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Objective: To identify potential diagnostic markers of lupus nephritis (LN)

based on bioinformatics and machine learning and to explore the

significance of immune cell infiltration in this pathology.

Methods: Seven LN gene expression datasets were downloaded from the GEO

database, and the larger sample size was used as the training group to obtain

differential genes (DEGs) between LN and healthy controls, and to perform

gene function, disease ontology (DO), and gene set enrichment analyses

(GSEA). Two machine learning algorithms, least absolute shrinkage and

selection operator (LASSO) and support vector machine-recursive feature

elimination (SVM-RFE), were applied to identify candidate biomarkers. The

diagnostic value of LN diagnostic gene biomarkers was further evaluated in the

area under the ROC curve observed in the validation dataset. CIBERSORT was

used to analyze 22 immune cell fractions from LN patients and to analyze their

correlation with diagnostic markers.

Results: Thirty and twenty-one DEGs were screened in kidney tissue and

peripheral blood, respectively. Both of which covered macrophages and

interferons. The disease enrichment analysis of DEGs in kidney tissues

showed that they were mainly involved in immune and renal diseases, and in

peripheral blood it was mainly enriched in cardiovascular system, bone

marrow, and oral cavity. The machine learning algorithm combined with

external dataset validation revealed that C1QA(AUC = 0.741), C1QB(AUC =

0.758), MX1(AUC = 0.865), RORC(AUC = 0.911), CD177(AUC = 0.855), DEFA4

(AUC= 0.843)and HERC5(AUC = 0.880) had high diagnostic value and could be

used as diagnostic biomarkers of LN. Compared to controls, pathways such as

cell adhesion molecule cam, and systemic lupus erythematosus were activated

in kidney tissues; cell cycle, cytoplasmic DNA sensing pathways, NOD-like

receptor signaling pathways, proteasome, and RIG-1-like receptors were

activated in peripheral blood. Immune cell infiltration analysis showed that

diagnostic markers in kidney tissue were associated with T cells CD8 and
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AUC, area under curve; DO, gene ontology disease en

set enrichment analysis; NLR, NOD-like receptor.
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Dendritic cells resting, and in blood were associated with T cells CD4 memory

resting, suggesting that CD4 T cells, CD8 T cells and dendritic cells are closely

related to the development and progression of LN.

Conclusion: C1QA, C1QB, MX1, RORC, CD177, DEFA4 and HERC5 could be

used as new candidate molecular markers for LN. It may provide new insights

into the diagnosis and molecular treatment of LN in the future.
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1 Introduction

Lupus nephritis (LN) is one of the most common and serious

complications of systemic lupus erythematosus (SLE) (1), with a

high morbidity and mortality rate. According to statistics, the

annual incidence of SLE worldwide is 1/100,000 to 8.7/100,000,

and 40% to 60% of SLE patients have LN at onset (1). About one-

third of patients with severe LN develop end-stage renal disease

(ESRD) after 10 years. The mortality rate is increased 8-fold

compared to the general population (2, 3). Given LN’s high

morbidity and mortality, early diagnosis and intervention can

significantly reduce CKD and ESRD (4). Kidney biopsy remains

the gold standard for diagnosing LN but is somewhat invasive. It

is also considered that SLE is a systemic autoimmune disease

with multi-organ involvement and multiple autoantibody

positivity as the primary clinical features, while peripheral

blood is prevalent throughout the body and can reflect

systemic activity (5, 6). In addition, peripheral blood contains

a variety of LN-associated immune cells, easy accessibility, low

cost of the examination, and accurate results, making gene

expression analysis of peripheral blood cells an ideal source of

LN biomarkers (7). For treatment, LN is usually treated with

immunosuppressive therapy such as mycophenolate mofetil or

cyclophosphamide and glucocorticoids. On the one hand, they

are not specific drugs for the disease and are closely associated

with a wide range of adverse effects (8). On the other hand,

difficulty adhering to treatment due to potential adverse effects

may lead to treatment failure and progression to refractory LN

(9, 10). Therefore, it is imperative to develop new candidate

biomarkers and find potential therapeutic targets to improve the

prognosis of LN patients.

With the development of gene microarray technology and

high-throughput technology, the use of bioinformatics methods
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to mine gene microarray data can quickly and effectively screen

differential genes(DEGs). In recent years, it has been widely used in

the elucidation of the pathogenic mechanism of diseases and

screening of drug therapeutic targets (11–13). Both SLE and LN

are largely influenced by genes (14). Therefore, in this study, we

used bioinformatics methods to obtain RNA gene matrices from

peripheral blood and kidney tissues of LN, respectively, from the

GEO database, and performed DEGs enrichment analysis between

LN and healthy samples. Two machine learning algorithms were

used to screen biomarkers associated with LN, and candidate genes

closely related to immune infiltration were further validated in

another validation cohort. In this study, CIBERSORT was used for

the first time to quantify the proportion of immune cells in LN and

normal tissue samples based on gene expression profiles. In

addition, we explored the relationship between the identified

biomarkers and infiltrating immune cells to provide new ideas for

the further prevention and treatment of LNs.
2 Materials and methods

2.1 Microarray data

In the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/), use “Lupus nephritis” as the search

term, limit entry type to series, and detection method/data type

to expression profiling by array, the organization source is homo

sapiens, and all gene expression data related to LNs were

retrieved as of October 3rd, 2022. The data sets were

differentiated for tissue origin: peripheral blood and kidney

tissue. Three eligible gene expression datasets were screened in

the renal group: GSE32591 (64 LN, 29 healthy controls),

GSE113342 (56 LN, 16 healthy controls), and GSE200306 (79

LN, 19 healthy controls), enrolling a total of 199 patients with

LN and 64 healthy controls. Three eligible gene expression data

sets were screened in the peripheral blood group: (GSE72798 (30

LN, 17 healthy controls), GSE99967 (29 LN, 17 controls), and

GSE81622 (14 LN, 24 controls)’s, which included a total of 73

LN patients and 58 healthy controls.
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2.2 Data processing and DEG screening

Firstly, convert the probe matrix into a gene matrix

according to the probe annotation file. For multiple probes

corresponding to the same gene, the average value of the

probes is calculated as the final expression value of the gene.

Secondly, the two data sets with larger sample size were pooled

and used as training groups, GSE99967, GSE72798 and

GSE32591, GSE113342 for peripheral blood and kidney tissues

respectively, and GSE81622 and GSE200306 for the validation

group. The sva package was used to process the batch effect, the

limma package was used to analyze theDEGs in the matrix, and

the DEGs were selected with the gene expression | log2 fold

change, logFC | > 1 and the adjusted P value <0.05 as the

screening conditions. Finally, ggplot was used to visualize the

DEGs and plot the corresponding volcanoe map.
2.3 Functional enrichment analysis
of DEGs

The “clusterProfiler” and “DOSE” packages of the R package

were used to perform disease ontology (DO) enrichment

analysis of DEGs. And gene set enrichment analysis (GSEA)

was also used to identify significant pathways between the LN

and control groups. The “c2.cp.kegg.v7.4.symbols.gmt” from the

Molecular Signatures Database (MSigDB) was used as the

reference gene set. If p. adjust < 0.05, the pathways were

considered significantly enriched.
2.4 Screening of diagnostic biomarkers

Machine learning is a novel algorithm analysis tool, and in this

study, the least absolute shrinkage and selection operator (LASSO)

combined with support vector machine-recursive feature

elimination (SVM-RFE) was applied to the screening of LN

biomarkers to predict the status of the disease. LASSO is a

regularized regression algorithm using the “glmnet” package in

R (15). SVM-RFE is a supervised machine learning technique that

can rank features based on recursion to avoid overfitting (16, 17).

The genes screened by the two algorithms are intersected and the

overlapping genes are the candidate bio-diagnostic markers.
2.5 Diagnostic value of biodiagnostic
markers in LN

In order to test the accuracy of the biodiagnostic markers

screened by machine learning, we generated ROC curves using

the “diff gene xp” between the LN group and the normal sample

group. The greater the area under curve (AUC), the higher the

accuracy of the gene as a diagnostic marker in LN. In the same
Frontiers in Immunology 03
method, its effectiveness was further verified in the validation

group GSE81622/GSE200306.
2.6 Identification of immune cell subsets

The CIBERSORT algorithm is a reliable machine learning

method based on linear support vector regression (SVR), which is

widely used to assess the relative content and dynamic regulatory

process of 22 immune cells and is superior to other methods for

identifying human immune cell phenotypes in terms of noise and

unknown mixed content (18, 19). In order to understand the

relative proportions of different immune cells in the LN sample,

this study used the R language program and linked CIBERSORT

to simulate and calculate the transcription feature matrix of 22

immune cells, and the number of calculations was set to 1,000.

Based on the P value<0.05, use the “corrplot” package to draw

correlation heat maps to visualize the correlation between 22

infiltrating immune cells; use “vioplot” to draw a violin chart to

visualize the differences between the immune cells of the LN

group and the control group.
2.7 Correlation analysis between
bioiagnostic markers and infiltrating
immune cells

Correlation analysis between genes and immune cells was

performed using Spearman correlation coefficient. For those with

p < 0.05, the results were visualized using the “ggplot2” package.
2.8 Correlation of bioiagnostic markers
with clinicopathological features

To explore the correlation of candidate gene markers with

different pathological types, relapse frequency, renal

tubulo inters t i t i a l inflammat ion , complex immune

accumulation, and renal function in patients with lupus

nephritis based on current relevant literature and the

Nephroseq V5 tool (https://nephroseq.org/).
2.9 Statistical analysis

For continuous variables between two groups, t-test was

applied if they conformed to normal distribution; Mann-

Whitney U-test was used for non-normal distribution.

ANOVA was applied for continuous variables between three

groups. Pearson’s analysis was used to analyze the correlation

between gene expression and immune cell fraction. ROC curve

analysis was used to determine the diagnostic performance of the

diagnostic indicators identified in the study. All statistical
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analyses were performed using R software (version 4.1.2) and

SPSS (version 27.0) software. All statistical analyses were two-

sided with P < 0.05 were regarded statistically significant.
3 Results

3.1 Identification of DEGs in LN

According to the screening criteria adjusted P value <0. 05

and |log fold change(FC)| >1, a total of 30 DEGs were screened

in the LN kidney group, of which 25 were significantly up-

regulated, including C1QB, MX1, C1QA, IL32, etc.; 5 were

significantly down-regulated, including ZBTB16, FKBP5,

DEFB1, RORC, EGR1. Volcano map of DEGs (Figure 1A). 21

DEGs were obtained from LN peripheral blood, all significantly

up-regulated, volcano map drawn for DEGs (Figure 1B).
3.2 Functional correlation analysis

3.2.1 Disease enrichment analysis of DEGs
As shown in Figure 2A, the gene ontology disease enrichment

(DO) results showed that DEGs in the LN kidney group were

mainly enriched in immune class, inflammatory, renal, and

cardiovascular diseases with “p values< 0.01”. Examples include

primary immunodeficiency disease, vasculitis, and renal failure.

DEGs in the LN peripheral blood weremainly enriched in diseases

such as thrombocytosis, erythrocytosis, bone marrow diseases,

and oral diseases. See Figure 2C.

3.2.2 Significant gene enrichment pathways
active in the test and control groups

In renal tissue, the top 5 significantly enriched pathways in

LN compared to healthy controls were: autoimmune thyroid

disease, cell adhesion molecule cam, and systemic lupus

erythematosus were activated (Figure 2B). In peripheral blood,

cell cycle, cytosolic DNA sensing pathway, NOD-like receptor

signaling pathway, proteasome, and RIG-1-like receptor

signaling pathway were activated in the test group compared

to the control group (Figure 2D).
3.3 Diagnostic biomarker identification
and validation

A total of twomachine learning algorithms, LASSO regression

and SVM-RFE, were used to screen biomarkers in this study. In

the renal group, LASSO regression identified 16 biomarkers

(Figure 3A), SVM-RFE algorithm established 6 biomarkers

(Figure 3B), and the overlapping genes C1QA, C1QB, MX1,

RORC of both algorithms were used as diagnostic biomarkers

(Figure 3C). To further validate the accuracy of the diagnostic
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biomarkers, their expression levels were further verified in the

validation set GSE200306. C1QA, C1QB, MX1, and RORC were

expressed at significantly higher levels in LN than in controls (p <

0.05) (Figure 4A–D). In the peripheral blood group, LASSO

regression identified 7 biomarkers (Figure 3D) and SVM-RFE

algorithm established 4 biomarkers (Figure 3E). Eventually, three

overlapping genes CD177, DEFA4, and HERC5 from both

algorithms were taken as diagnostic biomarkers (Figure 3F). To

further validate the accuracy of diagnostic biomarkers, they were

further validated for differences in the validation set GSE81622.

All three diagnostic genes had significantly higher expression

levels in LN than in controls (p < 0.05) (Figure 5A-C)
3.4 Diagnostic value of characteristic
biomarkers in LN

As shown in Figure 6, all six biomarkers screened had a high

diagnostic value in LN. In the kidney tissue training group, the

AUCs of the selected biomarkers were: C1QA (0.948, 95% CI: 0.909

−0.978), C1QB (0.926, 95% CI: 0.885 − 0.962), MX1 (0.881, 95% CI:

0.823 − 0.925), and RORC (0.819, 95% CI: 0.740 − 0.889), as shown

in Figure 6A; in the validation group, the AUCs of the biomarkers

were C1QA(0.741, 95% CI: 0.634−0.836), C1QB(0.758, 95% CI:

0.646−0.856), MX1(0.865, 95% CI: 0.775−0.944), and RORC(0.911,

95% CI: 0.846−0.962), as shown in Figure 6B. The AUCs of the

selected biomarkers in peripheral blood in the training group were:

CD177 (0.791, 95% CI: 0.685 − 0.878), DEFA4 (0.812, 95% CI:

0.707 − 0.905), and HERC5 (0.775, 95% CI: 0.654 − 0.884),

respectively (Figure 6C); the AUCs of the selected biomarkers in

the validation group were: CD177 (0.885, 95% CI: 0.752 − 0.979),

DEFA4 (0.843, 95% CI: 0.685 − 0.965), and HERC5 (0.880, 95% CI:

0.725 − 0.987), respectively (Figure 6D). The biomarkers showed a

high diagnostic value in both the LN training and validation groups,

with AUCs largely ≥0.8.
3.5 Analysis of immune cell infiltration

Differential analysis of immune cells in LN and normal samples

showed that T cells regulatory (Tregs) (p = 0.017) were significantly

lower and NK cells resting (p = 0.019) were significantly higher in

LN kidney tissue than in the normal group (see Figure 7A). In LN

blood tissues, B cells naive (p<0.001), B cells memory (p<0.001), T

cells CD4 memory resting (p=0.007), Monocytes (p=0.006),

Macrophages M1 (p=0.011), Macrophages M2 (p=0.039),

Dendritic cells activated (p<0.001) were significantly higher than

the control group (Figure 7C).

In addition, the correlation of 22 immune cells in all samples

was analyzed (Figure 7B, D). There was a significant positive

correlation between NK cells resting and T cells CD4 memory

activated (r = 0.66) and a significant negative correlation between

Mast cells activated and MacrophagesM1 (r = − 0.59) in LN
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kidney tissue and normal group samples (Figure 7B). In LN

peripheral blood and normal group samples, T cells CD8

showed a significant negative correlation with Neutrophils (r=-

0.49); T cells CD4 memory activated showed a significant positive

correlation with T cells gamma delta (r=0.57) (Figure 7D).
3.6 Correlation of biomarkers with
infiltrating immune cells

In kidney tissue, C1QA was positively correlated with T cells

CD8 (R= 0.56, P= 7.94E-05)、Macrophages M1(R= 0.47, P=
Frontiers in Immunology 05
0.0016) and Mast cells resting(R= 0.32, P= 0.032); and negatively

correlated with Mast cells activated (R= -0.40, P= 0.0087), T cells

CD4 naïve (R= -0.39, P= 0.0088) and NK cells activated(R=

-0.32, P= 0.033) (Figure 8A). C1QB was positively correlated

with MacrophagesM1 (R = 0.39, p = 0.0099), Neutrophils (R =

0.34, p= 0.024), and TcellsCD8 (R = 0.44, p = 0.0029); and

negatively correlated with Dendritic cells resting (R = − 0.36, p=

0.017) and Mast cells activated (R= − 0.39, p= 0.01) (Figure 8B).

MX1 was positively correlated with Eosinophils (R = 0.52, p =

0.00037), T cells CD8 (R = 0.35, p = 0.023), T cells follicular

helper (R = 0.45, p = 0.0023); and negatively correlated with

Dendritic cells resting (R = − 0.33, p = 0.032), TcellsCD4naive
B

A

FIGURE 1

The volcano map of DEGs between LN and healthy samples. (A) Kidney tissue; (B) peripheral blood. Each dot represents a gene. Red dots
indicate up-regulated gene expression; green dots indicate down-regulated gene expression; black dots indicate no significant difference
between these genes in LN. The horizontal axis indicates the fold difference in gene expression in LN compared to healthy controls, and the
vertical axis indicates the significance of the difference (adj. P. Value).
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(R= − 0.53, p = 0.00026) (Figure 8C). RORC was positively

correlated with Dendritic cells resting (R = 0.49, p = 0.00084);

negatively correlated with B cells naive (R= − 0.42, p= 0.0056)

(Figure 8D), and C1QB, MX1, and RORC were all correlated

with Dendritic cells resting.

In peripheral blood tissues, CD177 was positively correlated

with Macrophages M0 (R = 0.38, p = 0.00037), Macrophages M1

(R = 0.3, p = 0.0059), Macrophages M2 (R = 0.3, p = 0.0054),

Monocytes (R = 0.47, p = 6.8e − 06), Neutrophils (R = 0.33, p =

0.002), and negatively correlated with T cells CD4 memory

activated (R= − 0.31, p = 0.0042), T cells CD4 memory

activated (R = − 0.39, p = 0.00026), and T cells CD8 (R = −
Frontiers in Immunology 06
0.22, p = 0.042) (Figure 8E). DEFA4 was positively correlated

with MacrophagesM0 (R = 0.32, p = 0.0032), Macrophages M2

(R = 0.3, p = 0.0051), Monocytes (R = 0.42, p = 6.1e − 05), and

negatively correlated with T cells CD4 memory activated (R = −

0.24, p = 0.03), T cells CD4 memoryresting (R = − 0.31, p =

0.0039) (Figure 8F). HERC5 was positively correlated with B

cells memory (R= 0.42, p=7.6e-05), Dendritic cells activated (R =

0.65, p = 2.2e − 11), Plasma cells (R = 0.4, p = 0.00017), and

negatively correlated with B cells naive (R= − 0.3, p = 0.0056), T

cell CD4 memoryresting (R = − 0.34, p = 0.0016) (Figure 8G).

CD177, DEFA4, HERC5 were all associated with T cells CD4

memory resting.
B

C D

A

FIGURE 2

Functional enrichment analysis to identify potential biological processes by DO and GSEA. (A, C) Disease ontology (DO) enrichment analysis of DEGs.
The vertical coordinate represents the name of the disease, the horizontal coordinate represents the number of genes enriched on the disease, and the
color represents the significance of the enrichment. The redder the color, the more significant DEGs enrichment on the disease. (B, D) Gene set
enrichment analysis (GSEA) is used to see which pathways were active in the healthy control or LN group. It consists of three main parts: The first part is
the enrichment score line graph: it shows the trend of the cumulative enrichemnt score (ES) value when the analysis calculates the ES value of each
gene in the gene set along the ranked list (gene list). The score at the highest peak is the ES value for that gene set. The main focus is on the peaks,
with peaks at the top and ES > 0 indicating that they are active in the set; peaks at the bottom and ES < 0 indicating that they are inactive in the set. The
five colors represent each of the five pathways (the top 5 in order of corrected p-value). The second part, with lines marking where members of the
gene set appear in the gene sorting list, the pathways to which the different colors belong. The third part: the signal-to-noise ratio for each gene is
shown as a gray frame plot. The horizontal coordinate represents the ranking in the ordered data set, and the vertical coordinate represents the
Running Enrichment Score. (A, B) Kidney tissue; (C, D) Peripheral blood.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.839197
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.839197
B

C D

A

FIGURE 4

Expression of the Four biomarkers in the Validation group GSE200306 dataset. (A) C1QA; (B) C1QB; (C) MX1; (D) RORC.
B

C

D E

F

A

FIGURE 3

Screening process for diagnostic biomarkers of LN. (A, D) The LASSO model. (B, E) The SVM-RFE model. (C, F) LASSO and SVM-RFE overlap
biomarkers. (A-C) Kidney tissue; (D-F) Peripheral blood.
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3.7 Clinicopathological correlation
analysis with target immune markers

To determine the clinical applicability of these markers, we

consulted the Nephroseq database and related literature to

obtain correlations between seven immunomarkers and

clinicopathology. The summary is shown in Table 1 and is

confirmed below.

3.7.1 Correlation with different pathological
types of LN

According to the Nephroseq database and related literature,

seven candidate gene expressions correlated with the WHO

lupus nephritis class. The expression of C1QA and C1QB was

greater in class III than in class II, as shown in Figure 9.

Compared to peripheral blood, peripheral blood C1Q

antibodies have been studied more frequently, because human

kidneys are more challenging to obtain. Because the expression

of renal C1Q was positively correlated with peripheral blood

C1Q antibodies, studies related to C1Q antibodies may have

some implications. Zhu Chen et. found that in terms of

quantitative C1q antibody levels, serum resistance was highest
Frontiers in Immunology 08
in class IV patients, followed by class III (20). Class III levels

were also higher than class II but were not statistically

significant. These data are also consistent with Fang et al. (21)

and Cai et al. (20, 22). In summary, the expression of C1QA and

C1QB was class IV > class III > class II.

3.7.2 Analysis of infiltration of diagnostic
genetic markers in the renal

C1QA, C1QB, MX1 and RORC were expressed in both

glomeruli and tubules, with greater tubular than glomerular

expression. Based on available literature and the Nephroseq

database. Tao Liu et al. performed immunohistochemical analysis

of kidneys from LN patients and healthy controls, and C1q was

expressed in both glomeruli and tubules. Moreover, C1q protein

levels were higher in the renal tubules (23), consistent with Desiree

Tampe et al. Desiree Tampe observed a significant induction of

glomerular, tubulointerstitial compartments, C1QA, and C1QB

expression levels in patients with LN compared to healthy

controls (24). MX1 is one of the IFN-I-inducible genes. Increased

expression of the MX1 gene was detected in renal cells, PBMC, and

renal tubules of patients with LN (25–28). Based on the Nephroseq

database, it is known that RORC was distributed in both glomeruli
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FIGURE 5

Expression of the three biomarkers in the validation group GSE81622 dataset. (A) CD177; (B) DEFA4; (C) HERC5.
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and tubules, and the expression in tubules was greater than that in

glomeruli (Figure 10).

3.7.3 Correlation with the activity and
recurrence frequency of LN

Based on the current study, the relevant literature directly

or indirectly confirms that the expression of C1QA/B (29–

33), MX1 (25, 27), RORC (34), CD177 (35, 36), DEFA4 (37,

38), and HERC5 (39, 40) is strongly correlated with SLE/LN

activity in a broad sense. However, there are a few studies

with different results. In terms of LN activity-related and
Frontiers in Immunology 09
relapse rates, N Marto et al. found a higher prevalence of anti-

C1q antibodies in patients with active LN than in those

without the renal disease (74% V 32%, p<0.0001) (41).

GabriellaMoroniMD et al. showed that the onset or

recurrence of LN was associated with elevated anti-C1q

antibody titers in the previous six months (42). High levels

of C1q antibodies appear two to six months before the onset

of LN and decrease or become undetectable after successful

treatment (41, 43–49). In addition, RORC also showed

significant downregulation in patients with LN in remission

(50). In summary, C1QA, C1QB, MX1, RORC, CD177,

DEFA4, and HERC5 can somewhat predict the prognosis of
frontiersin.or
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FIGURE 6

Receiver operating characteristic (ROC) curves for diagnostic validity of LN biodiagnostic markers. (A) ROC curves after fitting one variable for
C1QA, C1QB, MX1, and RORC in the original data cohort; (B) ROC curves after fitting one variable for C1QB, MX1, and RORC in the GSE200306
data set. (C) ROC curve of CD177, DEFA4 and HERC5 after fitting one variable in the original data cohort; (D) ROC curve of CD177, DEFA4 and
HERC5 after fitting one variable in the GSE81622 data set curve. (A, B) Kidney tissue; (C, D) Peripheral blood.
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LN (37, 38, 40, 41, 51–53).

3.7.4 Relationship with immune complexes
LN begins with the in situ formation and deposition of

immune complexes. Subsequently, immune complexes

deposition triggers a complex series of events involving in situ

activation of complement (C1q A, C1QB), Fc receptors, and

adhesion molecules, leading to the recruitment and activation of

inflammatory cells and ultimately kidney injury (54, 55).

Therefore, we hypothesized that the gene expression of seven

candidate genes, except RORC, is positively correlated with

immune complexes. The deposition of immune complexes

activates their expression. The available literature confirms

the following.
Fron
① C1q is crucial in clearing immune complexes and

apoptotic cells (56–58). This clearance may be

impaired by low C1q levels of apoptotic cells and

cellular debris, which are sources of autoantigens (59,

60). The immune response induced by the inefficient

clearance of apoptotic cells and cellular debris gives rise

to autoantibodies.

② MX1 and HERC5 are interferon-inducible genes

positively associated with immune complexes. The
tiers in Immunology 10
immune complexes are endogenous IFN inducers (61).

Precipitates of immune complexes in the kidney activate

a series of inflammatory responses and the production

of type I interferon (62–64). Type I interferon binds to

the type I interferon receptor (IFNaR), which induces

interferon-stimulated genes (ISG) (including MX1,

HERC5) (65).

③ The relationship between RORC, CD177, DEFA4 and

immune complexes has not been reported for the time

being.
3.7.5 Relationship with renal function
Correlations between six immunomarkers and renal

function (glomerular filtration rate, GFR) were obtained

from the Nephroseq database. Scatter plots showed that all

were negatively correlated with GFR except for RORC

(Figure 11), consistent with relevant contemporary research

by Zhu Chen et al. (20). Anti-C1q was positively correlated

with renal activity indices, including intra-capillary

hypercellularity, glomerular leukocyte infiltration, and

nuclear rupture/fibrin-like necrosis. It was negatively

correlated with chronic indices, such as glomerulosclerosis

and interstitial fibrosis.
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FIGURE 7

Distribution and visualization of immune cell infiltration. (A, C) Comparison of 22 immune cell subtypes in LN and normal tissues. (A, C) LN
compared with 22 immune cell subtypes in normal tissue. Blue represents control group, red represents LN kidney group ((A) LN, (C) peripheral
blood group). (B, D) Heatmap of correlations between 22 immune cell subtypes. Both horizontal and vertical axes show immune cell subtypes,
and the values inside represent the correlation coefficients of immune cells. Red represents positive correlation and blue represents negative
correlation. The darkest red lattice represents the highest positive correlation between the two genes, and the darkest blue lattice represents
the most significant negative correlation between the two genes.
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3.7.6 Correlation with traditional prognostic
markers (e.g., ANA, anti-dsDNA titers, C3,
and C4)

There are few articles on the association of peripheral blood

genetic markers CD177, DEFA4, and HERC5 with traditional

prognostic markers (e.g., ANA, anti-dsDNA titers, C3, C4),

although there are relevant theoretical underpinnings. Future

studies could be conducted in this direction to clarify the
Frontiers in Immunology 11
correlation between the two further. The C1Q antibody is

currently relatively well-studied. Rosalie M. Sterner et al.

found that the bound C1 complex could cleave C4 and C2 to

form the C3 convertase complex, which could cleave C3 into C3a

and C3b, with C3b contributing to phagocytosis of regulatory

substances and clearance of immune complexes (4, 66). Tao Liu

et al. further found that the levels of C1q and C4 were positively

correlated with the levels of C3 in the blood (41). In addition, N
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FIGURE 8

Correlation of LN kidney tissue biomarkers C1QA (A), C1QB (B), MX1 (C), RORC (D) and LN peripheral blood biomarkers CD177 (E), DEFA4 (F),
HERC5 (G) with infiltrating immune cells. The vertical ordinate represents the name of the immune cell and the abscissa represents the
correlation coefficient. The circle size represents the absolute value size of the correlation coefficient, and the color of the circle represents the
P value of the correlation test. If p value < 0.05, p values are indicated in red.
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Marto et al. found that peripheral blood anti-C1q titers were

negatively correlated with C3 and C4 levels and positively

correlated with anti-dsDNA (22, 41, 67). C1Q in serum was

negatively correlated with anti-C1Q antibodies. In summary,

C1q expression was positively correlated with the levels of C3

and C4. MX1 was negatively correlated with C3 and C4 and

positively correlated with Anti-DNA antibodies (25).

3.7.7 Applications
The applications of the genetic biomarkers screened in this

study are broadly divided into two major blocks: one for
Frontiers in Immunology 12
diagnosing LN, assessing disease status, and predicting the

prognosis of LN; and the other for guiding clinical drug use

and precise treatment.

3.7.7.1 Diagnosis and assessment of the activity

① Anti-C1q antibodies can be used to predict the onset of

nephritis (21, 41, 68–70). A previous meta-analysis showed that

anti-C1q antibodies had good sensitivity and specificity in the

diagnosis of LN (0.58 and 0.75, respectively) (71). In addition,

high titers of anti-C1q autoantibodies were associated with

active LN with a sensitivity of 97% and a specificity of 92%
TABLE 1 Summary of biomarkers and clinicopathological features.

Biomarkers Correlation
with

different
pathological
types of LN

Location of
infiltration,
tubular or
glomerular

Correlation
with LN

patient activ-
ity

Correlation with the
accumulation of

immune complexes

Correlation
with renal
function

Correlation with traditional
prognostic markers (e.g. ANA,
anti-dsDNA titers, C3, C4)

C1QA IV>III > II Glomeruli and
tubules

(tubules>glomeruli)

+ ++ ++ + (C3, C4)

C1QB IV>III > II Glomeruli and
tubules

(tubules>glomeruli)

+ ++ ++ + (C3, C4)

MX1 ns Glomeruli and
tubules

(tubules>glomeruli)

+ ++ ++ - (C3, C4), + (Anti-DNA antibody)

RORC ns Glomeruli and
tubules

(tubules>glomeruli)

+ - - - - ns

CD177 ns + ++ ++ ns

DEFA4 ns + ++ ++ ns

HERC5 ns + ++ ++ ns
(+) indicates a correlation, (++) shows a positive correlation (–), indicates a negative correlation, “ns” indicates “not yet studied”, and italic type indicate indirect evidence.
BA

FIGURE 9

C1QA/C1QB over-expression in WHO Class III vs. WHO Class II (Lupus Nephritis Samples. (A) C1QA, (B) C1QB.
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(41, 42, 68, 69, 72). On the other hand, the C1q gene can be used

for early screening. A quantitative or functional defect in C1q in

pure congeners has been reported to be a strong disease

susceptibility factor, with more than 90% of patients

presenting with SLE and SLE-like symptoms (57, 73–75).

② Upregulation of ISG in peripheral blood is a hallmark of

SLE and has been associated with SLE disease activity, playing an

important role in the pathogenesis of SLE (27, 38, 51, 76, 77).

MX1 is of great importance as a biomarker for SLE (78).

③ CD177 and DEFA4 are neutrophil subsets that correlate

with the onset, severity and prognosis of SLE/LN (79–81). In

renal biopsies, neutrophils were found to be a marker of

glomerular activity in SLE, while detection of neutrophil-

derived proteins in urine is an alternative marker of disease

activity (35). An increase in circulating LDG population was also

observed in adolescent SLE patients, which correlated with

dsDNA antibody concentrations and disease activity scores.

This suggests that the neutrophil subpopulation (CD177,

DEFA4) may be a useful biomarker (36).

④ Kennedy et al. reported that the HERC5 gene could be used

as an IFN biomarker in SLE patients (82). A recent study also

concluded that IFN characteristics may be a better biomarker of

overall disease severity than disease activity, and that IFN-High

patients tend to have a more severe disease course (51, 83).
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3.7.7.2 Treatment

① C1Q: SLE patients with C1q deficiency were successfully

treated by fresh frozen plasma, which transiently restored

complement activity and reduced circulating immune

complexes (84–86).

② MX1: Clinically, a number of biologic agents targeting

type I interferon have emerged (87). In addition, Mx1 gene

expression in peripheral blood cells has been used as a sensitive

biomarker for LN treatment, identifying patients who have

responded well to anti-I interferon therapy (27, 88).

③ RORC: RORgt is a core transcription factor for Th17 cell

differentiation. Many studies suggest that RORgt may be a

potential therapeutic target for Th17-mediated autoimmune

diseases (89–93). Currently, several pharmaceutical companies

are developing RORgt blockers and more than 200 small

molecule compounds have been patented. They can inhibit

RORgt activity, block Th17 differentiation and improve

autoimmune disease manifestations (90, 94). Several Phase I

and Phase II studies are already underway (95, 96).

④ CD177, DEF4: NETosis intervention improves the

performance of experimental SLE (97, 98). Neutropenia has

been reported in 20-40% of SLE patients and SLE patients

treated with immunosuppressive drugs may also be at risk of

developing neutropenia (99, 100). Breaking this pathway may
FIGURE 10

RORC over-expression in tubulointerstitium vs. glomeruli tissue.
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lead to the development of new drugs. Anti-CD20 therapy has

been shown to improve SLE in humans (101).

⑤ HERC5: Several drugs targeting the type I interferon

pathway in SLE and LN are currently being investigated.

Several drugs targeting the type I interferon pathway in SLE

and LN are being investigated, including anti-interferon

monoclonal antibodies (sifalimumab, rontaziumab), and

monoclonal antibodies targeting the type I interferon receptor

(anifolumab) (102–104). Also, many clinical trials have included

the measurement of IFN characteristics in their studies. Because
Frontiers in Immunology 14
the underlying disease mechanisms may differ between SLE

patients with IFN-High and IFN-Neg, interferon scores have

been applied to stratify patients for treatment.
4 Discussion

Due to the invasive nature of renal biopsy and the non-

specific nature of LN treatment methods, LN cannot be treated

precisely, and there is a steady trend of LN patients progressing
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FIGURE 11

Correlation analysis of the expression levels of C1QA, C1QB, MX1, RORC, CD177 and DEFA4 with GFR. (A) C1QA, (B) C1QB, (C) MX1, (D) RORC,
(E) CD177, (F) DEFA4.
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to ESRD worldwide (105). How to identify LN early, intervene in

time, and reduce LN patients into chronic renal failure is

significant. The traditional biomarkers of LN, C3, C4, ds-DNA

and anti-Sm, have some significance in the evaluation of LN

disease, but they all have some limitations (106–110). Therefore,

it is urgent to develop new biomarkers to predict the renal

pathology of LN patients. The pathogenesis of LN is not clear in

modern medicine, but it is generally believed that renal

infiltrating immune cells play an important role in the

pathogenesis of LN (111–113). Significant accumulation of

various types of immune cells, including T cells, B cells,

plasma cells, NK cells, and macrophages, has been observed in

the kidneys of active LN and lupus-prone mice (114–116).

Epidemiological studies have shown significant familial

aggregation of LN, suggesting that genetic factors play an

important role in the development of LN and disease

progression (117). Up to now, a large number of related genes

that may be involved in the pathogenesis of LN have been

reported, but few studies have focused on abnormally expressed

gene biomarkers associated with immune infiltration between

LN and normal tissues. Therefore, we aimed to identify

candidate diagnostic biomarkers for LN and investigate the

role of immune cell infiltration in LN.
4.1 Correlation of DEGs with LN

In this study, DEGs in kidney tissue and peripheral blood of

LN were analyzed by combined GEO database multi-chip. A

total of 30 DGEs were screened in kidney tissues, 25 of which

were upregulated, mainly CD163, CFH, CX3CR1, HLA-DPB1,

HLA-DQB1, IFITM1, IL10RA, etc.; 5 were downregulated,

mainly RORC, etc. A total of 21 DGEs were screened in LN

peripheral blood, all of which were significantly upregulated.

The main ones were IFI44L, LCN2, CD177, etc. DEGs were all

closely related to LN.

Professor Xueqing Yu of Sun Yat-sen University found that

several independent susceptibility loci such as HLA-DPB1 and

HLA- DQB1 are closely associated with the development of LN

(118). Also, HLA- DQB1 is a susceptibility gene for SLE (119).

Differentiated antigen cluster 163 (CD163) is expressed in

monocytes/macrophages, a marker of macrophage activation,

and has the ability to mediate the clearance of free hemoglobin

by macrophages, thereby reducing kidney damage from the

reaction of heme iron with endogenous hydrogen peroxide to

generate free radicals (120, 121). It has the ability to modulate

immunity, scavenge tumor necrosis factor-like weak apoptosis-

inducing factors, activate inflammatory responses, and induce

cell proliferation and apoptosis (122, 123). Several studies have

shown that CD163+ macrophages infiltrate significantly in

patients with LN (124, 125), and the number of CD163+

macrophage infiltration is closely related to the activity of LN
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(125). Studies on other macrophages are relatively scarce and

need to be further explored in the future. CX3CR1 is widely

expressed in the renal tissue of patients with LN and can be used

as one of the alternatives to renal biopsy (126). CX3CR1 is

involved in the pathogenesis of human type IV LN (127).

Administration of an analogue of fractalkine as an antagonist

in MRL/lpr lupus mice significantly inhibited the development

and progression of their LN (128). An investigation by Professor

Wang Fengmei of Peking University showed that serum CFH

levels were closely related to LN disease activity and that CFH

deficiency accelerated the development of LN (129). CFH-related

genes are also associated with SLE susceptibility (130). IFN is a

major pathogenic factor in systemic lupus erythematosus (SLE)

and LN (131). More than 20 cross-sectional case-control studies

have shown that the expressions of IFI27, IFI44, IFI44L, IFIT1,

PRKR and RSAD2 are proportionally clustered in LN (131).

IFI44L promoter methylation can be used as a blood biomarker

for LN (132–134). The protein encoded by IL10RA is a receptor

for interleukin 10 (IL-10) (135). Overexpression of IL-10 in LN

renal tissue and peripheral blood is highly correlated with the

onset and activity of LN (136, 137). FKBP5 and EGR1 are closely

associated with SLE, but the direct correlation with LN needs to

be further confirmed (138, 139).

The interferon-inducible transmembrane protein (IFITM)

gene family includes IFITM1, which plays a role in a number of

biological activities such as interferon-homotypic cell adhesion

function and anti-proliferative activity of cells (140–143).

Lipocalin-2 (LCN2) is an indicator of the severity of LN and

plays a key role in the immune response, which promotes Th1

cell differentiation exacerbating LN in an autocrine or paracrine

manner, mainly through the IL-12/STAT4 pathway (144).

Urinary LCN2 can be used as an early biomarker of LN (145,

146). RSAD2 is an interferon-inducible iron-sulfur cluster-

binding antiviral protein. In a study of genome-wide DNA

methylation in LN, methylation of the CpG site of the RSAD2

gene was shown to be highly correlated with LN (147). TGFB1

and MMP8 may be involved in LN through a mediated matrix

pathway (148). The relationship between diagnostic biomarker

genes and LN is detailed in the biomarkers section.
4.2 Functional correlation analysis

The disease enrichment analysis of LN kidney tissue DGEs was

mainly enriched in immune class, inflammatory, renal and

cardiovascular diseases, such as: primary immunodeficiency

disease, vasculitis, renal failure, renal cancer, and renal disease.

This fits in previous studies. In terms of the pathogenesis of SLE,

multiple factors such as multiple genes and environmental factors

are involved (149), and viral infections are often used as

environmental triggers of SLE (150). In other words, LN is

essentially an immune-mediated inflammatory response. In
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terms of the symptoms and outcomes of LN, there is a significant

correlation between LN and cardiovascular disease (151), and

20.8% of deaths in LN patients are caused by cardiovascular

disease (152). Many LN patients end up with chronic kidney

disease (CKD) and ESRD despite receiving potent anti-

inflammatory and immunosuppressive therapy.

Differential genetic disease enrichment in peripheral blood is

mainly associated with hematologic disorders, bone marrow. is

mainly associated with hematologic disorders, bone marrow. For

example, erythrocytosis, thrombocytosis, bone marrow disorders,

oral diseases, etc. SLE often involves the blood system, and

hematological abnormalities are a common manifestation of SLE

(153). Hypercoagulation is often accompanied in LN, which may be

related to its immune complexes which can promote platelet

aggregation, form thrombus, and cause microcirculation

disorders. One of the more controversial points is that

thrombocytosis may be an indicator of disease activity and

responsiveness. Because about a quarter of SLE patients usually

show thrombocytopenia, thrombocytosis is an unusual finding. LN

can also be accompanied by oral ulcers. For example, a retrospective

study conducted by a tertiary medical center in Assam, India,

showed that 176 patients with LN had a 31.8% probability of having

a concomitant oral ulcer (154). SLE, especially patients with LN, is

often accompanied by osteoporosis, which may be related to the

long-term use of prednisone (155). Ramsey et al., 1994, in the US

National Health Survey, found that the incidence of fractures in

patients with SLE was five times higher than in the normal

population (156).

GSEA results indicate that the immune response plays a

crucial role in LN. GSEA enrichment of kidney tissue mainly

involved immunity with inflammation. For example, the five

pathways of autoimmune thyroid disease, cell adhesion

molecules cams, systemic lupus erythematosus, type 1 diabetes

mellitus, and viral myocarditis were activated. Cell adhesion

molecules (CAM) play a key role in inflammation, immune

response, and thrombosis (157). Intercellular adhesion

molecule-1 (ICAM-1) and vascular cell adhesion molecule-1

(VCAM-l) are two CAMs that are currently receiving the most

attention. In the autoimmune MRL/lpr model in LN mice, it was

found that the severity of renal histopathology was correlated

with the expression of VCAM-1, and ICAM-1 was also used as a

major marker of renal inflammatory activity (158). Blocking this

pathway may inhibit the pathological infiltration of LN

inflammatory cells (159). In clinical trials, the expression of

ICAM-1 and VCAM-1 in glomerular endothelial cells and cells,

serum and urine of LN patients was significantly increased, which

was positively correlated with LN activity and played an

important role in the development of LN (160–162). At

present, anti-adhesion molecule antibodies have achieved a

certain effect in rheumatism (163), vascular remodeling, heart

and cerebral ischemia-reperfusion (164, 165) and other aspects,

and the field of nephropathy urgently needs to be developed. The
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results of LN peripheral blood GSEA enrichment analysis showed

that the pathways were mainly involved in immune, cell cycle.

For example, cell cycle, cytosolic DNA sensing pathway, NOD-

like receptor signaling pathway, proteasome, and RIG-1-like

receptor signaling pathway were activated. Inflammatory

response or cellular injury triggers abnormal proliferation of

LN tethered cells, activates the cell cycle and ultimately leads to

glomerulosclerosis and end-stage renal failure. Interference with

the cell cycle can prevent cell proliferation or promote apoptosis

(166). For example, tacrolimus and motilmic acidophilus,

commonly used drugs in LN, inhibit the proliferation of

thylakoid cells by acting on different phases of the cell cycle of

thylakoid cells and thus slow down the progression of glomerular

disease (167, 168). The transmission mechanism of cytoplasmic

DNA is the molecular basis for the immune system to produce an

immune response. Aberrant self-DNA accumulation and cellular

type I interferon (IFN-I) secretion are the two main parts in the

pathogenesis of LN (169, 170), while cellular sensors play an

important role in the process of extracellular DNA triggering

IFN-I (171). Various DNA sensors have been reported so far, but

specific cytoplasmic DNA sensors involved in LN’s own DNA-

induced autoimmune response are yet to be further investigated.

Nucleotide-binding oligomerization domain NLR and RIG-1 like

receptors are involved in the pathogenesis of SLE/LN, which

mainly stimulate cytokine production by activating innate

immunity through the uptake of immune complexes (ICs)

between antinuclear antibodies and nucleic acids into cells

(172, 173). In addition, the NLR family also drives key

molecules of the inflammatory response through the formation

of “inflammasomes”, resulting in transcriptional induction of

type 1 IFNs and other inflammatory cytokines (150). This

information is essential to improve therapeutic strategies for

LN, such as the production of drugs that target interferon or

interferon receptors. Proteasome inhibition is a new therapy for

LN and plays an important role in the treatment of LN, such as

cyclophosphamide, rituximab, and bortezomib (174).
4.3 Biodiagnostic markers screened by
machine learning

Based on two machine learning algorithms, LASSO and

SVM-RFE, four biomarkers with diagnostic value were

screened in kidney tissues: C1QA, C1QB, MX1, and RORC.

C1q (C1qA, C1qB and C1qC) is the first component of the

classical pathway of complement activation and plays an

essential role in SLE. In recent years, domestic and

international studies have shown a significant correlation

between C1q deficiency and abnormal C1qAb and the onset,

disease activity and pathological type transformation of SLE,

especially LN (42, 175, 176). Genetic defects in C1q are

susceptibility factors for SLE, and close association of LN with
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C1q deficiency has been demonstrated in both human SLE and

C1q-deficient animal models (4, 175, 175, 177–179). Based on a

systematic review of reported cases, approximately 75-93% of

patients with C1q deficiency have SLE or SLE-like disorders (74,

180). In 1998, in a review of patients with C1q deficiency,

Walport et al. found that 38 of 41 subjects (93%) exhibited a

clinical syndrome closely related to SLE (57). In 2011, Schejbel

et al. found that 88% of the 63 patients reported with C1q

deficiency had SLE/SLE-like disease (181). In 2014, Mihaela

Stegert et al. reviewed the overall prevalence of SLE/SLE-like

syndrome in all 71 patients with C1q deficiency reported as

77.5% (182). In the C1q-deficient SLE mouse model (MRL/Mp-

+/+), C1q deficiency in mice can also lead to autoimmune

diseases such as SLE (177). On the one hand, it is due to the

impaired phagocytic clearance of apoptotic cells, and on the

other hand, C1q deficiency significantly enhances the

production of anti-C1q antibodies, leading to the development

of proliferative immune complex glomerulonephritis (183, 184).

It explains the lack of association of C1q with SLE/LN (177). The

association between C1QA and C1QB in the renal biomarker

screen may further confirm the importance of the complement

cascade in LNs. According to related studies complement

c a s c a d e a c t i v a t i o n i n S L E p a t i e n t s l e a d s t o

hypocomplementemia and deposition of complement

components at sites of tissue damage (4, 184). Human

mucovirus resistance protein 1 (Mx1), one of the type I

interferon (IFN)-inducible genes (27), is a type I IFN-

dependent transcript that plays a major role in apoptosis and

cytokine-mediated cell signaling. In LN, MX1 is used as a

potential marker for diagnosing peripheral blood LN activity

(25, 28) and is also considered as a susceptibility gene for SLE

(25, 28). RORC is a key factor in coordinating the transcription

of genes encoding IL17 and plays a key role in the regulation of

inflammatory response (185). Studies have confirmed that it

plays an important role in the dysregulated immune response

associated with SLE (50).

Three biomarkers with diagnostic value were screened in

peripheral blood: CD177, DEFA4, HERC5. CD177 is an

important neutrophil gene encoding neutrophil membrane

glycoprotein, but its function in neutrophils is not fully

understood. Neutrophils play an active role in driving

autoimmune response and tissue damage in SLE. We speculate

that CD177 is mainly involved in the pathogenesis of SLE/LN by

regulating NET and/or neutrophils (186). Current studies of

CD177 are mainly focused on anti-neutrophil cytoplasmic

antibody (ANCA)-related systemic vasculitis (187). In the

future, we should pay attention to related research to fill the

gap in LN. DEFA4 is expressed at a higher level in patients with

active SLE (188), and is involved in immune-mediated tissue

damage caused by SLE autoantibody deposition (189). In

addition, DEFA4 is related to early granulocyte production

and plays a role in the maturation of neutrophils and the
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formation of neutrophil extracellular traps (NETs). In other

words, DEFA4 may be involved in the pathogenesis of LN by

affecting neutrophils (37). HERC5 is an interferon-inducible

gene (190–193). CoitP et al . found that HERC5 is

hypomethylated in lupus patients with renal involvement

(194), and Lingling Shen et al. further validated the crucial

role of HERC5 in the pathogenesis of LN by PCR (qRT-PCR)

and enzyme-linked immunosorbent assay (ELISA) (134).
4.4 Types of immune cell infiltration

Analysis of LN samples and normal samples using

CIBERSORT revealed that a variety of immune cell subtypes

were closely related to important biological processes in LN. In

kidney tissue, T cells regulatory (Tregs) infiltration was reduced;

NK cells resting infiltration was increased; in blood samples, B

cells memory, T cells CD4 memory resting, Monocytes,

Macrophages M1 and Macrophages M2 Dendritic cells

activated infiltration was increased; B cells naive infiltration

was decreased. The screened biomarkers were correlated with

infiltrating immune cells, and the biomarkers C1QB, MX1, and

RORC were correlated with Dendritic cells resting in kidney

tissues. Peripheral blood tissue CD177, DEFA4, HERC5 were

correlated with T cells CD4 memory resting. The specific

mechanism can be traced back to the fact that LN is often

triggered by abnormal immune system, involving a variety of

immune cells, cytokines and related pathways (195). T cells e.g.,

CD4+, CD8+) play a central role in the pathogenesis of LN (196).

In animal experiments, CD4 was shown to induce LN when

infused into lupus-prone mice with CD4+ T cell lines (197). In the

clinic, Masutani et al. found that CD4+ cells were the

predominant cell type in grade I, IV and V renal infiltrates in

patients with lupus nephritis (198, 199). CD4+ T is involved in

LN pathogenesis and has been demonstrated to mediate LN

inflammation (200), which exerts its function mainly by secreting

cytokines (e.g., IFN-g, IL-17 and IL-10, etc.) upon antigen

activation and by transmitting tissue inflammation (201). In

addition, it was reported that CD8+ T lymphocyte infiltration

was predominant around the glomeruli of patients with LN, and

the infiltrating interstitial cells were mainly CD4+ve T cells or

CD8+ve (199, 202–205). Nataly Manjarrez-Orduño et al. found

that a subpopulation of LN exhibited enhanced CD8+ terminal

differentiation, suggesting a pathological role for CD8+ T cells in

a specific subpopulation of LN and laying the groundwork for

CD8-targeted therapy (206).

At the same time, relevant studies have shown that RNA sensing

by traditional dendritic cells (DC) is central to LN development (207).

Dendritic cells are the most potent antigen presenting cells known so

far and are essential in the induction and maintenance of immune

tolerance (208). DC have two subpopulations of myeloid dendritic

cells (mDCs) and plasmacytoid dendritic cells (pDCs) (209).
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Regardless of which subpopulation is dysregulated, it will lead to

tolerance disruption and self-attack, resulting in the development of

LN (210). Both peripheral DC subpopulations are expected to be

alternative diagnostic tools for invasive biopsy. Current SLE therapies,

both conventional and biological, target specific subsets of adaptive

immune cells, primarily B cells, T cells, and B and T cells are still

considered to be the culprits of immune dysregulation in SLE (211),

but DCs are paramount in establishing and maintaining peripheral

tolerance (212, 213). DCs have a superior ability to acquire and

process antigen for delivery to T cells and express high levels of co-

stimulatory or co-inhibitory molecules that determine immune

activation or non-response. This further highlights the importance

of developing DCs in LN therapy, such as the administration of DC

vaccines that may bring new hope for the treatment of LN (214).

Although this study used a large GEO dataset of LN kidney tissue

and peripheral blood to explore immune cells and immune-related

genes in LN and identified six diagnostic gene biomarkers with

diagnostic and predictive value in patients with LN, there are still

some limitations to be addressed. First, the study was retrospective and

did not allow for first-hand, clinically important information. Second,

the CIBERSORT algorithm has limitations in distinguishing Th17

from other CD4+ T cell subpopulations and cannot further analyze the

correlation between the CD4+ T subpopulation Th17 and LN

biomarkers. Third, bioinformatic determination of LN biomarkers

and the function of immune cell infiltration requires further

confirmation in a larger sample size prospectively.
5 Conclusion

C1QA, C1QB, MX1 and RORC (kidney); CD177, DEFA4 and

HERC5 (peripheral blood) can be used as new candidate molecular

markers for LN.Dendritic cells resting andT cells CD4memory resting

may be involved in LN development. These immune cells have the

potential to be new targets for immunotherapy in LN patients.
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