Twists, Snail and Slug expression by
breast cancer cells, thereby promoting the acquisition of
mesenchymal and stemness properties by the latter (30). In a
xenograft mouse model, CD68+ TAMs have been demonstrated
to promote breast cancer cell stemness through expression of the
transmembrane protein LSECtin, which engaged BTN3A3 (B7
family member) on breast tumor cells (31). In the same study, the
authors have found a co-localization between LSECtin-
expressing macrophages and breast cancer cells expressing
CD90 – a stemness marker in breast cancer (31). The role of
CD90 in the anchorage of monocytes/macrophages to cancer
cells had previously been highlighted in a previous study (32).
This CD90-dependent bound leads to the production of
cytokines such as IL-6, IL-8, GM-CSF by cancer stem cells
which further support cancer stemness (32). Finally, in the
inflammatory context of obesity, mammary adipose tissue
macrophages can be reprogrammed into a pro-inflammatory
metabolically activated phenotype (MMe), which can promote
tumor initiation and triple negative breast cancer stem-like
properties through an IL-6/GP130-dependent mechanism (33).

TAMs in the Metastatic Process
TAMs also play an essential role at most steps of breast cancer
metastasis. As outlined above, these myeloid cells contribute to
breast cancer EMT and stemness, two essential initial steps
required for tumor systemic dissemination (24, 30–32). TAMs
located in the tumor beds or at their vicinity have also been
reported to promote intravasation of migrating cancer cells from
the primary tumor in blood vessels, while TAMs at the metastatic
sites may contribute to the preparation of the pre-metastatic
niches before colonization by cancer cells, and enhance breast
cancer cell extravasation from blood capillaries in distal
metastatic tissues (9).
Frontiers in Immunology | www.frontiersin.org 5
Many reports have described the influence of TAMs in breast
cancer cells intravasation, but the underlying mechanisms in vivo
have not been extensively studied. A real-time imaging analysis
in the MMTV-PyMT mouse model has indicated that VEGF-A
produced by Tie2-expressing macrophages induced the loss of
vascular junctions and transient vascular permeability, allowing
for breast tumor cell intravasation (34). More recent studies have
identified proteins involved in pro-tumoral macrophage
promotion of cancer cell invasion in vitro assays. Chitinase 3-
like protein 1 (CHI3L1, a glycoprotein highly expressed in solid
tumors) secreted by macrophages has been shown to enhance
breast cancer cell invasion, migration and adhesion. CHI3L1 has
been detected in the sera of patients with breast carcinomas but
not in healthy individuals. Analysis of GEO databases has
indicated that CHI3L1 is associated with a worse prognosis in
breast cancer patients (35). Use of 2D, 3D and Transwell
migration assays have also underlined the role of pro-
tumorigenic macrophage-secreted CCL-18 in promoting breast
cancer cell migration (36). TAMs can also indirectly foster tumor
dissemination by promoting the expansion of pro-metastatic
neutrophils by an IL-1ß-dependent mechanism (see neutrophil
section below) (37). Even in early and non-invasive breast
cancers (in situ carcinomas) in mice, CCL2-recruited tumor-
infiltrating macrophages with pro-tumorigenic features
(CD206+/Tie2+), downregulate expression of E-cadherin by
malignant cells, thus destabilizing cell-cell junctions, which
leads to cancer dissemination and metastasis. These data
advocate further for a decisive role of these cells in the
establishment of metastatic disease (38).

Macrophages can also contribute to the preparation of the
pre-metastatic niches and the promotion of breast cancer cell
extravasation from blood vessels in distant sites. Indeed,
monocytes, recruited to pre-metastatic niches by the CCL2,
have been reported to quickly differentiate into pro-metastatic
macrophages, which contribute to metastatic disease (9, 18).
More recently, the presence of CYP4A-expressing TAMs in
uninvolved tumor draining lymph nodes has significantly been
correlated with the expression of markers associated with pre-
metastatic niche formation (VEGFR1, S100A8 and fibronectin),
and with a reduced overall and relapse-free survival of patients.
In the same study, the specific targeting of CYP4A using
pharmacological approaches in 4T1 breast tumor-bearing mice
reprogrammed tumor-infiltrated TAMs with a F4/80+CD206+

phenotype into TAM with a F4/80+iNOS+ “anti-tumor”
phenotype, and reduced lung metastatic burden by impairing
the preparation of the pre-metastatic niches (39). At the
metastatic sites, macrophages further promote metastatic
disease development by fostering vessel formation and directly
enhancing cancer cell growth and survival, through the
expression of VEGFA and downstream upregulation of MMP-
9 (40).

TAMs have been recently described to promote
lymphangiogenesis by two different mechanisms. First,
expression of podoplanin, a transmembrane glycoprotein
implicated in cell motility and adhesion, has been detected on
TAMs at the vicinity of lymphatic vessels in the breast TME. The
March 2022 | Volume 13 | Article 838040
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binding of podoplanin to the galectin 8 protein, a secreted
glycan-binding protein expressed by lymphatic endothelial
cells, promotes the secretion of the pro-migratory integrin ß1
by macrophages, which in turn fosters their migration and
binding to lymphatics vessels where they induce matrix
remodeling and promote vessel growth and lymphoinvasion.
In the same study, podoplanin-expressing TAMs were associated
with lymph node invasion and organ metastasis in a small cohort
of breast cancer patients (41). Second, signaling through the
sphingolipid sphingosine-1-phosphate receptor 1 (S1PR1)
expres sed on TAMs induced macrophage NLRP3
inflammasome expression, leading to the production of IL-1ß,
which in turn directly acted on lymphatic endothelial cells to
promote lymphangiogenesis. In mice deficient in S1PR1 in
macrophages, lymphangiogenesis and metastatic growth are
impaired. In human, NLRP3 expression in macrophages
correlated with lymph nodes invasion and distant metastasis
(42). Consistent with the aforementioned observations, in vitro
experiments confirmed the role of macrophage-derived IL-1ß in
the promotion of breast cancer cell adhesion to human
lymphatic endothelial cells (43).
BREAST CANCER PROMOTION BY
“MYELOID-DERIVED SUPPRESSOR CELLS
(MDSCS)”: BEYOND THE SUPPRESSION
OF ANTI-TUMOR IMMUNITY

“MDSCs”: A Functional Definition Rather
Than a True Biological Subtype
The term “myeloid-derived suppressor cells (MDSCs)” was
initially proposed by Gabrilovich et al. in 2007 in an effort to
globally describe a heterogeneous population of myeloid cells
exhibiting an immature phenotype and endowed with
immunosuppressive functions (ability to suppress T
lymphocytes), which accumulate in large numbers in the
context of cancer (44). These cells have drawn intense scrutiny
over the last 20 years and a considerable amount of data has been
provided related to their participation to the complex
immunoregulatory networks responsible for tumor immune
escape. It has also become clear that they contribute to tumor
development and dissemination through many different
“immune-unrelated” mechanisms. “MDSCs”, in the context of
cancer, derive from bone marrow hematopoietic precursors
through aberrant myelopoiesis induced by tumor-derived
factors (45). Many chemokines have been involved in MDSCs
generation and recruitment to primary tumor sites or pre-
metastatic niches, such as CXCL1, CXCL2, CXCL5, CXCL12,
GM-CSF, G-CSF, M-CSF, VEGF, IL-6, IL-1ß or ß-FGF (46).
More recently, breast cancer cells-derived exosomes have been
shown to induce “MDSCs” from bone marrow myeloid
progenitors (47), or to lead to their recruitment (48). In the
specific estrogen-rich environment of breast cancer, these
hormones have been shown to induce “MDSCs” recruitment
via the activation of cancer associated fibroblasts, which in turn
Frontiers in Immunology | www.frontiersin.org 6
secrete CXCL12 (49). “MDSCs” have been defined as myeloid
cells blocked at different stages in their differentiation toward
mature terminally differentiated subsets such as macrophages
and are thus associated with different degree of immaturity. This
hallmark is however not always explored in many studies on
“MDSCs”. The immunosuppressive capabilities of these cells,
enabling them to block innate and adaptive anti-tumoral
immune responses, represent their primary characteristic
which must be systematically investigated for their
identification as such (50).

If the term “MDSCs” was designed to globally encompass
immature myeloid cells with many common features, it has
nonetheless become confusing, particularly because it has
contributed to consider these cells as a unique population of
myeloid cells. However, “MDSCs” are made of highly
heterogeneous populations, including cells from the monocytic
and granulocytic lineage. In human, monocytic (M)-MDSCs
have been defined as Lin-CD33+CD11b+HLA-DRlow/-

CD14+CD15-, granulocytic (G) or polymorphonuclear (PMN)-
MDSCs as CD33+CD11b+HLA-DRlow/-CD14-CD15+CD66b+,
and “early stage” (more immature MDSC) (eMDSCs) as
CD33+HLA-DR-Lin- (Lin: CD3, CD19, CD20, CD56, CD14,
CD15) (50). In mice, MDSCs are CD11b+/Gr1+ cells, with Gr1
composed of two molecules, Ly6C (expressed on monocytic
cells/M-MDSCs), and Ly6G (expressed on granulocytic cells/
PMN-MDSCs) (51). As a main pitfall in the field, in many
preclinical studies the phenotypical characterization of “MDSCs”
has been limited to CD11b+Gr1+, which does not allow to
discriminate between monocytic and granulocytic myeloid
cells, each subset being endowed with distinct functions (52).

Granulocytic MDSC or “PMN-MDSC” constitute the
majority of the MDSC pool in many cancers. However,
phenotypically and functionally, these “PMN-MDSC” can
hardly be distinguished from pro-tumoral immunosuppressive
neutrophils and share the same phenotype as differentiated
granulocytes. For these reasons, and since this overlap between
PMN-MDSC and tumor-associated neutrophils remains a
significant challenge in the field, we will discuss their
phenotype and function together with that of cells of the
granulocytic lineage in a dedicated section hereafter.

M-MDSCs and conventional monocytes share a similar
phenotype, with however as main differences, lower expression
of MHC Class II molecules and immunosuppressive capability
for M-MDSC (53). However, “classical” CD14hiCD16lo

monocytes may also exhibit low expression of HLA-DR, which
is further reduced in the context of inflammation, sepsis, or
cancer. In fact, cells with such a monocyte/M-MDSCs phenotype
in the context of cancer have been shown to be
immunosuppressive, blocking antitumoral T cell responses
(54). In addition, both cell types have been reported to
differentiate into pro-tumorigenic TAMs. This suggests a
change of function of monocytes induced in the context of
cancer (or other pathological conditions), rather than the
occurrence of two different cell subtypes. Therefore,
immunosuppressive monocytes and M-MDSC substantially
overlap phenotypically and functionally. It is also noteworthy
March 2022 | Volume 13 | Article 838040
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that some cells of myeloid origin exhibiting phenotypic
characteristics that do not meet the classical definition of
MDSC because they lack expression of specific MDSC markers
(but which are nonetheless immunosuppressive and pro-
tumoral) are excluded by this current MDSC terminology and
may thus be overlooked. This is for instance the case of non-
classical monocytes described in different cancers (55–58).

Overall, the “MDSCs” terminology is a conceptual approach,
which was indispensable fifteen years ago to provide a
comprehensive picture of a particular phenomenon observed
in many cancers: the expansion of a myeloid cell population,
more or less mature, with immunosuppressive properties. With
the evolution of detection technologies such as scRNAseq, new
knowledge of these cells has been brought, and it appears today
as an essential requirement to regroup these myeloid cells
according to their refined phenotype, in order to better identify
and ultimately target them. However, since many studies do not
allow such a discrimination (because of the use of an incomplete
phenotype to identify these cells), in the next section, we will
discuss the “all” MDSCs population (CD11b+/Gr1+ in mice,
CD33+ in humans), the “early MDSCs” and the monocytic
fraction (monocytes and M-MDSCs).

“MDSCs” in Breast Cancer Patients
In breast cancer patients, while some studies have reported that
immunosuppressive monocytic cell number is increased
compared to control patients (54), others did not observe this
expansion (59). These cells have been associated with more
advanced disease (60), and with a worse survival (61). Increased
eMDSC numbers have also been correlated with a worse response
to neo-adjuvant chemotherapy in TNBC patients (62). In breast
cancer tissues, many reports have described, with various degree of
accuracy, myeloid cells exhibiting an immature phenotype
(CD33+CD13+CD14-CD15-) and immunosuppressive properties,
which have been associated with adverse prognostic features
(higher tumor grade, positive lymph nodes) (63). The
composition of this myeloid infiltrate was different among
studies, composed either with a majority of CD14+ monocytic
immunosuppressive cells (64), or with granulocytic myeloid cells
and early MDSCs (59). Together, these studies consistently
advocate for the presence and role of suppressive myeloid cells
in the tumor microenvironment, but their contradictory findings
related to the exact phenotype of these cells highlights the extreme
heterogeneity of this myeloid landscape, as further outlined more
recently in scRNAseq and cytometry by time of flight (CyTOF)
studies discussed in the next sections (15, 16).

Direct Effects of “MDSCs” on Tumor Cells
In primary tumor sites, suppressive myeloid cells recruited by
cancer cells play an important role in inhibiting anti-tumor
immune responses using many mechanisms extensively
reviewed elsewhere (expression of ARG1, production of NO,
ROS, and prostaglandin E2) (50, 51). However, many studies
have also lent support to the notion that, besides their role as
potent suppressor of cancer immunity, “MDSC” may also play an
important role in breast cancer cell invasion, activate other stromal
cells such as fibroblasts, and promote angiogenesis. Recruited at
Frontiers in Immunology | www.frontiersin.org 7
the hypoxic tumor sites, CD11b+Gr1+ MDSCs produce S100A8,
an alarmin not only involved in the recruitment of additional
MDSCs, but also implicated in the activation of endothelial cells.
This activation led to the modification of tight junctions, leading to
vascular leakage (65).

MDSCs also participate to breast cancer resistance to
chemotherapy. It has indeed been shown that immunosuppressive
CD33+ cells isolated from breast cancers patients are able to induce
a stemness phenotype (associated with cancer cell chemoresistance)
in the breast cancer cell line MCF-7 (64). Furthermore, the
chemotherapeutic agent doxorubicin has been found to increase
the levels of monocyte chemoattractant proteins (MCPs) 1 to 3 and
particularly MCP1/CCL2 (48, 66). This chemotherapy-induced
expression of CCL2 has also been reported in the metastatic sites
such as the lungs. It results from the release of extracellular vesicles
enriched in annexin-6 by chemoresistant cancer cells, which
induced the recruitment of Ly6C+CCR2+ monocytes that
participate to the pre-metastatic niche formation (48).

Preparation of the Metastatic Niche by
Recruited “MDSCs”
CD11b+Gr1+ granulocytic and monocytic myeloid cells critically
contribute to the metastatic dissemination of breast cancer cells
(52). It has been observed that in the mouse 4T1.2 mammary
cancer model, pro-inflammatory monocytes with MDSCs features
(IL4R, CD49b, CD62L, CD11b) can be recruited by the chemokine
CCL2 in the pre-metastatic lungs where they foster metastasis.
CCL2 promotes the release of the alarmin S100A8/9 which further
increases MDSC recruitment (67). CD11b+Gr1+ cells have been
reported to progressively accumulate in the lungs of 4T1 tumor-
bearing mice before the arrival of cancer cells, and to prepare the
lung environment for seeding by metastatic cells via vascular
remodeling and production of MMP9 (68). Interestingly, this
recruitment of CCR2+ cells induced by inflammatory signals can
be mediated by other sources of inflammation than tumors.
Indeed, myocardial infarction represent a major cause of
systemic stress and is accompanied by systemic monocytosis. It
has been shown to be associated with a higher risk of relapse and
cancer-specific mortality in early breast cancer patients (69). In
tumor-bearing mice, myocardial infarction results in an important
recruitment of Ly6C+ monocytes with immunosuppressive
functions, which can differentiate into pro-tumorigenic
macrophages at the tumor sites and accelerate primary tumor
growth and metastasis (69). It has also been reported in the 4T1
triple negative mouse breast cancer model that Gr1+ cells
primarily promote the metastatic cascade by facilitating
extravasation of malignant cells at the distant metastatic lungs
through IL1b and matrix metalloproteinase secretion (70). Along
these lines, CXCR4-dependent mechanisms were involved in Gr1+

cell-mediated metastasis promotion in a mouse breast cancer
model (71)

At the future metastatic site, MDSCs are implicated in the
angiogenic switch. In two different studies in 4T1-bearing mice,
CD11b+Gr1+ cells recruited in the lungs have been demonstrated
to upregulate many pro-angiogenic factors such as Il1ß, Mmp9,
Tnf, Tie2 (72), or to secrete platelet-derived growth factor-BB
(PDGF-BB), which mediates angiogenesis (73).
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Differentiation of “MDSCs” Into Other Cell
Types in the Context of Breast Cancer
“MDSC” are endowed with a particularly high degree of
plasticity. Indeed, many reports indicate that monocytes/M-
MDSCs often differentiate into pro-tumorigenic macrophages
at the tumor site or in the metastatic organs. This phenomenon
has been tracked in vivo with the use of GFP+ expressing myeloid
cells, transferred into E0771-bearing C57BL/6 mice: few hours
after the transfer, classical monocytes were recruited in the
metastatic lungs, where they differentiated into macrophages
precursors, before becoming metastasis-associated macrophages
(74). Exosomes derived from mesenchymal stem cells can
promote the differentiation of M-MDSCs into highly
immunosuppressive pro-tumorigenic macrophages (75).

Bone is one of the most important metastatic sites in breast
cancer patients, with up to 70% of metastatic patients facing bone
metastasis. MDSCs and monocytic cells play a major role in the
formation of this metastatic site. Indeed, it has been
demonstrated that MDSCs (defined as CD11b+Gr1+) cells can
differentiate into osteoclasts in vitro and in vivo. These
osteoclasts are capable of bone resorption (76, 77).
IMMUNOSUPPRESSIVE MYELOID CELLS
OF THE GRANULOCYTIC LINEAGE:
VERSATILE TUMOR-PROMOTING
FUNCTIONS IN BREAST CANCERS

Granulocytic Cells in the Breast TME:
Phenotypes, Functions and Controversies
Neutrophils constitute the more prominent leucocytes, primarily
participating to the first lines of defense against infectious agents.
They are produced in the bone marrow from granulocyte-
monocyte myeloid progenitors (GMPs), which originate from
lymphoid-primed multipotent progenitors, themselves derived
from hematopoietic stem cells. Their maturation and
differentiation depend on G-CSF and STAT3 activation.

In the context of cancer, and particularly in the context of
breast cancers, it has been demonstrated that malignant cells could
disrupt neutrophil homeostasis, hijacking their production and
functions to their advantage through the production of TDFs such
as G-CSF (78). The phenotypic characterization of tumor-
associated neutrophils and the identification of specific subsets
have remained the matter of intensive debates for the past few
years. As mentioned in the previous section, the discrimination
and possible relationship between tumor-associated neutrophils
and polymorphonuclear (PMN)-MDSCs (MDSCs with a
granulocyte phenotype) has remained an outstanding question
in the field. Whether PMN-MDSC and tumor-associated
neutrophils represent the same cell populations or are different
subsets remains highly questionable. Indeed, in human, both are
commonly identified as SSChigh, CD33+/medium, CD11bhigh,
CD16+, CD15+, CD66b+, HLA-DRneg. Furthermore, many
preclinical studies, primarily in mouse cancer models, on which
most of our understandings of tumor-associated neutrophils have
Frontiers in Immunology | www.frontiersin.org 8
been based, do not clearly distinguish between neutrophils and
PMN-MDSC. In these studies, cells with a CD11b+Gr1+

Ly6G+LY6Cmed/low phenotype have been shown to expand over
the course of cancer progression, and functional assays to assess
their immunosuppressive properties have not always been
performed (79, 80).. Although some markers have been
proposed to discriminate between PMN-MDSC and “classical
neutrophils” such as LOX-1 (81), CD84 and JAML (82), or
sometimes the alarmins S100A8 or S100A9 (50), PMN-MDSC
have mainly been defined by their immunosuppressive properties.
Along these lines, because neutrophil density is higher than that of
MDSC, it has also been proposed that density gradients may be
used to separate physically tumor-associated neutrophils and
tumor-induced PMN-MDSC. However, mature neutrophils have
also been shown to exhibit immunosuppressive and pro-
tumorigenic features in the TIME, and activated neutrophils fall
in the “low-density” section of density gradients. Some authors
also tried to establish a “N1/N2” dichotomy similar to that
proposed for macrophages, N2 being pro-tumorigenic,
immunosuppressive neutrophils (83). However, to date no
reliable marker allow for a clear distinction of neutrophil
different differentiation stages, and neutrophils in cancer are
likely present as a heterogenous population, with cells at various
activation states (84).

Recent reports have attempted to address this equivocal
identity of PMN-MDSC and tumor-associated neutrophils. A
single-cell transcriptomic analysis of the myeloid compartment
in the splenocytes from two tumor-bearing mice (PyMT tumor
model) and 2 tumor-free control animals has suggested that
PMN-MDSCs differ from their normal myeloid counterparts and
may originate from neutrophil progenitor cells undergoing an
aberrant differentiation path (82). Data from another recent
study have suggested that peripheral PMN-MDSCs from
patients with metastatic breast cancer are more closely related
to healthy donors’ neutrophils than to MDSCs induced in
another pathological condition (Gram-positive sepsis) (85).
Further mass-cytometry analysis revealed that unique
subpopulations of these granulocytic cells were specifically
present in cancer patients, with a majority of low density
mature activated neutrophils and a minority of immature
neutrophils lacking maturation markers (CD10, CD13, CD45)
at different maturation stages. These cells were collectively
referred to by the authors as “G-MDSCs” and proposed to
constitute neutrophils at various differentiation stages (85).
These data thus advocate for a differential differentiation and
activation profile of neutrophils in the context of cancer.

Considering this significant phenotypic and functional overlap
between so-called “PMN-MDSC” and “immunosuppressive
neutrophils” we propose to refer to these cells more accurately
using the term “immunosuppressive myeloid cells of the
granulocytic lineage” or “IMCGL” until definitive phenotypic
markers or functional assays are available to unequivocally
distinguish them. (Figure 2). We believe that, compared to the
terms “immunosuppressive neutrophils” or “PMN-MDSC”, the
denomination ““IMCGL” allows to group these highly
overlapping cell types to better study them and partly address
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the current controversies and challenges in distinguishing between
immunosuppressive neutrophils and PMN-MDSC (Table 1). The
physiological relevance and clinical usefulness of discriminating
these cells also remains to be addressed.

IMCGL in Breast Cancer Patients
In breast cancers, IMCGL have historically been considered as a
major obstacle to anti-cancer immunity because of their
immunosuppressive activities, a concept supported by recent
Frontiers in Immunology | www.frontiersin.org 9
findings in triple-negative breast cancer mouse models, where
IMCGL-infiltrated tumors do not respond to immunotherapy
(86). In breast cancer patients, tumor-induced expansion of
circulating IMCGL has been corelated with a worst prognosis
(87, 88). Interestingly, IMCGL are more frequently found in the
tumor beds than in “healthy” adjacent tissues (59), and in most
studies IMCGL have been associated with a higher tumor stage
(89), or with a worse prognosis and an impaired response to
chemotherapy (90). Tumor-induced IMCGL have been reported
FIGURE 2 | Overlaps between subsets of tumor-promoting myeloid cells (monocytic vs gralulocytic origine). Cells formerly referred to as “Myeloid-Derived
Suppressor Cells, MDSCs” encompass undifferentiated CD33+CD11b+ (“early-MDSCs”), immunosuppressive cells of the granulocytic lineage that we propose to call
“immunosuppressive Myeloid Cell of the Granulocytic lineage, IMCGL” (“formal PMN-MDSCs”), and monocytes endowed with pro-tumoral properties. These tumor-
promoting monocytes (“formal m-MDSCs”) can differentiate into pro-tumoral macrophages, Mo-dendritic cells or osteoclasts, each endowed with multiple dedicated
tumor-promoting activities. IMCG, immunosuppressive myeloid cells from granulocytic lineage; e-MDSCs, early-myeloid-derived suppressor cells; Mo-Dendritic cell,
monocyte-derived dendritic cells.
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TABLE 1 | IMCGL terminology, phenotype and non-immunological functions.
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TABLE 1 | Continued

Functions Additional findings in patients
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to impair T cell activation, particularly in advanced tumors,
through increased production of ROS, NO or ARG1 or
expression of immunoinhibitory ligands such as PDL1 (91).
IMCGL at the Primary Tumor Sites
IMCGL expansion and recruitment is directly promoted by breast
cancer cells by various mechanisms. GM-CSF secretion by
malignant cells induces the production of transferrin in Ly6G+

cells from 4T1-bearing mice that, in turn significantly enhances
primary tumor growth in vivo and in vitro. In humans, the
transferrin, TFR1 gene has been found to be up-regulated in
breast cancers, and higher levels of this protein have been
associated with higher tumor grades/stages, but also with a
significantly worse survival (92). It has been shown that G-CSF
production by breast cancer cells induces the recruitment of
IMCGL that accumulate in the periphery of tumor-bearing
PyMT mice (78). Cathepsin C (CTSC) produced by cancer cells
has also been reported to induce recruitment and activation of
IMCGL in 4T1 tumor bearing-mice. CTSC expression in human
breast cancer is associated with metastasis and IMCGL occurrence
(93). IMCGL recruitment can also be indirectly promoted by IL-
1ß-secreting TAMs, which are recruited by Wnt ligands in p53-
deficient cancer cells (94), or by cancer cell secretion of CCL2 (37).

Besides being equipped with immunosuppressive properties,
IMCGL are also endowed with versatile tumor-promoting
functions. Indeed, IMCGL can also induce and promote
angiogenesis, participate to the remodeling of the extracellular
matrix, contribute to tumor cell invasion, and participate to
metastatic dissemination (84). IMCGL have also been shown to
form Neutrophil Extracellular Traps (NETs) involved in tumor
cell capture and growth as detailed hereafter (95).

IMCGL have been reported to display direct effects on breast
cancer cells. Recent studies have indeed demonstrated that these
cells participate to the acquisition of a stem-cell phenotype by
malignant cells. Breast cancer cells expressing the DNp63 protein
secrete CCL22 and CXCL2 that recruit IMCGL, which, in
tumorsphere assays, promote the stemness phenotype of breast
tumor cells via the secretion of CHI3L1 and MMP9 (96). Along
these lines, it has also been reported that tumor-infiltrating
IMCGL from breast cancer patients induce EMT in the MCF-7
cancer cell line, and promoted migration and invasion in in vitro
assays (90). Consistent with these data, CCL3-recruited IMCGL
have been observed to foster the EMT in breast cancer cells and
enhance their proliferation, migratory and invasive properties
through the PI3K/Akt/mTOR pathway (97).
IMCGL in the Metastatic Process
Most studies in the field have however shown that, primarily,
IMCGL foster the process of breast cancer invasion and
metastasis, with limited effects on primary tumor growth.
Indeed, the elimination of these cells in pre-clinical models
resulted mainly in dampening metastatic dissemination, with
limited influence on primary tumor development (90, 94, 98–
101). In zebrafish injected with MCF-7 cells, IMCGL from
Frontiers in Immunology | www.frontiersin.org 12
healthy human donors are capable of promoting cancer cell
migration and intravasation at the tumor injection site in an
Estradiol-dependent manner. In this model, IMCGL have been
shown to migrate together with circulating cancer cells and to
extravasate together in distant sites, thereby supporting
disseminated tumor cell establishment in new metastatic
niches (102). Two recent reports have brought substantial new
insights into this joint migration of IMCGL with cancer cells.
Indeed, evidence has emerged that some subpopulations of
IMCGL can form companionship clusters with circulating
tumor cells (CTC), and chaperone these CTC, protecting them
in the circulating blood. Furthermore, IMCGL may foster CTC
seeding at distant sites. CTC primarily circulate alone in the
peripheral blood where the vast majority die in this environment.
Only a limited number of these CTC (2-4%) have been detected
as circulating homotypic or heterotypic clusters (103). These
clusters have been associated with a significantly worse prognosis
in breast cancer patients (103, 104). Heterotypic clusters are
composed of CTC with white blood cells, most of them being
myeloid cells of the granulocytic lineage (103, 104). Sprouse et al.
have recently explored the cross-talks in these clusters between
CTC and CD33+CD11b+CD15+ IMCGL cells (defined by the
authors as PMC-MDSC) in the PBMC fraction of the peripheral
blood (104). IMCGL induce upregulation of Notch1 receptor
expression in CTCs through the ROS-NRF2-ARE axis, while
CTCs induce pro-tumorigenic differentiation of IMCGL through
paracrine Nodal signaling. Importantly, in mice, co-injection of
breast cancer cells with IMCGL leads to an early dissemination of
malignant cells to the lungs and brain (104). Szczerba et al. have
also studied the interactions between CTC and IMCGL in
heterotypic clusters from breast-cancer patients and from
mammary tumor-bearing mice (103). Within these clusters,
CTC exhibit a marked enrichment in positive regulators of cell
cycle and DNA replication programs. Furthermore, RNA
sequencing analysis has identified cytokines implicated in these
cellular cross-talks and determined that IMCGL secrete TNFa,
OSM, IL-1ß and IL-6, while CTC express CSF1, CSF3 (G-CSF),
TGF-ß and IL-15 (103). However, the exact identity of each
cellular partners within these clusters, the nature and importance
of their interactions as it relates to the metastatic process, and the
mechanisms underlying the promotion of CTC seeding and
development at the metastatic niches remain to be fully
uncovered. Along these lines, not only do IMCGL represent
the main immune cells present at the metastatic site (105), but
they also critically participate to the preparation of pre-
metastatic niches. In tumor-bearing mice, myeloid cells
accumulating in distant tissues are essentially composed of
Ly6G+ immunosuppressive IMCGL (78). In 4T1 tumor-
bearing mice, accumulation of IMCGL in the lungs (52) or in
the liver (106) promotes metastatic cancer growth, and
disseminated malignant cell proliferation. Importantly,
depletion of IMCGL with an anti-Ly6G antibody suppresses
metastasis in both studies (52, 106). It is noteworthy that
although Ly6G has been used to deplete granulocytic cells,
whether this approach results in the elimination of all IMCGL
subsets remains to be determined.
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Importance of NETs in Breast Cancer
Neutrophils have been described for their capacity of releasing
neutrophil extra-cellular traps or “NETs”, a function that has also
been described for PMN-MDSCs (107). NETosis is the process by
which neutrophils release large web-like structures composed of
cytosolic and granule proteins assembled on de-condensed
chromatin. NETosis has been proposed to be a specific defense
mechanism harbored by neutrophils against some pathogens like
funga. The phenomenon of NETosis has also been observed in
cancer where it can be triggered in part by G-CSF produced by
many malignant cells (95). The impact of this process on cancer
progression and on disease-associated complications such as
thrombosis is being increasingly acknowledged (95, 108). A
recent breakthrough in breast cancer was the findings that NETs
may contribute to the awakening of dormant cancer cells.
Reactivation of dormant cancer cells is of utmost importance in
breast cancers, since half of patient relapses occur more than 5
years after the initial diagnosis, and in some cases even up to 20
years (109). Using breast cancer models that usually do not
metastasize in mice, Albrengues et al. have demonstrated that
neutrophil-derived NETs, induced by inflammatory conditions
such as prolonged tobacco exposure or LPS instillations, lead to
dormant cancer cell awakening and development into aggressive
lungs metastases. In this setting, inflammation triggers NETs
extrusion, which forms a scaffold allowing the sequential
cleavage of laminin by neutrophil elastase (NE) and MMP9, as
well as thrombospondin 1 (TSP-1). This laminin cleavage activates
an a3b1-associated signaling in dormant cancer cells, leading to
their reactivation (110). TSP-1 is a key matricellular protein that
has been reported to inhibit metastasis. As outlined hereabove,
CTSC secreted by cancer cells promotes the recruitment and
activation of neutrophils in the metastatic niches, which upon
activation form NETs that degrade the extracellular matrix, in part
by cleavage of TSP-1, thereby allowing cancer cell proliferation
and establishment (93). Other reports have indicated that in the
context of breast cancers, NETs actively contribute to the
formation of the pre-metastatic niches (111, 112). Indeed, these
structures have been observed in the lungs of mice early after
injection of 4T1 cells, thus before arrival and seeding of breast
cancer cells. Furthermore, evidence has been provided that, in
vitro, NETs stimulate invasion and migration of cancer cells.
Consistently, NETs digestion with deoxyribonuclease I (DNase
I) has been reported to significatively reduce the occurrence of
lung metastasis (111). In humans, NETs have been detected in
large amount in the metastatic lungs, and circulating NETs levels
are higher in metastatic breast cancer patients compared to early-
stage cancer patients (93). Suggesting a role of NETs in metastatic
tumor cell organotropism regulation, Yang et al. have
demonstrated that NETs contribute to the formation of
metastases in the liver but not in the lungs. Furthermore, the
authors have identified the protein CCDC25 expressed at the
surface of cancer cells as a specific sensor of NETs DNA, and
responsible for malignant cells migration, adhesion and
proliferation induced by NETs. In breast cancer patients,
CCDC25 has been detected in cancer cells with a clear
membrane staining at the border of the tumor, and higher levels
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of CCDC25 in the primary tumors have correlated with a reduced
survival (112).

Finally, NETs act as “shields” for cancer cells, wrapping them
to avoid destruction by cytotoxic CD8 T cells of NK cells, adding
to their multiple tumor-promoting functions (113).
ROLES OF “TOLEROGENIC/
REGULATORY” DENDRITIC CELLS IN
BREAST CANCER DEVELOPMENT

Dendritic Cell Alterations in
Breast Cancers
Dendrit ic cel ls (DC) play a central role in cancer
immunosurveillance. They capture antigenic material from
neoplastic cells, process tumor-specific antigens and present
the derived peptides onto MHC class I or class II. Upon
migration to the secondary lymphoid tissues, they activate
effector tumor-specific CD8+ CTL and CD4+ Th lymphocytes.
DC can also promote the anti-tumoral functions of NK, NKT
and gd T cells (114). However, in most cancers, DC are
phenotypically and functionally impaired leading to dampened
anti-cancer immunity (115). Although the nature of the
microenvironment of breast cancers greatly varies depending
on the tumor subtype and stage of the disease, in most cases it
negatively influences DC capability to induce and sustain anti-
tumor immunity. These DC alterations in breast malignancies
have been attributed: a) to DC elimination; b) to the blockade of
the generation of these cells from DC precursors; c) to the
triggering of functional deficiency in DC (reduced antigen
capture, processing, presentation and ability to activate T
lymphocytes); and d) to the generation of immunosuppressive
and tolerogenic DC capable of blocking anti-cancer T cells,
inducing T lymphocyte anergy or inducing tumor-promoting
regulatory T cells (Treg) (116–118). These defects are induced by
different tumor-derived factors [extensively reviewed in (116,
117)], among which are VEGF (119), TGFb (120), IL10 (121),
PGE2 (122) or tumor-produced polyamines (123), and are
responsible for a deficient induction of anti-cancer T
lymphocyte proliferation and activation, thus contributing to
breast cancer evasion from immunosurveillance.

In addition, different studies have demonstrated that breast
malignancies are associated with the induction of different
subpopulations of DC (myeloid, mDC or plasmacytoid, pDC)
at different stages of maturation in the tumor, lymph nodes or
blood, which actively promote T cell anergy and suppression
and/or which trigger tumor-promoting Treg induction by a
variety of mechanisms such as L-Arginine depletion (124), PD-
L1 (125), TGFb, IDO (126) or ICOS-ligand (127). Breast cancer-
derived thymic stromal lymphopoietin (TSLP) has been
identified as an inducer of OX40L on DC infiltrating primary
breast cancer (128). These OX40L+ DC participate to the
induction of IL-13- and TNF- producing Th2 cells thus
contributing to the promotion of an environment permissible
for breast tumor growth (128).
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Role of DC in Breast Cancer Angiogenesis
and Metastasis
Although many studies have extensively reported on the
immune-modulatory role of tolerogenic/regulatory DC in
breast cancers, much sparser reports are available as it relates
to the tumor-promoting pro-angiogenic, pro-invasive and pro-
metastatic properties of these cells. In this context, a study has
correlated the presence of immature DC in highly angiogenic
tumors (129), but the mechanistic bases underlying
neoangiogenesis promotion remains to be determined.
Similarly, the role of DC in breast cancer metastasis remains
incompletely elucidated. A recent report indicates that CD303+

pDC accumulating in human breast cancer beds of patients with
positive lymph nodes promote CXCR4 expression by cancer cells,
suggesting that these tumor-associated pDC may participate to
malignant cell metastasis to lymph nodes expressing SDF-1
through a CXCR4/SDF-1-dependent mechanism (130). Since
DC conditioned by the tumor microenvironments can produce
TGFb, these cells may also contribute to the epithelial-
mesenchymal transition (EMT) precluding tumor cell migration
from primary tissues to metastatic sites, but a formal
demonstration of this effect in breast cancer remains to be
provided. Likewise, the possibility that DC may contribute to
the preparation of pre-metastatic niches, before seeding of
metastasizing cancer cells has yet to be formally demonstrated.
In this context, a recent study has suggested that, in the mouse
breast cancer model E0771, glucose-regulated protein 78 (GRP78)
produced by tumor reduces DC MHC class II expression in the
liver in the early stage of metastasis. However, the actual role of
DC in the preparation of the pre-metastatic liver has not been
demonstrated (131). Along these lines, recent data have also
indicated that CD11c+ DC exposed to conditioned medium of
RANKL+ T cells from the bone marrow of 4T1 mammary tumor-
bearing mice can differentiate into osteoclast-like cells, suggesting
that DC may participate to the osteolytic process occurring in
metastatic breast cancer patients (132).
CONCLUSION, PERSPECTIVES
AND CHALLENGES

The critical contribution of immune cells of the myeloid lineage
to the mechanisms of cancer escape from immune detection and
elimination is now widely recognized, and many studies have
deciphered the various modes of action underlying the
immunosuppressive properties of these cells. The notion that,
beside this cardinal role in antitumor immunity, different
myeloid cell populations are also endowed with a variety of
“non-immunologic” tumor-promoting functions has drawn less
scrutiny, until recently.

The heterogeneous nature of tumor-promoting myeloid cells,
with some likely phenotypical and functional overlaps between
subsets (illustrated in Figure 2) remains a major challenge
preventing the unequivocal identification of distinct
subpopulations. This current problem is probably best
illustrated by the difficulty to draw a clear line between PMN-
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MDSC and immunosuppressive neutrophils in breast cancer
patients or in mammary tumor models. Recent extensive
studies, which have attempted to establish dedicated genomic,
proteomic and biochemical profiles to better characterize these
cells, have actually highlighted further the complexity and the
high degree of plasticity of this myeloid landscape, advocating for
instance that PMN-MDSC may actually correspond to
neutrophils at different maturation stages in breast
malignancies. These considerations have prompted us to refer
to these tumor-promoting granulocytic cells occurring in cancer
as “immunosuppressive myeloid cells of the granulocytic lineage,
IMCGL”, which, we believe, better depicts their origins and
functions. It would be clinically relevant to clearly decipher
whether IMCGL are constituted of different subsets with
dedicated properties and predictive or prognostic values. Better
identification of these cells is a prerequisite to further
determining whether they may serve as useful biomarkers and
therapeutic targets, which warrants the urgent need to discover
novel marker(s) and/or strategies allowing for a clear
discrimination of the multiple subsets of these myeloid cells.

An additional outstanding question that still needs to be fully
addressed relates to the “division of labor” among these tumor-
promoting myeloid cell populations. As outlined in the previous
section, it appears that all the main myeloid populations, TAM,
MDSCs, IMCGL, and to some extend DC, are endowed with the
capacity to exert many pro-tumoral activities. Recent single cell
transcriptomic analysis suggest that, within each of these
populations, a dedicated subset or even a single cell, may be
equipped with concomitant multitasking activities (through the co-
expression of factors involved for instance in immunosuppression,
extracellular matrix remodeling, metastasis promotion…). The
possibility that dedicated subsets or individual cells may
sequentially acquire and lose one of these properties at a given time
and depending on the nature of their environment and therefore on
their location and on tumor stage is also conceivable, but remains to
be clearly demonstrated. This functional plasticity of tumor-
associated myeloid cells over time and space may be essential to
fulfill the specific needs of growing tumors at each of the sequential
stages of their development in the primary tumor sites (promotion of
tumor growth, EMT, invasion, angiogenesis, intravasation,
immunosuppression, production of chemokines involved in the
recruitment of tumor-promoting cells), as CTC in the bloodstream
(shielding in heterophilic clusters), and in the pre-metastatic and
metastatic niches (soil preparation, ECM remodeling, extravasation,
chemoattraction, immunosuppression).

Lastly, questions remain concerning the differences between
breast cancer subtypes. Few studies have studied precisely the
myeloid landscape and compared the different subtypes. Recent
RNAseq findings show that myeloid infiltration is present in all
main subtypes (“luminal” or HR positive BC, HER2+, TNBC) at
different levels (133). A majority of studies discussed in this
review focus on the TNBC subtype, some showing a higher
infiltration of IMCGL in the tumors of these patients (90, 93, 96,
111). Macrophages are very represented across the different
subtypes (133), though their role and exact phenotype in each
subtype is unclear.
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As these myeloid cells are essential contributors to many
tumor-promoting networks, their therapeutic targeting
(elimination, inactivation, reprogramming) has logically led to
promising anti-tumor responses. However, the high phenotypic
and functional heterogeneity and plasticity of these cells over
time and depending on their tissue location has, to date, been a
major hurdle for both their use as definitive biomarkers and the
development of therapeutic strategies that would specifically
interfere with their generation, development and multifaced
tumor-promoting functions, which underlines the need to
further characterize this myeloid landscape.
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