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The underlying mechanisms of thymocyte development and lineage determination remain
incompletely understood, and the emerging evidences demonstrated that RNA binding
proteins (RBPs) are deeply involved in governing T cell fate in thymus. Serine/arginine-rich
splicing factor 1 (SRSF1), as a classical splicing factor, is a pivotal RBP for gene
expression in various biological processes. Our recent study demonstrated that SRSF1
plays essential roles in the development of late thymocytes by modulating the T cell
regulatory gene networks post-transcriptionally, which are critical in response to type I
interferon signaling for supporting thymocyte maturation. Here, we report SRSF1 also
contributes to the determination of the CD8+ T cell fate. By specific ablation of SRSF1 in
CD4+CD8+ double positive (DP) thymocytes, we found that SRSF1 deficiency impaired
the maturation of late thymocytes and diminished the output of both CD4+ and CD8+

single positive T cells. Interestingly, the ratio of mature CD4+ to CD8+ cells was notably
altered and more severe defects were exhibited in CD8+ lineage than those in CD4+

lineage, reflecting the specific function of SRSF1 in CD8+ T cell fate decision.
Mechanistically, SRSF1-deficient cells downregulate their expression of Runx3, which is
a crucial transcriptional regulator in sustaining CD8+ single positive (SP) thymocyte
development and lineage choice. Moreover, forced expression of Runx3 partially
rectified the defects in SRSF1-deficient CD8+ thymocyte maturation. Thus, our data
uncovered the previous unknown role of SRSF1 in establishment of CD8+ cell identity.
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INTRODUCTION

T cell development occurs in the thymus and consists of several
ordered processes, such as T cell lineage commitment, T cell
receptor (TCR) rearrangements, expression of diverse TCR
repertoire, positive and negative selection, and the terminal
maturation for acquisition of their functions as helper,
cytotoxic or regulatory T cells (1–4). A lymphoid precursor
developing into a mature abT cell undergoes three major
sequential phases defined by the CD4 and CD8 expression,
including CD4−CD8− double negative (DN), CD4+CD8+

double positive (DP), and either CD4+CD8− or CD4−CD8+

single positive (SP) stages (2, 5). The dynamic expression of
cell surface markers which are related to functional alterations is
essential to delineate the stages of thymocyte development (6).
For instance, the thymocytes are stratified into distinct
developmental stages defined by the expression of TCRb (or
CD3e) and the activation marker CD69, representing
preselection (TCRbloCD69lo), initial stage of selection
(TCRbintCD69lo), undergoing selection (TCRbintCD69hi), post
selected immature (TCRbhiCD69hi), and post selected mature
(TCRbhiCD69lo) thymocytes, respectively (7–9). In addition, SP
thymocytes are also a heterogeneous population which gradually
proceed to downregulate heat-stable antigen (HSA, CD24) and
upregulate Qa2 before entry into the periphery T cell pool (6, 10).
Hence, the post selected TCRbhi thymocytes can be further
compartmentalized by the dynamic expression level of CD69,
CD24, CD4 and CD8 on their cell surface, reflecting the
heterogeneity and defining the developmental stages of late
thymocytes (11, 12).

DP thymocytes first express the mature abTCR complex
which allows the engagement by intrathymic peptide major
histocompatibility complex (MHC) ligands and interact with
stromal cells that are localized in the cortex for positive and
negative selection (13). After positive selection, DP cells
expressing MHC class I- or MHC class II-TCRs selectively
differentiate into either conventional CD4+ helper or CD8+

cytotoxic T cells, which is a critical developmental event
known as the CD4/CD8 lineage choice. Based on the theory of
the kinetic signaling model, most of positively selected DP
thymocytes must pass through an intermediate CD4+CD8lo

stage and both duration and intensity of TCR signaling exert
essential impact on cell fate decision (14). To comprehend the
underlying intracellular mechanisms involved in the CD4/CD8
lineage commitment, a few transcription factors have been
identified, such as Thpok, Runx3, Mazr, Myb, Bcl11b, Gata3,
Tox, Tcf1/Lef1, and Tle factors (11, 12, 15–21). Among them,
Thpok and Runx3 are critical for specification of CD4+ helper or
CD8+ cytotoxic cells, respectively, and play central roles in
controlling CD4/CD8 lineage choice (22). To date, a complete
understanding of the process awaits elucidation of the precise
mechanisms involved in the extensive regulatory network.

The RNA-binding protein serine/arginine splicing factor 1
(SRSF1, also named ASF/SF2) belongs to the highly conserved SR
protein family which functions as a key regulator in most cell types
via mediating mRNA metabolism, such as constitutive and
alternative splicing, RNA polymerase II transcription, nuclear
Frontiers in Immunology | www.frontiersin.org 2
export of mature mRNA and translation, and genomic stability
(23–27). Our recent studies have demonstrated that SRSF1 not only
plays a critical role in the late stage development of conventional T
cells by controlling the expression of Il27ra and Irf7 transcripts (28),
but also serves as an important post-transcriptional regulator in
promoting the development and functional differentiation of iNKT
cell via balancing the abundances of two transcriptional isoforms of
Myb (29). These findings suggest that SRSF1 is profoundly involved
in the development and function of both conventional and
unconventional T cells.

In this study, we employed Srsf1fl/flCd4-Cre mice to investigate
the potential role of SRSF1 in determination of CD4/CD8 lineage
fate by specific ablation of SRSF1 in DP thymocytes. The ratio of
mature CD4+ to CD8+ cells was notably altered and more severe
defects were exhibited in CD8+ lineage, albeit the maturation of
both CD4+ and CD8+ SP T cell was impaired in SRSF1-deficient
mice, suggesting the specific function of SRSF1 in CD8+ T cell fate
decision. Moreover, SRSF1-deficient cells exhibit the reduced
abundance of Runx3 and forced expression of Runx3 partially
rectifies the defects in CD8+ lineage proportion.
RESULTS

Conditional Ablation of SRSF1 at DP
Stage Impairs the Maturation
of Late Thymocytes
Our recent study has shown that SRSF1 regulates the terminal
maturation of thymocytes by post-transcriptionally regulating the
abundances of Il27ra and Irf7 functional transcripts via alternative
splicing (28). By reviewing the phenotype of thymocytes from
Srsf1fl/flLckCre/+ mice, we found that the numbers of CD8 single-
positive (SP) cells are more severe reduction than those of CD4+

SP cells, resulting in the substantially altered ratio of CD4+ to
CD8+ cells (Figures S1A–C). In addition, we performed gene set
enrichment analysis (GSEA) by using our published RNA-seq data
(GSE141349). The results indicated that CD8+ cell-specific genes
were enriched in wild-type DP cells relative to SRSF1-deficient DP
cells, suggesting that the differentiation capacity of DP cell toward
CD8+ SP was more significantly reduced in absence of SRSF1,
although both CD4+ and CD8+ SP thymocyte-related genes
exhibited the enrichment in wild-type DP cells (Figure S1D).
To address the potential role of SRSF1 involved in the lineage
choice of CD4-versus-CD8 thymocytes, we established the genetic
mouse model with conditional inactivation of SRSF1 in DP stage
by crossing Srsf1fl/fl mice with Cd4-Cre mice (30), which is widely
applied for the lineage determination analysis of late thymocytes
(Figure S2A). The deletion efficiency of SRSF1 was further
confirmed in district subsets along with the sequential
developmental phases, indicating the effective deletion of Srsf1
was achieved in DP and CD4/CD8 SP thymocytes from Srsf1fl/
flCd4-Cre mice compared with those in their littermate control
mice (henceforth called Control) (Figure S2B).

We next analyzed the phenotype of these conditional knock
out mice. Compared with their controls, Srsf1fl/flCd4-Cre mice
exhibited comparable size and cellularity of thymus and spleen,
but diminished cell number in lymph nodes (Figures 1A, B).
January 2022 | Volume 13 | Article 838719
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The frequency of both CD4+ and CD8+ thymocytes from SRSF1-
deficient mice was significantly decreased (Figures 1C, D),
whereas the percentage of DP thymocytes was correspondingly
increased, reflecting a blockade of DP thymocyte development.
The cell numbers of CD8+ thymocytes in SRSF1-deficient mice
were significantly reduced, but no statistical difference in
absolute numbers of DP and CD4+ thymocytes was observed.
The ratio of CD4+ cells to CD8+ cells was notably altered
(Figure 1E), implying more severe impacts on CD8+ lineage
development caused by conditional Srsf1 deletion in DP
thymocytes. To determine the specific developmental stage of
thymocytes that was impaired in Srsf1fl/flCd4-Cre mice, we
carved up thymocytes at five distinct developmental phases
defined by the expression of TCRb and the activation marker
CD69 as previous described (8, 9, 31) (Figure 1F). There was no
significant difference observed from populations 1 to 3 between
Srsf1fl/flCd4-Cre mice and their controls, implying the
DP thymocytes at pre-selection and the initial stage of positive
selection were not affected in absence of SRSF1 (Figures 1F, G).
Frontiers in Immunology | www.frontiersin.org 3
In contrast, Srsf1fl/flCd4-Cre mice had significantly fewer cells in
populations 4 to 5 which include post-selected DP, immature SP,
and mature SP thymocytes, respectively. These results indicate
that ablation of SRSF1 at DP thymocytes mainly impairs the T
cell development beyond the post-selection phase.

SRSF1 Deficiency Alters the Ratio of CD4+

to CD8+ Cells in TCRbhi Thymocytes
We next focused on the post-selection TCRbhi thymocytes with
an additional maturation marker CD24 staining combined with
the activation marker CD69 of thymocytes as previously
described (28). The frequency and cell numbers of
TCRbhiCD69-CD24- mature subset were decreased from
Srsf1fl/flCd4-Cre mice compared with those from Controls
(Figures 2A, B). The frequency of TCRbhiCD69+CD24+

immature T cell exhibited a relative increase, but the numbers
were slightly diminished (Figures 2A, B). By further analysis of
the expression of CD4 and CD8 in TCRbhiCD69+CD24+

immature subsets, we found that the frequency and numbers
A B

D E

F G

C

FIGURE 1 | Srsf1fl/flCd4-Cre mice exhibits defects in the maturation of late thymocytes. (A) Images of Thymus (Thy), spleen, and lymph nodes (LNs) from Control
and Srsf1fl/flCd4-Cre mice were shown (n = 3 per group). (B) Total cell numbers of Thy, spleen, and LNs from Control and Srsf1fl/flCd4-Cre mice were shown (n = 9).
(C–E) Flow cytometry analysis of CD4+, CD8+, and CD4+CD8+ double positive (DP) thymocytes. Representative pseudocolor plots show the indicated populations in
Control and Srsf1fl/flCd4-Cre mice in (C), and the frequency and numbers of indicated populations were shown in (D), accordingly. The ratio of frequency between
CD4+, and CD8+ thymocytes was calculated and shown in (E) (n = 6). (F, G) Flow cytometry analysis of the sequentially developmental stages. (F) Representative
pseudocolor plots show five subsets, including population 1 (P1: TCRbloCD69lo), population 2 (P2: TCRbintCD69lo), population 3 (P3: TCRbintCD69hi), population 4
(P4: TCRbhiCD69hi), and population 5 (P5: TCRbhiCD69lo) in Control and Srsf1fl/flCd4-Cre mice. The frequency and numbers of indicated subsets were shown in (G)
(n = 6). Data were collected from at least three independent experiments. The error bars are means ± standard deviation (SD). Statistical significance was determined
by one-tailed Student’s t-test. ns, not statistically significant; *P < 0.05, **P < 0.01, and ***P < 0.001.
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of DP, CD4+CD8lo intermediate cells, and CD4+ SP subsets
were not significantly alerted, but the frequency and numbers
of CD8+ SP were remarkably decreased in Srsf1fl/flCd4-Cre mice
(Figures 2C, D). In SRSF1-deficient TCRbhiCD69-CD24- mature
population, the numbers of CD4+ and CD8+ SP were
dramatically diminished, though the frequency of CD4+ SP
cells was increased whereas the frequency of CD8+ SP cells was
reduced (Figures 2C, D). Moreover, the ratio of CD4+ to CD8+

SP cells was notably increased in both TCRbhiCD69+CD24+

immature and TCRbhiCD69-CD24- mature thymocytes from
Srsf1fl/flCd4-Cre mice (Figure 2E). Collectively, these data
indicated that SRSF1 deficiency impaired the terminal
maturation of both CD4+ and CD8+ SP cells, and led to the
aberrant ratio of CD4+ to CD8+ SP cells.

SRSF1 Deficiency Disturbs the Proportion
of CD4+ to CD8+ Cells in Periphery
T Cell Pool
We next checked whether the peripheral T cell pool was affected
in Srsf1fl/flCd4-Cre mice. The mature CD4+ and CD8+ T cell
populations in spleens, LNs and PBCs were remarkably
diminished in Srsf1fl/flCd4-Cre mice (Figures 3A, B).
Frontiers in Immunology | www.frontiersin.org 4
By further analysis of the proportion of CD4+ to CD8+ cells
in peripheral tissues, we found the frequency of CD4+ T cells
was increased in SRSF1-deficient TCRb+ cells, and the ratio of
CD4/CD8 in peripheral tissues was increased, accordingly
(Figures 3C–E). These results suggested the critical
requirement of SRSF1 in maintaining the numbers of mature T
cells, especially CD8+ cells in periphery T cell pool.

SRSF1 Regulates the Maturation of Late
Thymocytes in a Cell-Intrinsic Manner
To determine whether the developmental defects in Srsf1fl/flCd4-
Cre were T cell autonomous, we generated bone marrow
chimeric mice as described in Figure 4A. We found
thymocytes derived from Srsf1fl/flCd4-Cre mice had a
phenotype identical to that of thymocytes in primary SRSF1-
deficient mice as described above (Figures 4B–H). The severe
defects were detected in population 4 and 5 of thymocytes
derived from Srsf1fl/flCd4-Cre mice (Figures 4B, C), and the
frequency of TCRbhiCD69-CD24- mature population was
substantially reduced (Figures 4D, E). In chimeric mice
transplanted with Srsf1fl/flCd4-Cre donor cells, the frequency of
donor-derived CD8+ SP cells was remarkably reduced in both
A B

D

E

C

FIGURE 2 | Ablation of SRSF1 severely hinders the maturation of CD8 single-positive thymocytes. (A–D) Characterization of the post-selection thymocytes. (A) TCRbhi

thymocytes (populations 4 and 5 in Figure 1F) were further fractionated into CD69+CD24+ immature (IM) and CD69−CD24− mature (M) subsets. The immature subsets
were subdivided into CD4+, CD4+CD8lo (CD8lo), DP, and CD8+ sub-populations (clockwise from top left in the top row), and the mature subsets were further subdivided
into CD4+ and CD8+ populations (bottom row) (C). The frequency and numbers of indicated subsets were shown in (B, D), respectively. (E) The ratio of CD4+ to CD8+

thymocytes was calculated and shown (n = 6). Data were collected from at least three independent experiments. The error bars are means ± SD. Statistical significance
was determined by one-tailed Student’s t-test. ns, not statistically significant; *P < 0.05, **P < 0.01, and ***P < 0.001.
January 2022 | Volume 13 | Article 838719
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TCRbhiCD69+CD24+ immature and TCRbhiCD69-CD24-

mature thymocytes, and the ratio of CD4+ to CD8+ SP cells
was notably increased, accordingly (Figures 4F–H). These data
thus demonstrated the impacts on maturation of late thymocytes
and CD8 lineage fate were T cell intrinsic.

SRSF1 Contributes to the Lineage
Determination of CD4-Versus-CD8
Thymocytes
To further evaluate how SRSF1 contributes to CD8+ lineage
choice, we crossed Srsf1fl/flCd4-Cre mice with MHC class II-
deficient (H2ab1-/-) mice, which lack mature CD4+ SP
thymocytes (Figure 5A). We found the frequency of CD8+ SP
cells in both immature and mature thymocytes from H2ab1-/-

Srsf1fl/flCd4-Cre mice was substantially lower compared with those
in their control mice (Figure 5B). The frequency of CD4+ SP cells
Frontiers in Immunology | www.frontiersin.org 5
in mature thymocytes from H2ab1-/-Srsf1fl/flCd4-Cre mice was
significantly higher than those from their control mice
(Figure 5B). The number of both mature and immature CD8+

SP cells was dramatically lower in H2ab1−/−Srsf1fl/flCd4-Cre mice,
accordingly (Figure 5C). In contrast, the number of immature
CD4+ SP cells was comparable fromH2ab1−/−Srsf1fl/flCd4-Cre and
Control mice, whereas the number of mature CD4+ SP cells was
diminished in H2ab1−/−Srsf1fl/flCd4-Cre due to SRSF1 deficiency
(Figure 5C). These data collectively indicated that SRSF1
deficiency impaired the CD8 lineage identity. We next detected
the expression of genes involved in lineage selection in immature
TCRb+ DP, CD4+CD8lo, and mature CD8+ SP thymocytes,
including Runx3, Thpok (Zbtb7b), Tle3, Bcl11b, Tcf7, Tox,
Gata3, IL7Ra and Mazr. The abundance of CD8 master
regulator Runx3 was substantially reduced in all three stages,
and the significant elevation of Tox and Mazr was observed in
A B

D EC

FIGURE 3 | The proportion of peripheral CD4+ to CD8+ T cells was disturbed in Srsf1fl/flCd4-Cre mice. (A, B) Flow cytometry analysis of T cells in peripheral
tissues. (A) Representative pseudocolor plots show CD4+ and CD8+ T cells in PBC, spleen, and LNs from Control and Srsf1fl/flCd4-Cre mice. The frequency and
numbers of indicated subsets in spleen, and LNs were shown in (B), accordingly (n = 6). (C–E) Analysis of the ratio of frequency between peripheral CD4+ T
cells and CD8+ T cells. (C) Representative pseudocolor plots show CD4+ and CD8+ T cells from TCRb+ populations in PBCs, spleen, and LNs. The frequency
and numbers of indicated subsets were shown in (D) (n = 6), and the ratio of frequency between CD4+ T cells to CD8+ T cells was calculated and shown in (E),
respectively. Data were collected from at least three independent experiments. The error bars are means ± SD. Statistical significance was determined by one-
tailed Student’s t-test. *P < 0.05 and ***P < 0.001.
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DP stage but no changes in CD4+CD8lo and mature CD8+ SP
thymocytes in SRSF1-deficient cells (Figure 5D). Although the
expression of Tle3, Bcl11b, and IL7Ra was dramatically decreased
in CD8+ SP thymocytes, most of detected lineage commitment-
related genes were not altered in the essential transient stages (DP
and CD4+CD8lo), such as Thpok, Tcf7, Tle3, Bcl11b, and Gata3
(Figure 5D). These results imply that SRSF1 may contribute to the
CD8 lineage fate by primarily controlling Runx3 expression.
Frontiers in Immunology | www.frontiersin.org 6
Overexpression of Runx3 Partially
Rectify the Ratio of CD4+ to CD8+

Cells in Srsf1fl/flCd4-Cre Mice
We next attempted to explore whether enforced expression of
Runx3 could rectify the defects in the CD8 lineage fate caused by
SRSF1 deficiency. To achieve this goal, the retrogenic mouse
models were established and analyzed as described in the
flowchart (Figure 6A). We confirmed the transduced efficiency
A

B

D E

F G H

C

FIGURE 4 | SRSF1 intrinsically regulates the maturation of late thymocytes. (A) The scheme of bone marrow chimeric mice generation. A 1:1 mixture of bone
marrow cells from Control or Srsf1fl/flCd4-Cre mice (CD45.2+) together with protector bone marrow cells from B6.SJL wild-type (CD45.1+) was transplanted into
lethally irradiated B6.SJL recipients (CD45.1+). The thymocyte development of recipients was analyzed 10 weeks post transplantation. (B, C) Flow cytometry
analysis of the sequentially developmental stages of donor-derived thymocytes. (B) Representative pseudocolor plots show five subsets, including population 1
(P1: TCRbloCD69lo), population 2 (P2: TCRbintCD69lo), population 3 (P3: TCRbintCD69hi), population 4 (P4: TCRbhiCD69hi), and population 5 (P5: TCRbhiCD69lo)
in donor-derived thymocytes from Control and Srsf1fl/flCd4-Cre mice, respectively. The frequency of indicated subsets was shown in (C) (n ≥ 3). (D–H) Analysis
of the post-selection TCRbhi thymocytes from donor-derived mice. (D)TCRbhi thymocytes [populations 4 and 5 in (B)] were further fractionated into
CD69+CD24+ immature and CD69−CD24− mature subsets. (F) The immature subsets were subdivided into CD4+, CD4+CD8lo (CD8lo), DP, and CD8+ sub-
populations (clockwise from left in the top row), and the mature subsets were further subdivided into CD4+ and CD8+ populations (bottom row). The frequency
of indicated subsets was shown in (E, G), accordingly. (H) The ratio of CD4+ and CD8+ thymocytes was calculated and shown (n ≥ 3). Data are representative
from at least two independent experiments. The error bars are means ± SD. Statistical significance was determined by one-tailed Student’s t-test. ns, not
statistically significant; **P < 0.01 and ***P < 0.001.
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of BM LSK cells was more than 50% before transplantation
(Figure S3) to ensure the successful construction of chimeric
mice. By analyzing donor-derived TCRbhi post-selection
thymocytes, we found that the reduction of mature
(TCRbhiCD69−CD24−) thymocytes was substantially restored
by forced expression of SRSF1, but not by forced expression of
Runx3 compared with those derived from Control-MigR1 or
Frontiers in Immunology | www.frontiersin.org 7
Srsf1fl/flCd4-Cre-MigR1 donors (Figures 6B, C). Meanwhile,
the ectopic expression of SRSF1 also rectified the ratio of CD4+

to CD8+ SP cells in both TCRbhiCD69+CD24+ immature and
TCRbhiCD69−CD24− mature thymocytes (Figures 6D–F).
However, overexpression of Runx3 could largely restore the
ratio of CD4+ to CD8+ SP cells in TCRbhiCD69−CD24−

mature stage while no rescue was observed in the
A

B

D

C

FIGURE 5 | SRSF1 is involved in the lineage selection of CD4-versus-CD8 T cells. (A) The scheme shows the generation of H2ab1-/-Srsf1fl/flCd4-Cre mice.
(B, C) Analysis of the post-selection TCRbhi thymocytes from H2ab1-/-Srsf1fl/flCd4-Cre mice. The immature (TCRbhiCD69+CD24+) subsets were subdivided into
CD4+, CD4+CD8lo, DP, and CD8+ sub-populations (clockwise from left in top row), and the mature (TCRbhiCD69−CD24−) subsets were further subdivided into
CD4+ and CD8+ populations (bottom row). The frequency and numbers of indicated subsets were shown in (C), respectively (n ≥ 6). (D) Analyzing the
expression of Runx3, Thpok (Zbtb7b), Tle3, Bcl11b, Tcf7, Tox, Gata3, IL7Ra and Mazr in immature TCRb+ DP, CD4+CD8lo, and mature CD8+ SP thymocytes
from Control or Srsf1fl/flCd4-Cre mice. The relative expression of Srsf1 transcript in indicated T cell subsets (after normalization to Gapdh) in Control cells was
set as 1, and its relative expression in cells from Srsf1fl/flCd4-Cre mice was normalized, accordingly. Data were collected from at least two independent
experiments. The error bars are means ± SD. Statistical significance was determined by one-tailed Student’s t-test. ns, not statistically significant; *P < 0.05,
**P < 0.01, and ***P < 0.001.
January 2022 | Volume 13 | Article 838719

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ji et al. SRSF1 Controls CD8 Cell Fate
TCRbhiCD69+CD24+ immature stage (Figures 6D–F). These
data collectively revealed that Runx3 serves as a regulator
downstream SRSF1 for CD8 lineage fate decision, but other
regulators and more complicated mechanisms may involve in
the SRSF1-dependent regulatory network of late thymocyte
maturation and lineage fate decision.
DISCUSSION

The lineage commitment of T cell to either CD8+ or CD4+ lineage
before egress from thymus has been a fundamental research
interest in the field of immunology, but the precise mechanism
remains incompletely understood. Increasing evidences
demonstrate that RBPs are indispensable for the development
and function of immune cells by modulating gene expression
through mRNA destabilization or stabilization, or by controlling
Frontiers in Immunology | www.frontiersin.org 8
translation (32–34), which provide a new direction to decode the
complicated regulatory network in T cell fate decision. As a
prototypical splicing factor, SRSF1 is well characterized for its
roles in the maintenance of genomic stability, cell viability and
cell-cycle progression (23, 35, 36), over the past twenty years,
SRSF1 has been extensively investigated owing to its critical
involvement in multiple cancers and autoimmune diseases (37–
41). However, the roles of SRSF1 in T cell development and
function have not been exposited until we recently found that it
serves as a key posttranscriptional regulator in sustaining both the
conventional T cell development and iNKT cell differentiation
(28, 29).

As a follow-up study of the work by Qi et al. (28), we here
report that conditionally targeting SRSF1 in DP thymocytes
impairs the post selected T cell development and CD8+ T cell
fate decision. Although previous study established the
importance of SRSF1 in late thymocyte development and
A

B

D E

F

C

FIGURE 6 | Overexpression of Runx3 partially rescues the defects of CD8+ T proportion in Srsf1fl/flCd4-Cre mice. (A) The flow chart shows the experimental design
of bone marrow chimeric mice by using Runx3- or Srsf1-contained retroviral transduction. (B) Analysis the post-selection thymocytes from chimeric mice. TCRbhi

thymocytes were further fractionated into CD69+CD24+ immature and CD69−CD24− mature subsets. (C) The frequency of indicated subsets in (B) was shown,
accordingly (n ≥ 4). (D) The immature subsets were subdivided into CD4+, CD4+CD8lo, DP, and CD8+ sub-populations (clockwise from top left in the top row), and
the mature subsets were further subdivided into CD4+ and CD8+ populations (bottom row). (E) The frequency of indicated subsets in (D) was shown, respectively.
(F) The ratio of CD4+ to CD8+ cells from immature and mature subsets of TCRbhi thymocytes was calculated and shown, accordingly (n ≥ 4). Data were collected
from at least two independent experiments. The error bars are means ± SD. Statistical significance was determined by one-tailed Student’s t-test. ns, not statistically
significant; *P < 0.05 and **P < 0.01.
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terminal maturation by using Srsf1fl/flLckCre/+ mice (28), the
altered ratio of CD4+ to CD8+ cells has not been specifically
addressed. To avoid the impacts caused by SRSF1 deletion at
early stage, we employed Srsf1fl/flCd4-Cre mice to investigate the
stage-specific role of SRSF1 in lineage choice in current study.
We found the phenotypic defects were weaker in late stage of
thymocyte development and maturation from Srsf1fl/flCd4-Cre
mice than those from Srsf1fl/flLckCre/+ mice. Consistent with
previous results from Srsf1fl/flLckCre/+ mice, the peripheral T
cells were substantially decreased from Srsf1fl/flCd4-Cre mice,
and most of the existing mature T cells were escapees in
secondary lymphatic organ, which was caused by increased
apoptosis and the shortened lifespan of SRSF1-deficient cells
(28). Despite the substantial reduction of CD8+ SP cells was
exhibited in both TCRbhiCD69+CD24+ immature and
TCRbhiCD69−CD24− mature thymocytes, the CD4+ SP cells
were only notably reduced in TCRbhiCD69−CD24− mature
stage, suggesting SRSF1 deficiency has more severe effects in
CD8+ lineage differentiation.

To inspect whether SRSF1 contributes to the lineage choice of
post selected DP thymocytes, we crossed the Cd4-Cre-mediated
SRSF1 deletion mouse strain with the MHC-II-deficient
H2ab1−/− mice. As expected, post selected mature thymocytes
from control mice were largely restricted to the CD8+ T cell
lineage because of the defective MHC-II expression. In contrast,
mature thymocytes from H2ab1−/−Srsf1fl/flCd4-Cre mice
contained fewer CD8+ SP cells but more CD4+ SP cells,
indicating MHC-I–selected thymocytes are redirected from
CD8+ to CD4+ T cell lineage in the absence of SRSF1. For
potential targets involved in lineage choice and CD8 cell identity
downstream SRSF1, we measured the well-established lineage
commitment-related genes in three sequential developmental
stages DP, CD4+CD8lo, and mature CD8+ T cells. In SRSF1-
deficient cells, we found significant reduced expression of Runx3
in three sequential developmental stages, and elevated expression
of Tox and Mazr in only DP, but not CD4+CD8lo stage, which is
an essential transient population from DP thymocytes to either
CD4+ or CD8+ SP cells (14). In addition, the expression of Tle3,
Bcl11b, and IL7Rawas only reduced in CD8+ SP cells, which may
miss the critical time point for lineage selection but affect the
CD8 cell terminal maturation and survival. The dysregulation of
lineage commitment-related genes leads to the aberrant
differentiation of CD8+ SP thymocytes and jointly contributes
to the abnormal ratio of CD4 to CD8 cells in Srsf1fl/flCd4-Cre
mice, and Runx3 plays a central role downstream of SRSF1,
particularly. However, overexpression of Runx3 could rectify the
ratio of CD4+ to CD8+ SP cells in TCRbhiCD69−CD24− mature
stage, but not completely rescue the defects in SRSF1-deficient
mice, suggesting the complex mechanisms involved in the
defective identity of CD8+ T cell in absence of SRSF1.
Therefore, further understanding of how SRSF1 controls the
expression of Runx3 as well as CD8 cell fate decision is required
in future study.

In summary, our data revealed that SRSF1 exerts its
developmental stage-specific effects in late thymocytes and
contributes to CD8+ T cell lineage fate decision and identity.
Frontiers in Immunology | www.frontiersin.org 9
This study represents an important step to further decipher the
physiological functions of SR proteins, providing new insights of
RBPs in regulating T cell development and lineage commitment.
MATERIALS AND METHODS

Animals
All mice used in this study were between 7 and 10 weeks of age
on a fully C57BL/6J background. Srsf1fl/fl mice were kindly
provided by Dr Xiang-Dong Fu (University of California, San
Diego). Cd4-Cre and H2ab1−/− mice from Jackson Laboratories
were maintained in the animal facility of China Agricultural
University. Mice were housed in specific pathogen-free
conditions under controlled temperature (22 ± 1°C) and
exposed to a constant 12-hour light/dark cycle. All institutional
and national guidelines for the care and use of laboratory animals
were followed and all animal protocols used in this study were
approved by the Institutional Animal Care and Use Committee
at China Agricultural University.

Flow Cytometry
Single cell suspensions obtained from thymus (Thy), spleen,
lymph node (LN), and peripheral blood cells (PBCs) were stained
with fluorochrome-conjugated antibody as described previously
(42). The fluorochrome-conjugated antibodies listed below: CD4
(RM4-5), CD8a (53-6.7), CD24 (M1/69), CD69 (H1.2F3), TCRb
(H57-597), B220 (RA3-6B2), CD11b (M1/70), CD11c (N418),
CD45.1 (A20), CD45.2 (104), CD49b (DX5), Gr.1 (RB6-8C5),
TER119 (TER-119), TCRgd (GL-3), ScaI (D7), cKit (2B8) and
7AAD (00-6993-50) were purchased from eBiosciences. The
fluorochrome-conjugated streptavidin (554063) was purchased
from BD Biosciences. Samples were acquired on a LSRFortessa
or FACSVerse (BD Biosciences) and analyzed with FlowJo
software v10.4.0 (Tree Star, Inc.). For cell sorting, cells were
surface-stained with indicated fluorochrome-conjugated
antibodies and subjected to sorting on a FACSAria II
(BD Biosciences).

Gene Expression Analysis
The gene expression was measured by qPCR as previously
described (43). Briefly, total RNA was extracted from sorted
cells using RNasey Mini Kit (Cat. # 74106, Qiagen) according to
manufacturer’s instructions. FastQuant RT Kit (Cat. # KR106-
02, Tiangen) was used to synthesize cDNA. Quantitative RT-
PCR (qPCR) was performed with SYBR Green Master Mix (Cat.
# FP205-02, Tiangen) using CFX96 Connect™ Real-Time
System (Bio-Rad). The primers were shown in Supplementary
Table 1. Fold differences in expression levels were calculated
according to the 2−DDCT method and the relative expression of
indicated genes was normalized to Gapdh.

BM Chimeras
The BM chimeric mice were generated as previously described
(44). Briefly, the lethally irradiated B6.SJL (CD45.1+) mice were
transferred intravenously with a 1:1 mixture of 1 × 106 BM cells
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from Srsf1fl/flCd4-Cre (CD45.2+) or control mice together with
BM cells from congenic B6.SJL (CD45.1+) mice. After 10 weeks
reconstitution, recipients were sacrificed and analyzed.

Retroviral Transduction
The retrogenic chimera mouse models were generated by a
modified protocol as previously described (28, 45). Briefly,
retroviral packaging was carried out by transfection of HEK293T
cells with Runx3 cDNA bearing retroviral vector or empty pMigR1
vector along with pCLeco using Lipofectamine 2000 (Cat. #
11668019, Invitrogen), and the retrovirus-containing medium
was collected at 24- and 48-hours post-transfection. After being
filtered by 0.45 µm filters, the retrovirus-containing medium was
loaded and centrifuged onto RetroNectin-coated [10mg/mL (Cat. #
T100A, TaKaRa)] non-tissue culture 24 well plates (Cat. # 351147,
Falcon). BM cells from Control and Srsf1fl/flCd4-Cre mice were
depletedof lineage positive cells and cultured for 24hours in IMDM
medium in the presence of thrombopoietin (20 ng/mL), stem cell
factor (50 ng/mL), 15% FBS, 2-mercaptoethanol (50 µm),
streptomycin and penicillin (100 mg/mL) in retrovirus contained
RetroNectin plate as described above. Then, cells were infectedwith
fresh retrovirus-containing medium in the presence of 8 mg/mL
Polybrene (Cat. # H9268, Sigma-Aldrich) by centrifuging at 1,000
rcf for 90 min at 32°C. Subsequently, the cells were cultured for 2
hours at 37°C 5% CO2 incubator and resuspended in IMDM
medium supplemented with components and cytokines as above.
On the next day, the cells were spino-infected again. The infected
cells were collected and analyzed by flow cytometry 24 hours later,
and then these cells containing 5,000 GFP+ lineage−ScaI+cKithi

(LSK) cells were transplanted into lethally irradiated (7.5 Gray)
recipients (CD45.1+). The recipients were sacrificed to analyze at 8
weeks after transplantation.

Gene Set Enrichment Assay
GSEA (v4.0.2) was used to analyze RNA-Seq data (GSE141349)
from the GEO database, and the gene sets used in the article were
obtained from MSigDB.

Statistical Analysis
Statistical analysis was carried out through using GraphPad Prism
software (version 8.0). Statistical significance was determined by
one-tailed Student’s t-test. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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