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Confirmed SARS-coronavirus-2 infection with gastrointestinal symptoms and changes in
microbiota associated with coronavirus disease 2019 (COVID-19) severity have been
previously reported, but the disease impact on the architecture and cellularity of ileal
Peyer’s patches (PP) remains unknown. Here we analysed post-mortem tissues from
throughout the gastrointestinal (GI) tract of patients who died with COVID-19. When virus
was detected by PCR in the GI tract, immunohistochemistry identified virus in epithelium
and lamina propria macrophages, but not in lymphoid tissues. Immunohistochemistry and
imaging mass cytometry (IMC) analysis of ileal PP revealed depletion of germinal centres
(GC), disruption of B cell/T cell zonation and decreased potential B and T cell interaction
and lower nuclear density in COVID-19 patients. This occurred independent of the local
viral levels. The changes in PP demonstrate that the ability to mount an intestinal immune
response is compromised in severe COVID-19, which could contribute to
observed dysbiosis.
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INTRODUCTION

Dysregulated immune response to infection with SARS-coronavirus-2 (SARS-CoV-2) is the main
driver of mortality in coronavirus disease 2019 (COVID-19) (1, 2). Whilst respiratory dysfunction is
common, symptoms involving the gastrointestinal (GI) tract has been identified, including vomiting
and diarrhoea in 12% of the patients (3). Moreover, viral RNA has been found in stool samples (4)
and viral particles identified in ileal epithelium (5). The receptor for SARS-CoV-2 angiotensin
converting enzyme 2 (ACE2) is expressed on the luminal surface of epithelial cells throughout the
GI tract. It has been proposed that reservoirs of virus in the GI tract could support longer lived
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antibody responses that are fundamental for controlling virus
replication or could be associated with persistent disease if
ineffective (5, 6). However, the consequences of SARS-CoV-2
infection on the GI immune system and the local ability to
respond to viral infection in severe disease is currently unknown.

The intestinal immune system is highly compartmentalised
(7). Immune responses can be initiated in gut-associated
lymphoid tissue (GALT) (8). Activated B and T cells generated
in GALT acquire specific receptors, such as a4b7, CCR9 and
CCR10 that allow them to home to lamina propria following
circulation via lymphatics and the blood (9–11).

Peyer’s patches (PP) are clusters of GALT concentrated in the
terminal ileum. A common feature of PP from early life in
humans is the presence of germinal centre (GC) that are acquired
in response to particulate antigens sampled from the gut lumen.
The ensuing GC response generates lamina propria plasma cells
secreting IgA that is transported into the gut lumen and that
subsequently regulates the microbiota and maintains
homeostasis (7, 12).

GC responses are regulated in part by transcription factor
BCL6 (B-cell lymphoma 6) that is considered a marker for GC
cells. It is known that GCs can be lost in lymph nodes and spleen
in acute COVID-19, and this has been linked to diminishing of
BCL6+ B and T cells in these tissues and blood (6). Whether
GALT is similarly impacted is not known.

Here, the virus was quantified and localised in samples of
gastrointestinal tract from patients who died with COVID-19
using reverse transcription quantitative PCR (RT-qPCR) and
immunohistochemistry. By immunohistochemistry and imaging
mass cytometry (IMC), the architecture and cellularity of PPs in
the same samples were then explored in detail.
RESULTS

Identification of SARS-CoV-2 in Tissue
Samples Along the GI Tract
We first quantified and localised SARS-CoV-2 in formalin-fixed
paraffin embedded (FFPE) samples of oesophagus, stomach,
duodenum, ileum, colon, lungs and spleen from 7 males and 2
females who died after being diagnosed with COVID-19
(Supplementary Table 1). RT-qPCR analysis of N1 of SARS-
CoV-2 nucleocapsid standardised to RNAse P revealed traces of
the virus in most tissues from COVID-19 patients but not
controls (Figures 1A–C). Immunohistochemistry with a
cocktail of antibodies to the spike 2 glycoprotein and
nucleocapsid of SARS-CoV-2 showed epithelial staining and
punctate staining in subepithelial lamina propria. Double
staining localised the punctate staining to CD68+ macrophages
(Figure 1D). No virus staining was observed in lymphoid
tissues (Figure 1D).

Therefore, in severe infection, SARS-CoV-2 is distributed
along the digestive tract where it is localised mainly in
epithelium and in subepithelial macrophages.
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Peyer’s Patches From COVID-19 Patients
Are Depleted of Germinal Centres
In order to investigate better the architecture of PPs, ileal samples
were initially double stained with anti-CD45RB that is expressed
by T and the B cells on the periphery of lymphoid tissues, but not
GC B cells (13) and anti-CD10 that stains the GC (14). The
CD10:CD45RB ratio was significantly reduced in COVID-19
patients compared to controls, irrespective of the local levels of
viral RNA measured by RT- qPCR (Figures 2A, B). Depletion of
GC was therefore independent of the presence of local
virus (Figure 2A).

IMC was used to characterize the cellularity of the ileal PP
from 5 post mortem samples from COVID-19 patients and 4
controls including one from a post mortem and 3 surgical
samples. Sections were stained with a cocktail of 22 antibodies
(Supplementary Table 2) and areas of lymphoid tissue were
ablated on a Hyperion imaging system (Fluidigm, South San
Francisco, CA). The acquired raw images were visualized in
histoCAT (15) and cells were then segmented using a pipeline
based on pixel classification of multi-channel images using Ilastik
(16) and Cell Profiler (17). The mean signal intensity (MSI)
for each channel corresponding the antibody staining was
extracted from individual cells and normalized between values
of 0 and 100 before cell classification and heatmap validation
(Supplementary Figures 1–3). Preliminary unsupervised
clustering analyses by Seurat (18) and Phenograph (15) were
not able to robustly identify the fundamental cell populations.
Therefore, the cell classification was achieved using a basic
gating strategy.

Cells were specifically selected from the lymphoid tissue
in the PP and splenic white pulp for subsequent analysis
(Supplementary Figure 4). IMC confirmed that the structure
of the PP was disrupted in patients with COVID-19. Zonation of
B cells and T cells was lost (Figure 2C). Expression of the GC-
associated BCL6 transcription factor was reduced in T and B cells
of follicular area from COVID-19 samples compared to those
from controls (Figure 2D). The percentages of T cells that
were BCL6+PD1+ were significantly reduced in COVID-19
samples (Figure 2E).

Analysis of Cellularity and Cellular
Interactions in PP From COVID-19 Patients
The relative numbers of T and B cells, CD4+ T cells, CD8+ T cells,
CD4+FoxP3+ T cells and the mean signals for PD-1, CD27 and
CD45RO in T cells were similar between COVID-19 patient and
control samples (Supplementary Figure 5 and Figures 3A–D). The
relative proportion of macrophages was higher in follicles of
COVID-19 samples compared to controls (Figure 3E), although
the percentages of CD14+CD16- or CD14+CD16+ or CD14loCD16+

macrophages were similar between groups (Figure 3F).
The area of the ablated regions occupied by the lymphoid

tissue was comparable between COVID-19 samples and controls
(0.08 ± 0.028 vs 0.09 ± 0.021 mm2). However, the cellular density
was significantly reduced in lymphoid tissue in COVID-
19 (Figure 4A).
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As a surrogate measurement for T cell/B cell interaction, we
identified segmented cells that gave membrane signal for both B
cells and T cells and designated these cells CD3/CD20
neighbours (CD3CD20N). Proportionately fewer CD3CD20N
were observed in the PP of COVID-19 samples compared to
controls (Figures 4B–D). The lack of proximity of T cells and B
cells in COVID-19 samples could also be observed by mixing of
CD3 and CD20 signals in a single pixel in the follicle
images (Figure 4D).

Considering the significant depletion of GC and reduced
T cell/B cell interaction in the ileal follicles in PP of COVID-19
patients, we next evaluated the CD27 and CD74 expression
by B cells. The presence of CD27+CD20+ B cells and
CD74hiCD20+ B cells were significantly reduced in PP
Frontiers in Immunology | www.frontiersin.org 3
from patients with COVID-19 (Figures 5A, B) compared
to controls.

The data extracted from the lamina propria was highly
variable between samples and therefore not described here.

Similar findings to those in PP, including the deficient CD74hi

B cells, were observed in splenic white pulp (Figure 5C),
although the total populations of plasma cells (CD19+CD20-),
T, B cells and memory T cells (CD45RO+) were comparable to
controls (Supplementary Figure 6).

In summary, the structure and cellularity in PP of deceased
COVID-19 patients is severely altered independent of the local
levels of the virus. Such disturbed architecture could be related to
changes in IgA production and microbiota described by previous
studies (19, 20).
A
B

D

C

FIGURE 1 | Identification of SARS-CoV-2 in tissue samples along the GI tract. (A-C) Evaluation of SARS-CoV-2 presence using RT-qPCR in different FFPET
samples from 9 COVID-19 deceased patients and 4 pre-COVID patients used as controls. Dots represent the viral RNA level from each sample and were coloured
by patient. The lines represent the median values per organ (B) or patient (C). (D) IHC for SARS-CoV-2 spike and nucleocapsid proteins in an ileal sample from
patient 20.8 showing the virus presence in the epithelium (panel on the left) and sub-mucosal macrophages (panels on the right). Scale bar for image on the left:
100mm. Sale bars for images on the right: 20mm. The dashed line delimitates the GALT.
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DISCUSSION

Infection with SARS-CoV-2 causes a range of symptoms
including GI manifestations (3). Here we observed GI
epithelial cells and subepithelial macrophages containing virus
in patients who died with COVID-19. We also showed that
microanatomy of PP of COVID-19 patients was severely affected
by the disease, which was independent of the local levels of viral
RNA (Figure 6).

We observed depletion of GC in the PP of patients who died
with COVID-19. Depletion of GC in spleen and lymph nodes in
post mortem samples from patients with COVID-19 has been
reported previously (6). This was linked to failure of BCL6-
expressing T follicular helper cells to support GC formation. In
the present study a depletion of BCL6- expressing B and T cells
in PP was also observed in COVID-19. Unlike in the spleen and
lymph nodes that are commonly quiescent in the absence of
infection, GC are constitutively present and clearly visible in PP
from early stages of life (21). Our data therefore suggest that
existing GC can become diminished in severe COVID-19. In
addition, GC have reduced potential to form de novo through
deficiencies in T cell B cell interactions.
Frontiers in Immunology | www.frontiersin.org 4
A previous study has shown a decreased number of CD4+ T
cells and CD19+ B cells expressing a4b7 integrin in blood of
patients with severe COVID-19, even after remission of the
symptoms (22). This integrin is imprinted in GALT and is
essential for homing of cells generated in the PP back to the
lamina propria (23). Lack of cells expressing a4b7 integrin in
blood is consistent with compromised potential for immune
induction and generation of effector cells in GALT
observed here.

Changes in PPs were observed even when only trace levels of
local virus were detected in the tissues. It therefore seems likely
that changes observed in PP are related to the systemic
inflammation rather than the virus per se. Lymphopenia
observed in these patients and in other studies (24) supports
this concept. Indeed, a study in mice showed that LPS injection
resulted in a significant reduction in numbers of T and B
lymphocytes in PP, which was attributed to an increased
apoptosis rate (25). Another group showed thermal injury-
plus-sepsis or sepsis alone in rats lead to a suppressed CD4+ T
proliferation/IL-2 production and a substantial down-
modulation of lymphocyte survival in mesenteric lymph
nodes (26).
A B
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C

FIGURE 2 | Peyer’s patches (PP) from COVID-19 patients lose germinal centre. (A, B) IHC for CD45RB (brown) and CD10 (red) in ileal FFPE samples from COVID-
19 patients with different local levels of SARS-CoV-2 viral RNA. Images on the top show the whole sections and ileal follicles are highlighted in each of the bottom
images. The images on the left represent a sample from one control; the images in the middle represent a sample from a COVID-19 patient with high local levels of
viral RNA; and the images on the right represent a COVID-19 patient with low local levels of viral RNA. (B) CD10:CD45RB area ratio. Data is shown as mean ± SEM.
(n = 4 controls and 9 patients). Two tailed Mann-Whitney t test. *P < 0.05. (C) Representative images from histoCAT showing CD3 (green), CD20 (magenta),
E-cadherin (orange) and CD68 (white) signals in ileal samples. (D) Representative images from histoCAT showing CD45RB (magenta) and BCL6 (green) signals in PP
follicle on the left, and mean BCL6 signals in T and B cells on the right. (E) Percentages of BCL6+PD1+ cells T cells. Data is shown as mean ± SEM. (n = 4 controls
and 5 patients). Kruskal-Wallis followed Dunn’s post-test. *P < 0.05, **P < 0.001.
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A B D

E F

C

FIGURE 3 | Enhanced relative numbers of macrophages in ileal follicles in Peyer’s patches (PP) of COVID-19 patients. (A-C) Percentages of follicular T and B cells,
CD4+, CD8+ and CD4+FoxP3+ T cells in ileal Peyer’s Patch (PP) from COVID-19- and COVID-19+ patients. (D) Representative images from histoCAT showing CD4
(green), CD8a (blue), FoxP3 (red) and CD20 (magenta) signals in PPs. (E) Representative images from histoCAT showing CD68 (white), CD14 (green) and CD16
(magenta) signals in PPs on the left, and mean CD68 signals on the right. (F) Percentages of follicular CD14+, CD16+ and CD14+CD16+ cells from CD68+ cell population.
Data is shown as mean ± SEM. (n = 4 controls and 5 patients). Kruskal-Wallis followed Dunn’s post-test in (D) and two tailed Mann-Whitney t test in (E). *P < 0.05.
A
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D
C

FIGURE 4 | Decreased T and B cell interaction in ileal follicles in Peyer’s patches (PP) of COVID-19 patients. (A) Representative images from histoCAT showing nuclear
density in ileal follicles in Peyer’s Patch (PP) from COVID-19- and COVID-19+ patients on the left; and mean data on the right. (B) Dot-plots showing the interaction
between T and B cells in ileal follicles. (C) Percentages of different cellular types in follicles from each control and COVID-19+ patient. CD3CD20N: T and B cell
neighbours. UC, unclassified cells. (D) Representative images from histoCAT showing CD3 (green) and CD20 (red) merged signals (yellow) on the left the mean of
proportions of CD3CD20 neighbours (CD3CD20N) on the right. Data is shown as mean ± SEM. (n = 4 controls and 5 patients). Mann-Whitney t test in (A, D) *P < 0.05.
Frontiers in Immunology | www.frontiersin.org February 2022 | Volume 13 | Article 8383285

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Trevelin et al. Disrupted Peyer’s Patches in Severe COVID-19
Interestingly, the ileal samples from patient 20.8, who was the
only tissue donor admitted with GI symptoms and had relatively
high viral levels locally, maintained similar frequency of CD3
and CD20 neighbouring cells compared to controls despite
showing diminished GCs. This suggests that the T and B cells
kept the potential for interaction. However, this was only one
patient and therefore the meaning is unclear.

B cells expressing CD27 were depleted in GALT of COVID-19
patients evaluated here. This is consistent with depletion of B cells with
the phenotype CD27+IgM+IgD+ seen in blood (24, 27). This is also
consistent with a depletion of CD27+ B cells in blood in sepsis (28). B
cells in PP of COVID-19 patients expressed lower levels of CD74 than
in controls. Lower antigen-presentation capacity previously reported in
patients with sepsis with reduced HLA-DR expression in monocytes
inversely correlated with the severity of multi-organ damage (29).

The decreased cell density of the PP and depletion of the GC
in ileal follicles of patients with COVID-19 is consistent with
impaired T and B cell interaction, which could contribute to
failure to generate a long-term response to local antigens and
contribute to dysbiosis (19, 30).
Frontiers in Immunology | www.frontiersin.org 6
In conclusion, patients with severe COVID-19 show
significant impaired architecture and cellularity of PP. The
resulting poor local immunity could contribute to dysbiosis.
Our findings also suggest that oral vaccination to prevent
COVID-19 disease could not be effective if patients were
already ill, since the gut immune system is compromised with
features indicating that they would lack the ability to mount an
efficient immune response.
MATERIAL AND METHODS

COVID-19 Patients
Formalin fixed paraffin embedded (FFPE) samples including
samples of oesophagus, stomach, duodenum, ileum, colon,
lung and spleen were obtained from 9 patients who died with
severe COVID-19. Sex, age, body mass index (BMI), symptoms
at admission, time to death and some laboratorial parameters are
described in Supplementary Table 1.
A B

C

FIGURE 5 | Decreased memory and antigen-presenting B cells in ileal follicles in Peyer’s patches (PP) of COVID-19 patients. (A) Representative images from
histoCAT showing CD27 (green) and CD20 (red) in ileal follicles in Peyer’s Patch (PP) from COVID-19- and COVID-19+ patients on the top. The percentage of
CD27+CD20+ cells and mean signal of CD27 in B cells on the bottom. (B) Representative images from histoCAT showing CD74 (green) and CD20 (red) in ileal
follicles on the top. The percentage of CD74hiCD20+ cells and mean signal of CD74 in B cells on the bottom. (C) Representative images from histoCAT showing
CD74 (green) and CD20 (red) in white pulp from spleen on the left. The percentages of CD74hiCD20+ cells and mean signal of CD74 in B cells on the right. Two
tailed Mann-Whitney t test. *P < 0.05.
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Pre-Pandemic Negative Samples
A post-mortem ileal sample obtained from a patient with
metastatic lung adenocarcinoma and 3 surgical resections of
ileum and spleen obtained from anonymous donor’s pre-
pandemic were used as COVID-19- controls.

RT- qPCR
Total RNA was extracted from 10mm- sections of FFPE tissues
using a commercial kit (High pure FFPET RNA isolation kit,
Roche, Cat.6650775001) and resuspended in 25ml final volume.
RT-qPCR reactions were performed with Taq-Man™ Fast virus
1-step master mix (ThermoFisher Scientific, Cat. 4444436) and
primer-probe sets targeting SARS-CoV-2 nucleocapsid (N1 set)
and human RNAse P (CDC 2019-Novel Coronavirus (2019-
nCoV) RT-PCR diagnostic panel (Centers for Disease Control
and Prevention, Cat. 2019-nCoVEUA-01).

Immunohistochemistry (IHC)
5mm- sections of FFPE tissues on SuperFrost Plus adhesion slides
(ThermoScientific, Cat. 10149870) were deparaffinized using 3
solutions of absolute m-xylene or Histoclear II histology (SLS,
Cat. NAT1334), rehydrate in 90%, 80%, 70% ethanol solutions
and DPBS (ThermoFisher, Cat.14190169). After then, the slides
were immersed in an antigen retrieval solution pH 9.0 (Agilent
Dako, S236784-2) and kept in a pressure cooker for 2 minutes.
The cells into tissues were permeabilized in a 0.1%Tween20
solution for 5 minutes. The blocking, staining with primary and
secondary antibodies were realized according to the
manufactures of the following IHC kits: Mouse and rabbit
specific HRP/DAB IHC detection Kit micro-polymer (Abcam,
Cat.ab236466) and ImmPRESS[R] Duet double staining kit anti-
rabbit AP/anti-mouse HRP (Vector laboratories, Cat.mp7724).
Anti-SARS-CoV-2 spike antibody, targeting the S2 subunit, and
Frontiers in Immunology | www.frontiersin.org 7
anti-SARS-CoV-2 nucleocapsid (1:300) antibody were acquired
from Insight Biotechnology (Cat. GTX632604) and BioserverUK
(Cat.BSV-COV-AB-13), respectively. Anti-CD68 was obtained
from Cell signalling (Cat. 7643T). All samples were stained
with haematoxylin.

Antibodies
Antibodies conjugated with metals were acquired from Fluidigm
and the catalogue numbers are displayed in Supplementary
Table 2. Anti-CD11c, anti-CD45RB, anti-CD103, and anti-
ACE2 were labelled in house with metals using commercial
kits (MaxPar labelling Kits, Fluidigm) according to the
manufacturer’s instructions. All the antibodies used were
validated by IHC.

Imaging Mass Cytometry
Deparaffinization, rehydration, antigen retrieval and
permeabilization were the same as described previously. After
permeabilization, unspecific epitopes were blocked in a solution
made of 10%BSA, 0.1%Tween20, 1:20 Human TryStain FcX
(Biolegend, Cat. 422301) and 1:20 Kiovig (5mg/ml solution,
Baxter). The samples were incubated in a wet chamber with
the antibody cocktail overnight and washed in DPBS plus Tween
0.1%. The nuclei were stained with a 1mM solution of Cell-ID™

Intercalator- Ir (Fluidigm, Cat.201192B) in DPBS. Finally, the
samples were desalinized in milli-Q water and were kept in a dry
place protected from any sources of oxidation until the tissue
ablation. The tissues were visualized under a light microscope
and after choosing a region of interest (where the lymphoid
tissue was present), data was acquired on a Hyperion imaging
system coupled to a Helios Mass Cytometer (Fluidigm) tuned
with 3 element tuning slide, at a laser frequency mean of 200Hz
and 6dB power.

Imaging Mass Cytometry Analyses
The acquired images were visualized in histoCAT (15) and
segmented using Bodenmiller’s group pipeline (https://doi.org/
10.5281/zenedo.3841961). The data was normalized in GraphPad
Prism software v9.0 (GraphPad Software, Inc., La Jolla, CA) and
cell populations defined in R studio according to the MSI
parameters (Supplementary Figures 3–5). The x and y nuclear
localization coordinates of all cells were plotted and the follicle
cells or white pulp cells were selected using a custom R script to
manually draw around the follicle or white pulp following the
B cells signal visualized in histoCAT (Supplementary Figure 6).
The % of area occupied by the follicle was determined in
Image J (version 1.0 for Mac OS X) using the image selected in
R studio. The follicular area was converted in mm2 by taking the
size of the total ablated area and the % of area occupied by
the follicle.

Statistics
Analyses were performed using GraphPad Prism software v9.0
(GraphPad Software, Inc., La Jolla, CA). Data are reported as
mean ± SEM. Comparisons were undertaken using Kruskal-
Wallis followed by Dunn’s post-test or Mann Whitney t-test.
P<0.05 was considered significant.
FIGURE 6 | Schematic depicting the microanatomical features identified in
ileal post mortem samples from patients who died with COVID-19: depletion
of the germinal centre (GC) in the Peyer’s patches, enhanced numbers of
follicular macrophages, decreased interaction between B and T cells, fewer
CD27+ memory B cells and lower expression CD74 on B cells.
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