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Ankylosing spondylitis (AS) is an immune-mediated inflammatory disorder that primarily
affects the axial skeleton, especially the sacroiliac joints and spine. This results in chronic
back pain and, in extreme cases, ankylosis of the spine. Despite its debilitating effects, the
pathogenesis of AS remains to be further elucidated. This study used single cell CITE-seq
technology to analyze peripheral blood mononuclear cells (PBMCs) in AS and in healthy
controls. We identified a number of molecular features associated with AS. CD52 was
found to be overexpressed in both RNA and surface protein expression across several cell
types in patients with AS. CD16+ monocytes overexpressed TNFSF10 and IL-18Ra in AS,
while CD8+ TEM cells and natural killer cells overexpressed genes linked with cytotoxicity,
including GZMH, GZMB, and NKG7. Tregs underexpressed CD39 in AS, suggesting
reduced functionality. We identified an overrepresented NK cell subset in AS that
overexpressed CD16, CD161, and CD38, as well as cytotoxic genes and pathways.
Finally, we developed machine learning models derived from CITE-seq data for the
classification of AS and achieved an Area Under the Receiver Operating Characteristic
(AUROC) curve of > 0.95. In summary, CITE-seq identification of AS-associated genes
and surface proteins in specific cell subsets informs our understanding of pathogenesis
and potential new therapeutic targets, while providing new approaches for diagnosis via
machine learning.

Keywords: ankylosing spondylitis, spondyloarthritis, single cell sequencing, CITE-seq, genomics, machine learning
INTRODUCTION

Affecting approximately 0.52-0.55% of the US population, ankylosing spondylitis (AS) is a chronic
inflammatory disease that targets sacroiliac joints, spine, peripheral joints and entheseal attachment
sites (1). In more severe cases, AS can cause fibrosis and calcification, resulting in ankylosis of the
sacroiliac joints and spine (2). AS is part of a broader group of rheumatologic diseases commonly
org May 2022 | Volume 13 | Article 8386361
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characterized by inflammatory back pain, enthesitis, and
dactylitis known as spondyloarthritis (3). Extra-musculoskeletal
manifestations of AS include acute anterior uveitis and psoriasis,
and comorbidities include cardiovascular disease and
osteoporosis (4–6). Additionally, it has been demonstrated that
non-rheumatologists do not consider the diagnosis of AS in
patients presenting with back pain, creating a delay in diagnosis
and treatment (7). The most common method of ankylosing
spondylitis diagnosis and classification is the modified New York
Classification Criteria, which involves both radiological criterion,
such as biliteral sacroiliitis grade ≥ II, and clinical criteria, such as
limitation of chest expansion relative to values normal for age
and sex (8).

Previous studies have pointed to the significance of genetic
and immunological factors in AS. In particular, the major
histocompatibility complex class I allele HLA-B*27 was shown
to be present in the majority of patients with AS, serving as a key
biomarker for AS and determining a patient’s susceptibility to
the disease (9). Nevertheless, although the heritability of the
susceptibility of AS is estimated to be around 90%, the
contribution of HLA-B*27 to this heritability is only roughly
20%, pointing to the presence of other genetic factors (10, 11).
Other known genes contributing to AS include ERAP1 and
ERAP2. The IL-23/IL-17 axis has been shown to play a vital
role in driving the inflammation behind AS.

Several cell types in the peripheral blood of patients with AS
are thought to be involved in the pathogenesis of AS. Natural
killer (NK) cells, while not expanded in AS (12), have been
shown to respond to HLA-B27 via the KIR3DL1 receptor (13).
CD4+ T cells increase production of IP-10/CXCL10, which
recruits Th1 cells that then amplify the inflammatory response
via secretion of IFN-g and TNF-a (14). Th17 cells have also been
observed to play a key role in the pathogenesis of AS through the
production of several inflammatory cytokines, such as IL-17 (15).

In this study, we used single-cell technology to help identify
cellular composition differences as well as differentially expressed
genes, proteins, and pathways in the peripheral blood
mononuclear cells (PBMCs) of patients with AS. We utilized a
multi-omic approach, surveying both transcriptome and cell
surface proteins involved in this disease, and evaluated the
diagnostic potential of these biomarkers using machine
learning models to identify AS patients. To our knowledge, this
is the first attempt to use machine learning and single cell
transcriptome data to classify AS.
METHODS

Patient Recruitment and Sampling
Patients with ankylosing spondylitis (n=10; 6 male, 4 female)
were enrolled from the rheumatology clinics at the University of
California San Francisco (UCSF), with a board-certified
rheumatologist confirming the clinical diagnosis of AS using
the modified New York classification criteria. Nine of the ten AS
subjects were not on any biologic therapy, while one AS subject
was on ustekinumab for his concomitant Crohn’s disease.
Healthy controls (n=29), who did not have any inflammatory
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skin disease or autoimmune disease, were enrolled from the San
Francisco Bay Area. All subjects gave written, informed consent
under IRB approval 10-02830 from the University of California
San Francisco. Detailed patient information is provided in
Supplementary Table 1. Peripheral blood was collected from
each subject in Vacutainer ACD tubes. PBMCs were isolated
using a standard Ficoll method and stored in liquid nitrogen.

Sample and Library Preparation
Single Cell Libraries
500 μL thawed PBMCs from each subject were added to 10 mL
EasySep (StemCell Technologies, Cat. 20144) and centrifuged
(300G, 5 min, room temperature). Extracellular nucleic acids
were digested by resuspending cell pellets in 1 mL of buffer made
from 18 mL EasySep and 21 μL Benzonase Nuclease
(MilliporeSigma, Cat. 70664) and incubating (15 min, room
temperature). Nuclease-treated cell-suspensions were then
filtered through a 40 μm Flowmi Cell Strainer (Bel-Art, Cat.
H13680-0040), centrifuged (300G, 5 min, room temperature),
and finally resuspended in 100 μL EasySep buffer. Cell counting
was performed on 1:100 dilutions offinal cell suspensions stained
with 0.4% trypan blue using a Countess I FL Automated Cell
Counter (Thermo Fisher Scientific).

Cell Surface Staining
Antibody staining of cell surface proteins was performed
according to the Totalseq-A protocol (https://www.biolegend.
com/en-us/protocols/totalseq-a-antibodies-and-cell-hashing-
with-10x-single-cell-3-reagent-kit-v3-3-1-protocol) with
modifications as follows. A pooled suspension containing
100,000 cells from at most 20 subjects at a time was
centrifuged (300G, 5 min, 4°C) and resuspended in 100 μL
Cell Staining Buffer (BioLegend, Cat. 420201) and incubated
(10 min, 4°C) with 10 μL Human TruStain FcX™ Fc Blocking
Solution (BioLegend, Cat. 422301). Cells suspensions were then
stained (30 min, 4°C) with 100 μL TotalSeq antibody cocktail
(Supplementary Table 2) and divided into two 105 μL aliquots.
Each aliquot was washed 3 times by resuspending in 15 mL Cell
Staining Buffer and centrifuging (300G, 5 min, 4°C). Washed
cells were then resuspended in 150 μL 10% FBS in PBS,
recombined, and filtered again with a 40 μm Flowmi Cell
Strainer. Cell viability was measured with 10 μL of filtered cells
by adding 10 μL 0.4% Trypan Blue and manual counting with a
hemocytometer. Cell density was adjusted to 2,500 cells/μL and
run on the Chromium Controller (10X Genomics) using the
Single Cell 3’ v3.1 Assay (10X Genomics) with a target of 50,000
cells per reaction.

Library Preparation
Gene expression cDNA libraries were prepared using according
to the manufacturer’s instructions (https://assets.ctfassets.net/an
68im79xiti/1eX2FPdpeCgnCJtw4fj9Hx/7cb84edaa9eca04b607
f9193162994de/CG000204_ChromiumNextGEMSingleCell3_
v3.1_Rev_D.pdf), with 12 cycles of PCR amplification. Libraries
for antibody-derived tags (ADT) from feature barcoding
antibodies were prepared by repeating size purification on the
supernatant obtained from the prior size purification of gene
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expression cDNA libraries (Step 2.3.d in the manufacturer’s
instructions above), using 7:8 volumetric ratio of 2.0X
SPRIselect reagent (Beckman Coulter, Cat# B23317) to sample.
Indexing amplification was performed using Kapa Hifi HotStart
ReadyMix (Kapa Biosystems, Cat# KK2601) and TruSeq Small
RNA RPI primers (Illumina) with the following thermocycling
conditions: (I) 98°C, 2 min; (II) 15 × (98°C, 20 sec; 60°C, 30 sec;
72°C, 20 sec); (III) 72°C, 5 min. Size purification was then
repeated on amplified libraries using a 5:6 volumetric ratio of
1.2X SPRIselect reagent to sample. Libraries were quantified
using a Bioanalyzer 2100 (Agilent) and sequenced on a
Novaseq 6000 (Illumina).

Genotyping
DNA for genotyping was extracted from whole blood using the
DNeasy blood and tissue kit (Qiagen, Cat. 69504). Extracted
DNA was genotyped on the Affymetrix UK Biobank Axiom
Array (ThermoFisher) using a GeneTitan Multi-Channel
Instrument (Applied Biosystems).

Genotype Data Processing
SNPs were called using Analysis Power Tools 2.10.2.2
(Affymetrix, https://www.affymetrix.com/support/developer/)
The resulting genotype vcfs were scanned with snpflip (https://
github.com/biocore-ntnu/snpflip) using the GRCh37 build of the
human genome reference sequence maintained by the University
of California, Santa Cruz (http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/bigZips/hg19.fa.gz) to identify reversed and
ambiguous-stranded SNPs, which were flipped and removed
(respectively) using Plink 1.90 (http://pngu.mgh.harvard.edu/
purcell/plink/) (16), and the remaining sites were sorted using
Plink 2.00a3LM (www.cog-genomics.org/plink/2.0/) (17). This
SNP data was then augmented with additional sites imputed by
the Michigan Imputation Server (https://imputationserver.sph.
umich.edu) (1000G Phase 3 v5 GRCh37 reference panel,
rsqFilter off, Eagle v2.4 phasing, EUR population). SNP
positions were translated to GRCh38 coordinates using the
‘LiftoverVcf’ command of Picard 2.23.3 (http://broadinstitute.
github.io/picard/). Finally, Vcftools 0.1.13 (18) was used to
exclude non-exonic SNPs and SNPs with minor allele
frequency < 0.05.

Single Cell Data Processing
Raw RNA and ADT fastqs for each Chromium library were
respectively aligned to the GRCh38 human genome reference
and the antibody-tag reference (Supplementary Table 2) using
Cell Ranger 3.1.0 (10X Genomics) using default settings to obtain
RNA and matched ADT (if available) count matrices for all
barcodes representing non-empty droplets.

Cell Demultiplexing, Doublet Removal,
and Annotation
Within each RNA count matrix, the subject of origin for all
droplet barcodes was determined by using ‘demuxlet’ (19), as
implemented in the ‘popscle’ suite (https://github.com/statgen/
popscle) to imputation-augmented exonic SNP genotypes
described above, and doublets detected between different
Frontiers in Immunology | www.frontiersin.org 3
individuals were excluded. The count matrices for each
Chromium library were then loaded into R for analysis using
the ‘Seurat’ 4.0.3 (20) R package, and the ‘DoubletDecon’ 1.1.6 R
package (21) was used to further remove doublets formed by
different cells within the same individual.

Annotations for each droplet barcode were determined by
submitting raw RNA count matrices to Azimuth (https://
azimuth.hubmapconsortium.org/) (20) for annotation with
“celltype.l2” labels from the Human PBMC reference from
Hao et al. (20).

Cell and Feature QC
We performed filtering of cells based on both RNA and ADT data
by retaining cells with total RNA unique molecular identifiers
(UMIs) between 500 and 10,000, total RNA features ≥ 200,
percent mitochondrial and ribosomal protein reads in RNA ≤
15% and 60% (respectively), total ADT features ≤ 260, and
percent ADT reads mapping to 9 isotype control antibodies < 2%.
In the RNA matrices of the resulting data, we further removed
features (genes) with no detectable UMIs across the cells of all
matrices. These matrices were finally merged together into a
combined matrix of RNA data for all cells. In the ADT matrices,
we further removed features corresponding to the 9 isotype controls
and 15 features observed to have expression inconsistent with
annotated cell types (Supplementary Table 2).
Intra-Cell Type Differential Feature Analysis
and Clustering
To identify differentially expressed genes (DEGs) and proteins
(DEPs), the Seurat object containing ADT and RNA expression
from the QC’d dataset (see section ‘Cell and feature QC’ above)
was subsetted by Azimuth-annotated cell type using
‘SplitObject’. For each resulting Seurat object containing cells
of a particular type, we performed normalization on RNA and
ADT expression using SCTransform and CLR, again adjusting
for total counts and total features in each cell (using the
‘vars.to.regress’ parameter). Differential gene expression
between disease statuses as well as between clusters (see section
‘Intra-cell type clustering’) was then calculated on SCTransform-
normalized counts using the negative binomial test (test.use =
“negbinom” in Seurat). Genes with both Bonferroni-corrected p-
value < 0.05 and absolute log fold change > 0.20 were considered
significant. Differential protein analysis was performed similarly,
except with the Wilcoxon test (test.use = “wilcox” in Seurat) on
CLR-normalized, mean-centered and scaled ADT data (within
the ‘scale.data’ slot of the Seurat object) only for cells with
measured ADT data. The expression of DEGs and DEPs was
compared between batches; DEGs and DEPs that had a clear
overexpression in a small subset of the batches, such as
MTRNR2L12, were filtered out. Pathway analysis was
performed on differentially expressed genes via the ‘gprofiler2’
R package (22) against the Gene Ontology (GO), KEGG, and
Reactome databases. For identification of transcription factors,
gprofiler2 was also run against the TRANSFAC database.
Afterwards, the p values returned by gprofiler2 were adjusted
to FDR values for each database.
May 2022 | Volume 13 | Article 838636
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To identify phenotypic clusters within cell types, the RNA
expression data for a cell type was first corrected for batch effects
by first subsetting the raw count matrix by the cells within each
sequencing batch. SCTransform was run individually for each
count matrix, and the resulting SCT expression matrices were
reintegrated into a single matrix (see section ‘Data integration’).
PCA was performed on the integrated SCT matrix, and the first
30 PCs were used to construct a shared nearest-neighbor
network using the ‘FindNeighbors’ function. The network was
then used to identify clusters with the ‘FindClusters’ function,
using a resolution of 0.6. UMAPs were also generated from the
first 30 PCs using the ‘RunUMAP’ function.

Data Integration
Integration of SCT expression data from two or more single-cell
datasets was performed according to the Seurat data integration
protocol (https://satijalab.org/seurat/articles/integration_
introduction.html#performing-integration-on-datasets-
normalized-with-sctransform-1). Briefly, ‘SelectIntegrationFeatures’
was used to select a common set of 3,000 genes most consistently
var iable among the individual SCT matr ices , and
‘PrepSCTIntegration’ was then used to prepare reduced SCT
expression matrices for just these genes. PCA was calculated for
each reduced SCTmatrix using ‘RunPCA’, and the first 50 principal
components of this transformation were used to identify
transcriptomically similar cells between each pair of reduced SCT
matrices using ‘FindIntegrationAnchors’, with ‘reduction’ set to
‘rpca’. Finally, an integrated SCT matrix was calculated
using ‘IntegrateData’.

Machine Learning Model Development
The input dataset for machine learning classification of AS and
healthy subjects consisted of, for each subject, the means of
sctransform-normalized, centered, and scaled expression of each
feature in the set of cell-type-specific differentially expressed
genes and proteins, calculated across that subject’s cells within
the corresponding cell types. These mean expression data for 39
subjects (29 healthy and 10 AS) were randomly assigned by a
50:50 ratio into training (healthy = 15 and AS = 5) and test
(healthy = 14 and AS = 5) sets for ML model building
and evaluation.

We first performed ensemble-based feature selection using the
EFS-MI method (23) where subsets of the starting feature set
predicted to be informative by four different ML algorithms (Feed
Forward and Backward selection, Recursive RF, SVMRadial, and
NNET) were combined and sorted by prediction potential
classification rank. We selected the top twenty features to train
nine ML algorithms based on linear, non-linear, and ensemble
models provided by the ‘caret’ R package. Five-fold cross validation,
repeated twice, was performed on the training set using each ML
algorithm, and resulting models were evaluated on the test set. All
essential tuning parameter were optimized with bootstrap = TRUE.
For random forest (RF) models, the maximum number of tree splits
in each step fixed a max_depth = (50, 80, 100, 150, 300), the
maximum feature selected as auto (max_features = ‘auto’), and
error was minimized through impurity value (min_impurity_
decrease = c(0.0, 0.02, 0.1, 0.5). Further, a minimum tree split per
Frontiers in Immunology | www.frontiersin.org 4
leaf in each step (min_samples_leaf = (1 to 10) while maximum
generation of trees (n_estimator = 20) was considered, other
parameters kept as a default for RF. For SVMRadial, we tuned
cost and sigma factor for correct classification. In avNNet and Naïve
Bayes, we used TRUE kernel, decays, and their size as a tuning
parameter. Model performance and robustness were evaluated
based on classification statistics that include accuracy, area under
receiver operating characteristic curve (AUROC), specificity,
sensitivity, F1 score (harmonic mean of precision and recall), and
balanced accuracy (kappa).

To check for model bias due to potentially shared information
between test and training subsets (which are derived from data
normalized by ‘sctransform’ over cells from all subjects), we
regenerated the input dataset using an alternative normalization
approach that aggregates single-cell data only within the cells of
each subject into a representative expression profile for each
subject. Specifically, the expression value for a gene [or protein]
feature for a given subject was calculated as

ln
feature counts across all cells in subject
total counts across all cells in subject

 �   scaling factor

� �

where the scaling factor was chosen to be near the maximum
number of counts across all subjects (107 for RNA, 5 × 105 for
ADT). Training and testing of models was performed as above to
evaluate accuracy and kappa. AUROC was also calculated for
select models trained using 10-fold cross validation with
10 repeats.
RESULTS

Identifying Significant Peripheral Blood
Mononuclear Cell Types in AS
Single-cell sequencing of PBMCs from 10 patients with AS and
29 healthy controls yielded transcriptome profiles of 98,884 cells
(19,348 cells from patients with AS, 79,536 from the healthy
controls). Single-cell RNA and ADT analysis was conducted on
59,585 of these cells and just single-cell RNA analysis was
conducted on the other 39,299 cells (Supplementary
Figure 1). Reference-based categorization of AS and healthy
PBMCs into 30 unique cell types (Figure 1A) revealed a
significantly lower abundance of CD4+ cytotoxic T cells and
hematopoietic stem and progenitor cells (HSPCs) in AS
subjects (Figure 1B).

Differentially Expressed Genes and
Pathways Associated With AS in
Circulating Immune Populations
Differentially expressed genes (DEGs) identified for each of the
30 identified cell types varied from 0 for several cell types to 88
for CD4+ naïve T cells, resulting in 898 total DEGs across all cell
types (Supplementary Figure 2A). Of these, 9 cell types with a
high number of biologically significant DEGs are shown in
Figure 2, with the rest found in Supplementary Table 3.

Biologically relevant genes were identified across several cell
types (Figure 2). CD52 was overexpressed in AS CD14+
May 2022 | Volume 13 | Article 838636
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monocytes, natural killer cells, and CD4+ effector memory T
(TEM) cells. CD8

+ TEM cells and natural killer cells overexpressed
genes linked with cytotoxicity, including GZMH, GZMB, and
NKG7. HLA-DRB5 was overexpressed in the CD14+ monocytes,
naïve B cells, memory B cells, and CD16+ monocytes of AS
patients. CD8+ TEM cells also overexpressed CMC1, CCL4, and
CCL4L2 while natural killer cells overexpressed S100A11. We
observed an upregulation of CXCL8 in AS CD14+ monocytes and
an upregulation of TNFSF10 in CD16+ monocytes. CD4+ TCM

cells in patients with AS overexpressed KLRB1. Naïve B cells
overexpressed TCL1A and CXCR4.

Comparison of inflammatory cytokines involved in AS,
including TNF, IL1B, IL17A, IFNG, IL23A, IL7R, and IL17F,
revealed comparable expression between AS and healthy subjects
for each annotated cell type except for mucosal-associated invariant
T (MAIT) cells, in which we observed a statistically significant
decrease in IL7R expression in AS cells (Supplementary Table 3)
that was also reflected in cell surface expression of IL-7Ra protein in
the ADT data (Supplementary Table 4).

Proteomic Analysis Reveals Inflammatory
Cell Surface Proteins in AS
Differentially expressed cell surface proteins (DEPs) were
calculated for each cell type (0 – 24 features, Supplementary
Figure 2B) between AS and healthy cells with ADT data
measuring 258 cell surface proteins (Figure 3). Tregs in AS
underexpressed CD39. CD14+ monocytes and CD16+ monocytes
in AS overexpressed CD52. CD8+ TEM cells overexpressed PD-1,
KIR2DL2/L3 and KIR2DL1/S1/S3/S5. Natural killer cells in AS
overexpressed CD16 but underexpressed CD94 and NKG2D.
Memory B cells and CD16+ monocytes overexpressed IL-18Ra.
Frontiers in Immunology | www.frontiersin.org 5
Memory B cells in AS also overexpressed CCR6 while naïve B
cells overexpressed CD5 and CD74. Both CD4+ TEM and MAIT
cells in AS underexpressed IL7Ra. CD16+ monocytes in AS
overexpressed folate receptor b (FR-b).

De Novo Clustering Reveals an NK Subset
Associated With AS
Due to the overexpression of CD16 in AS NK cells, the proportion
of CD16+ CD56dim NK cells was compared between patients with
AS and control patients via the Wilcoxon test, where it was found
that CD16+ CD56dim NK cells were significantly overrepresented in
patients with AS (p = 0.006; Supplementary Figure 3A). To
investigate whether there was a subset in NK cells driving this
overexpression of CD16, we performed de novo clustering on NK
cells (Supplementary Figure 3B). A cluster was identified in NK
cells that was statistically overrepresented in patients with AS
(Supplementary Figure 3C). This subset overexpressed
CD16, CD38, and CD161 on the ADT level and SPON2, NKG7,
FGFBP2, KLRB1, and MYOM2 on the RNA level (Supplementary
Table 5 and Supplementary Figure 3D). De novo clustering was
also performed on CD8+ TEM cells, naïve CD8+ T cells, and CD14+

monocytes, however no subsets in any of these cell types were
statistically overrepresented in AS.

Gene Set Enrichment Analysis
To capture the relationships and shared pathways between
differentially expressed genes in AS, we conducted functional
enrichment analysis using gprofiler2 (Supplementary Table 6).
Several pathways were significant at a nominal level (p < 0.05)
but did not remain significant after FDR correction. CD14+

monocytes were observed to upregulate pathways related to IL-4
A B

FIGURE 1 | Cell types among AS and healthy PBMCs. (A) UMAP of 30 cell types in AS and healthy PBMCs based on RNA expression. (B) Mean percentage of each cell
type within the total PBMCs from each subject, averaged across AS and healthy cohorts. Error bars represent standard error of the mean. When tested for statistical
significance using the Wilcoxon rank-sum test, CD4+ cytotoxic T cells and hematopoietic stem and progenitor cells were significantly underexpressed in AS.
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and IL-13 signaling, which were primarily constituted by CXCL8,
FOS, and JUNB. Memory B cells upregulated pathways for Th17
cell differentiation, Th1/Th2 cell differentiation, and interferon-
gamma-mediated signaling pathways.

To identify important transcription factors in our dataset, we
conducted a separate gene set enrichment analysis using
gprofiler2 and the TRANSFAC database. We found a set of
transcription factors that were significant at the nominal level
but did not remain significant after FDR correction. To help
provide evidence for our results, we compared our identified
transcription factors with a past study that used ATAC-seq on
AS PBMCs (24). There, both our dataset and the ATAC-seq
dataset found a statistically significant enrichment of GCM1,
ETS1, ETV4, and ELF1 in CD4+ T cells. The NK cell subset that
was found to be overrepresented in AS during de novo clustering
upregulated NK cell mediated cytotoxicity (p = 0.003); however,
Frontiers in Immunology | www.frontiersin.org 6
this pathway was no longer statistically significant after
correction (FDR = 0.2).

Machine Learning Classification of AS
We next investigated the diagnostic potential of the cell type
specific gene and protein expression differences we observed
above by using these biomarkers to perform machine learning
classification of AS and healthy subjects. Taking the mean
normalized expression of each DE gene (Supplementary
Table 3) or protein (Supplementary Table 4) across each
subject’s cells in the corresponding cell types, we performed
ensemble feature selection (23) using four ML algorithms to
identify an optimal subset of 18 features among the DE genes and
18 features among the DE proteins with the highest classification
rate. Feature importance was generally higher among DE genes
than proteins (Figures 4A, B), and applying this approach to the
FIGURE 2 | Cell type-specific DE genes between AS and healthy subjects. Volcano plots showing the DEGs for 9 cell types based on a Bonferroni-adjusted p-value < 0.05
and absolute average log 2 fold change ≥ 0.20. Blue points represent statistically significant genes and genes mentioned in the paper are highlighted in red.
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combined DE gene and DE protein sets yielded a set of 20
optimal features (5 DE proteins, 15 DE genes) with classification
rates similar to that of DE proteins (Figure 4C). Nine ML
classifiers trained on each of these optimized feature sets
yielded an average accuracy of 0.63 – 0.90 for DE genes, 0.76 –
0.93 for DE proteins and 0.80 – 0.96 for the set of combined
features (Figures 4D–F), and kappa ranged between 0.61 – 0.88
for all models. For DE genes, the three best-performing models,
SVMRadial, RF, and Naïve Bayes, achieved AUROCs of 0.87,
0.97, and 1.00 (Figure 4G), respectively, while the corresponding
best three for DE proteins, Naïve Bayes, RF, and avNNet,
achieved AUROCs of 0.96, 1.00, and 1.00 (Figure 4H). Finally,
the best three models for the combined DE gene and DE protein
set, RF, Naïve Bayes, and avNNet, classified all test set subjects
Frontiers in Immunology | www.frontiersin.org 7
perfectly, achieving an AUROC of 1.00 (Figure 4I). Similar
classification accuracy was achieved by models built using scaled,
within-subject counts of each DEG or DEP (Supplementary
Figure 4), indicating that model performance is not substantially
explained by our normalization approach.
DISCUSSION

In this study, we performed a multi-omic analysis of ankylosing
spondylitis, identifying transcriptomic and surface epitope
changes associated with disease. Our single-cell approach also
identified cell subsets that may contribute to pathogenesis,
allowing for the further elucidation of key AS pathways.
FIGURE 3 | Cell type-specific DE proteins between AS and healthy subjects. Volcano plots showing the DEPs for 9 cell types based on cells with measured ADT
data; blue points represent statistically significant proteins and proteins mentioned in the paper are highlighted in red. DEPs were identified based on a Bonferroni-
adjusted p-value < 0.05 and absolute average difference ≥ 0.20.
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AS PBMCs Overexpressed Genes and
Proteins Linked With Inflammation
CD14+ monocytes in patients with AS overexpressed CXCL8,
which encodes IL-8. The increased production of IL-8 is
correlated with AS (25). CXCL8 is also known to induce
S100A11 expression (24), which is overexpressed in the AS
Frontiers in Immunology | www.frontiersin.org 8
NK cells in our dataset. Consequently, CXCL8 in CD14+

monocytes could be driving the observed increased production
of IL-8 and other disease-related genes like S100A11. CD4+ TCM

cells in patients with AS overexpressed KLRB1, which is
correlated with high tumor necrosis factor and interferon-g
co-expression potential in CD4+ memory T cells. KLRB1+
A

B

C

D

E

F

G

H

I

FIGURE 4 | ML classification of AS and healthy subjects. Classification rate of (A) top 18 DEGs, (B) top 18 DEPs, and (C) top 20 features from the set of combined
DEGs and DEPs from ensemble feature selection, along with their respective (D–F) prediction accuracy and kappa using 9 ML models and (G–I) ROC curves based
on test set classification. Error bars indicate 95% confidence interval.
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CD4+ TCM cells also have increased IL-17A production (26). As
a result, increased KLRB1 expression in CD4+ TCM may
upregulate inflammatory pathways and cytokines related to
AS pathogenesis. CD39, an ecto-enzyme which converts
extracellular ATP to extracellular adenosine, was significantly
underexpressed in the Tregs of patients with AS. Tregs with
low CD39 expression produce IL-17, contrary to their
CD39+ counterparts that suppress IL-17 production (27).
Consequently, low CD39 expression on AS Tregs could be
associated with limited functionality and the production of
inflammatory IL-17.

Both memory B cells and CD16+ monocytes in AS
overexpressed IL-18Ra. IL-18 is a pro-inflammatory cytokine
whose role in AS remains to be further elucidated with previous
studies finding comparable IL-18 levels between healthy controls
and AS patients (28). IL-18Ra also interacts with IL-37, which is
significantly overexpressed in AS and may inhibit pro-
inflammatory cytokine expression in AS PBMCs (29, 30).
Consequently, increased IL-18Ra expression suggests the
importance of cytokine signaling pathways in AS outside of the
standard IL-23/IL-17 axis. On the other hand, both CD4+ TEM

and MAIT cells in patients with AS underexpressed IL-7Ra
relative to control patients, with MAIT cells also underexpressing
IL7R. Our result contrasts with a MAIT-specific increase in IL-
7R expression previously observed in AS patients that was
associated with increased IL-17 expression (31), though further
studies are needed to clarify the role of IL-7 signaling in AS.

Several inflammatory pathways were observed to be
significant in AS at a nominal level, including the signaling of
inflammatory pathways such as IL-4/IL-13 signaling
(Supplementary Table 5). Many of these pathways involved
the upregulation of FOS and JUNB, which are also linked to the
abnormal expression of NFKB in AS CD8+ T cells (32). Future
studies are needed to follow up on these important
inflammatory pathways.

Overall, our results suggest that a diverse set of cell types in
the peripheral blood help drive the production of inflammatory
cytokines. The identified surface proteins and genes could serve
as potential therapeutic targets in AS.

Differential Genes and Proteins in
AS Are Linked With Other Immune-
Mediated Diseases
A subset of differentially expressed genes and proteins identified
in our AS dataset are important in other known immune-
mediated diseases. CD8+ TEM cells in AS overexpressed PD-1,
which is a regulatory checkpoint inhibitor receptor for the
immune system that has been proposed to play an important
role in rheumatic disorders (33). Naïve B cells in AS
overexpressed CD5. A similar result was found in a study on
rheumatoid arthritis, which found that CD5+ B cells may be
involved in autoimmunity (34). CD16+ monocytes in AS were
seen to overexpress FR-b, which is part of a family of folate
binding receptors. FR-b was upregulated in activated
macrophages in the synovial tissue of patients with rheumatoid
arthritis (35). Memory B cells overexpressed CCR6, which is a
Frontiers in Immunology | www.frontiersin.org 9
chemokine receptor with the ligand CCL20. CCR6 was seen to be
overexpressed in the B cells of patients with systemic lupus
erythematosus (SLE) (36). Naïve AS B cells also overexpressed
CD74, which was similarly overexpressed in mice with an SLE
phenotype (37). Naïve B cells in AS overexpressed TCL1A. A
previous study has found that B cells in patients with Primary
Sjögren’s syndrome upregulated TCL1A (38). These genes and
surface proteins could play a similar role in AS and suggest
common treatment strategies across several types of immune-
mediated diseases.

CD14+ monocytes in patients with AS overexpressed CD52, a
glycoprotein whose ligation results in T-cell activation and
proliferation (39). Notably, CD52 is the therapeutic target of
alemtuzumab, which is approved for the treatment of multiple
sclerosis (40). Additionally, CD52 was overexpressed across
several AS cell types in our transcriptomic dataset, affirming
the importance of CD52 at the transcriptome level and
suggesting that CD52 expression is upregulated in several cell
types in the peripheral blood.

These results indicate that AS may share several differentially
expressed genes and proteins with other immune-mediated
diseases, indicating potential shared pathogenetic mechanisms
and treatment strategies.

Cell Subsets, Genes, and Proteins
Examined in Past AS Studies
In our study, there was a statistically significant overrepresentation
of CD16+CD56dim NK cells in patients with AS (Supplementary
Figure 2B). Prior studies have shown that CD16+CD56dim NK cells
exhibit increased cytotoxic activity and are overexpressed in AS (41,
42). Although previous studies report conflicting observations on
whether circulating NK cell abundance is altered in AS (12), by
conducting de novo clustering on NK cells, we identified a
subcluster that was overrepresented in AS (Supplementary
Figures 2D–F). This subset had an overexpression of CD16,
along with CD161 and CD38, which have been linked to
cytotoxicity and pro-inflammatory NK cell subsets respectively
(43, 44). Furthermore, a gene set enrichment analysis of this
cluster revealed an upregulation of natural killer cell mediated
cytotoxicity (p = 0.03). As a result, this cluster could be driving
inflammation in AS and could consequently be a NK subset of
interest for investigating NK cell activity in AS.

CD8+ TEM cells and NK cells in AS overexpressed genes
related to cytotoxicity, including GZMH, GZMB, and NKG7.
This result agrees with our finding that CD16 expression is
increased in NK cells since high CD16 expression is linked with
NK cell cytotoxicity (41). CD8+ TEM cells also overexpressed
both CCL4 and CCL4L2, which are inflammatory chemokines.
These results provide further evidence for the increased cytotoxic
activity of NK cells and CD8+ TEM cells in AS.

We compared transcription factors with p values below 0.05
against the data of a previous paper that used ATAC-seq on AS
PBMCs to examine the role of transcription factors in AS (24).
Our observed overexpression of GCM1, YY1, ETS1, ETV4, and
ELF1 in CD4+ T cells was confirmed in the ATAC-seq data,
where all these transcription factors were also statistically
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significant. GCM1 had a particularly high log fold change in the
ATAC-seq dataset, suggesting that this transcription factor may
be particularly important.

CD8+ TEM cells in AS overexpressed CMC1, variants of which
are associated with AS (45). We also observed an overexpression
of TNFSF10 in the CD16+ monocytes of AS patients relative to
control patients. TNFSF10 is part of the TNF superfamily and
has been shown to be associated with AS pathogenesis (46).
Naïve B cells in AS were observed to increase the expression of
CXCR4. This gene has also been found to be upregulated in the
hip synovial tissue of patients with AS (47).

CD14+ monocytes, naïve B cells, and CD16+ monocytes in AS
displayed increased expression of HLA-DRB5. A previous study
in the Chinese Han population found that increased DNA copy
number of HLA-DQA1 but not HLA-DRB5 was associated with
AS, though they did not measure transcription levels of these
genes (48).

ML Classification of AS and
Healthy Subjects
We found that AS-associated differences in cell-specific gene and
surface protein expression could distinguish AS from healthy
subjects, based on >0.95 AUROC achieved by several machine
learning algorithms (Supplementary Table 7), though the
general performance of these models may be limited by sample
size (particularly for AS subjects). We nevertheless note that
transcriptomic or cell surface protein expression of CD52 was
consistently identified as an important feature in DEG, DEP, or
DEG and DEP feature sets used for model training, which, given
its biological significance as discussed above, may warrant
further investigation as a diagnostic and therapeutic target.

Besides modest cohort size, other limitations of this study
include the sampling of patients from a single center and the use
of only molecular biomarkers for subject classification. Future
multi-center studies can address these limitations by recruiting
patients with AS and with back or joint pain from similar and
unrelated diseases as well as by incorporating clinical and
demographic data into the classification model.

Summary
This study has applied CITE-seq technology for the analysis of
ankylosing spondylitis (AS), allowing for the important
characterization of gene and cell surface proteins in AS.
Numerous cell types overexpressed CD52 on the transcriptomic
and surface epitope level, which is involved in T-cell activation and
is an important therapeutic target in other types of immune-
mediated diseases. A pro-inflammatory NK cell subset was
significantly overrepresented in AS that was characterized by high
expression of CD16, CD161, and cytotoxic genes. This subset could
be driving the overrepresentation of CD16+ CD56dim NK cells, a
subset of NK cells with high cytotoxic activity, that was observed in
our dataset and previous studies. CD39 was underexpressed in
Tregs, whose underexpression has been linked to IL-17 production
and loss of functionality. CD14+ monocytes in AS overexpressed
CXCL8, which has been associated with increased inflammatory
IL-8 expression.
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Natural killer cells overexpressed cytotoxic genes along with
S100A11, whose expression is induced by CXCL8. CD4+ TCM cells
in AS have a high expression of KLRB1, which is related to TNF and
IFN-g co-expression potential as well as IL-17A production.
Memory B cells and CD16+ monocytes overexpressed IL-18Ra,
which interacts with the cytokines IL-18 and IL-37. CD5 was
overexpressed in AS naïve B cells with CD5+ B cells being known
to be involved in autoimmunity.

Together, these results suggest cell type-specific changes both on
the RNA level and on the surface protein level that may elucidate
the pathogenesis of AS. The high classification rate of machine
learning classifiers based on these gene and protein differences
further indicates their potential as diagnostic biomarkers.
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