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Common aquatic pollutants
modify hemocyte immune
responses in
Biomphalaria glabrata

Adam E. Lynch1, Leslie R. Noble2,3, Catherine S. Jones3

and Edwin J. Routledge1*

1College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge,
United Kingdom, 2Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway,
3School of Biological Sciences, Aberdeen University, Aberdeen, United Kingdom
Disruptions to reproductive health in wildlife species inhabiting polluted

environments is often found to occur alongside compromised immunity.

However, research on impacts of aquatic pollution on freshwater mollusc

immune responses is limited despite their importance as vectors of disease

(Schistosomiasis) in humans, cattle and wild mammals. We developed an in vitro

‘tool-kit’ of well-characterized quantitative immune tests using Biomphalaria

glabrata hemocytes. We exposed hemocytes to environmentally-relevant

concentrations of common aquatic pollutants (17b-estradiol, Bisphenol-A and

p,p’-DDE) and measured key innate immune responses including motility,

phagocytosis and encapsulation. Additionally, we tested an extract of a typical

domestic tertiary treated effluent as representative of a ‘real-world’ mixture of

chemicals. Encapsulation responses were stimulated by p,p’-DDE at low doses

but were suppressed at higher doses. Concentrations of BPA (above 200 ng/L)

and p,p’-DDE (above 500 ng/L) significantly inhibited phagocytosis compared to

controls, whilst hemocyte motility was reduced by all test chemicals and the

effluent extract in a dose-dependent manner. All responses occurred at

chemical concentrations considered to be below the cytotoxic thresholds of

hemocytes. This is the first time a suite of in vitro tests has been developed

specifically in B. glabrata with the purpose of investigating the impacts of

chemical pollutants and an effluent extract on immunity. Our findings indicate

that common aquatic pollutants alter innate immune responses in B. glabrata,

suggesting that pollutants may be a critical, yet overlooked, factor impacting

disease by modulating the dynamics of parasite transmission between molluscs

and humans.
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Introduction
Schistosomiasis is a parasitic disease, transmitted via tropical

freshwater snails such as Biomphalaria glabrata, afflicting more

than 200 million people in 70 countries, killing over 250,000

annually in sub-Saharan Africa alone. This public health challenge

impacts negatively on the economy and welfare of many Lower to

Middle Income Countries (LMICs) throughout Africa, South

America, the Caribbean, the Middle East, and Asia.

Transmission relies on infective fecal matter or urine carrying

schistosome eggs entering freshwater, whereupon a ciliatedmobile

phase (miracidium) hatches, seeking and infecting particular

species of tropical freshwater snails (the intermediate host). In

order for schistosomes to complete their life cycle, the miracidia

must initially burrow through the skin of the appropriate snail

species, evading its immune defenses to transform and reproduce

asexually, amplifying many thousand fold into the human

infective form (cercaria). Rural populations depend on rivers for

recreation and livelihoods, which combined with poor sanitation

infrastructure propagates a cycle of infection and reinfection. The

parasite can remain in the body for years, with eggs damaging vital

organs such as the bladder, kidneys and liver, often triggering

immunopathologies. The drug Praziquantel kills adult worms but

does not prevent reinfection. Consequently, schistosomiasis is

both a cause and a consequence of poverty in many LMICs.

Parasite-host interactions can help elucidate two essential

life processes; reproduction and immunity. Although often

considered separate systems in intact organisms, they are in

fact intricately connected through shared biological pathways.

Research in vertebrates has revealed that steroid estrogens

(critical signaling molecules in reproduction) affect major

cellular components of the immune system (1), including T,

B and antigen-presenting cells. In fact, estrogens mediate

crosstalk between vertebrate reproductive and immune

systems by orchestrating the expression of various cytokines

including interferon-gamma and proinflammatory cytokines

such as Interleukin 4 and 6, and Tumour Necrosis Factor-alpha

(see (2)). The expression of the estrogen receptor (ERa), and its
constitutively active ligand-independent form (the estrogen

related receptor alpha; ERRa) , in activated mouse

macrophages highlights the importance of estrogen receptor-

mediated signaling pathways in vertebrate innate immune

function (3), and explains its susceptibility to interference by

chemical pollutants, including endocrine disrupting chemicals

(EDCs) with estrogenic and anti-estrogenic properties (4).

However, EDC targets of the immune system will not be

confined to estrogen agonists and antagonists alone, for the

glucocorticoid-receptor (GR), Liver X Receptors (LXR) and

Peroxisome Proliferator Activated Receptor gamma (PPARg)
present in macrophages regulate both innate and acquired

immune responses (5). EDCs may also affect immunity via
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non-genomic mechanisms (such as inhibiting cytochrome

P450 steroid biosynthesis) or by altering metabolism (6). It is

perhaps not surprising then that polluted environments

(contaminated with EDCs such as PCBs and DDT) are

associated with both altered reproduction and compromised

immune function in a variety of wildlife species, including

birds (7, 8), reptiles (9, 10), fish (11) and marine mammals

(12, 13).

Although vertebrates have the most sophisticated immune

systems, immune capacity exists in all animal phyla, from

protozoans, to marine tunicates and invertebrates. It is generally

agreed that invertebrates possess only an innate immune response,

which nonetheless demonstrates immune memory (see 14),

whereas vertebrates possess both innate and adaptive immunity.

The innate system is often referred to as ‘basic’ immunity, though

this term does not imply inferior or superseded immunity, since

invertebrates make up 95% of all animal species (15–17). Most

invertebrates have an open circulatory system in which a fluid

termed ‘hemolymph’ is contained in the body cavity or ‘hemocoel’

and directly bathes the organs (18, 19). The hemolymph, similar

in function to vertebrate plasma, contains immune components

including antimicrobial peptides, agglutinins and lysosomal

enzymes. These enhance opsonization by facilitating bacterial

aggregation and immobilization and/or display cytolytic

activities (20). Free-floating in the hemolymph are the principal

effectors of the invertebrate immune response, ‘hemocytes’ (20).

Analogous to vertebrate macrophages, a vital function of

hemocytes is the process of phagocytosis of small foreign

particles (21). The phagocytic process has a sequence of distinct

stages: attraction (chemotaxis), attachment, engulfment and

digestion; an effective evolutionary conserved process (22, 23).

Recent genomic analysis has shown B. glabrata displays a

‘multifaceted, complex internal defence system that must be

evaded or negated if parasites such as S. mansoni are to

successfully establish an infection’ (24). This includes a wide

variety of pattern recognition receptors (PRRs), cytokines, as

well as gene orthologues of complement factors (24). Molluscs,

including B. glabrata, also express both ERa and ERR

orthologues (25), although their functional role in mollusc

physiology is unclear. Sexually dimorphic patterns of

expression [i.e. relatively high levels of mcER-like in the penis

and sheath, and comparatively low expression of mcERR in

female accessory sex tissues inM. cornuarietis (26)], suggest they

are unlikely to be redundant. The notion that steroid hormones

recognized in vertebrates are necessary for mollusc reproduction

is widely debated in the literature (27), because de novo synthesis

is unproven, and the mollusc ERa orthologue neither binds to,

nor is it activated by, vertebrate steroid estrogens (28). Despite

this, exposure to 17b-estradiol and some xenoestrogens (e.g.

Bisphenol A, DDT) are reported to affect reproduction in

various mollusc species (29, 30). This is important considering

the natural environment is subject to systematically increasing
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concentrations of chemical pollutants, including xenoestrogens

(31–33). Although 17b-estradiol reportedly affects immune

responses in hemocytes of the mussel Mytilus galloprovincialis

(34), the role of the ER in mediating mollusc immune responses

remains unknown. In vitro evidence, however, suggests that

Bisphenol A (widely reported to be a weak ER agonist),

interacts with the ERR in both molluscs and humans (28, 35),

is a thyroid receptor antagonist (36) and an androgen receptor

antagonist (37). The possibility exists that BPA may also exert

pro-inflammatory outcomes by virtue of antagonizing an

important PPAR regulatory/anti-inflammatory axis [reviewed

in (38)]. Therefore, chemical pollutants, including many EDCs,

may have the capacity to interfere with signaling pathways

shared by a variety of processes in molluscs, including

metabolism, immunity and reproduction, just as they do

in vertebrates.

In the absence of (i) published, well-characterized and

quantitative immune tests in gastropod molluscs for toxicology

testing purposes, and (ii) a comprehensive understanding of

immunomodulatory effects of chemicals on molluscs, our goal

was to develop a ‘tool-kit’ of in vitro immune tests using mollusc

hemocytes to assess whether common aquatic pollutants can

interfere with the immune system of the freshwater gastropod B.

glabrata. To achieve this, we extracted hemocytes from B.

glabrata to investigate whether important immune processes,

such as motility, phagocytosis and encapsulation could be

altered when challenged with different concentrations of

common aquatic pollutants (including the steroid 17b-
estradiol, the plasticizer Bisphenol-A and the main metabolite

of the pesticide DDT) due to their reported presence in active

concentrations in the aquatic environment, variation in the

possible modes of action relevant to mollusc immune function,

and their association with reproductive and immune effects in

both vertebrates and invertebrates. As pollutants do not exist in

nature in isolation, we also tested an effluent extract as a

representative real-world mixture of chemicals. The choice of

B. glabrata is significant as it serves as the intermediate host of

Schistosoma mansoni; a trematode parasite responsible for a

debilitating neglected tropical disease in humans, second only to

malaria as the most devastating parasitic disease in terms of

socioeconomic importance and public health impact (39). This

is the first time that a suite of in vitro tests capturing critical

immune responses have been developed in B. glabrata to address

the impacts of chemical pollutants and an effluent extract on

hemocyte immune function.
Materials and methods

Biomphalaria husbandry

A stock of B. glabrata (strain BB02 - sourced from the

Natural History Museum (London)) were reared at a density not
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exceeding 10 snails per liter in a flow-through system fed with

RO water reconstituted with minerals and salts (to prevent the

snails developing fragile shells). Photoperiod was maintained at

12h light/dark, and water temperature between 24-28°C using

submersible aquarium heaters. Snails were fed three times a

week with commercial fish flakes (TetraMin®) tested previously

for estrogenic activity and known to be free of known estrogenic

chemicals which may affect physiological responses in animals.

At each feeding event the quantity of food was limited to the

amount that the snails could consume within a single day, and

tanks were cleaned regularly to maintain appropriate water

quality parameters.
Biomphalaria cell culture

Molluscan hemocytes are a notoriously difficult cell type to

manipulate in vitro, due to their propensity to clump together,

often irreversibly after centrifugation, and to adhere strongly to

various substrate including collection vessels (40). Specialized

techniques have been developed specifically to permit their use

in vitro. Chernin’s balanced salt solution (‘CBSS’; (41)) was

designed to mimic the salt composition, osmolarity and pH of

the hemolymph. Hemocytes behave normally in CBSS and

display phagocytosis and encapsulation even in the absence of

hemolymph (24, 42). CBSS was the primary buffer used for in

vitro maintenance and manipulation of hemocytes, and as a

carrier for chemicals or other materials that hemocytes were

exposed to. In order to collect, recover and fix/analyze

hemocytes after completion of exposures to chemicals,

modified buffers containing chelating agents (a-CE; EDTA, a-
CC; caffeine) were used. These buffers maximize detachment or

survival, by rounding-up cells which have spread on glass and

reduce clumping during low speed centrifugation. A detailed

composition of the buffers is reported in (40).
Hemolymph collection

The following protocol (adapted from (43) was used to obtain a

pooled sample of sterile hemolymph for in vitro experiments. Snails

(~4mm shell length) were collected and the shells dried with paper

towel and then carefully swabbed using cotton buds soaked in 70%

ethanol, taking particular care to clean inside the shell whorl. After

air drying on paper towel for 1-2 minutes inside a laminar flow

cabinet, snails were then placed in an autoclaved beaker containing

sterile filtered water (maximum of 18 snails per 100ml) plus 2%

antibiotic-antimycotic solution (10,000 units/ml penicillin, 10 mg/

ml streptomycin and 25 ptg/ml amphotericin B; Sigma-Aldrich,

UK) and left for 45 minutes at 27°C. After this time, snails were

carefully removed from the beaker using sterile forceps and placed

on a fresh paper towel inside the cabinet to dry for 1-2 minutes. The

shells were again dried with paper towel, swabbed with 70% ethanol
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and the snail placed in an autoclaved glass petri dish. After the

ethanol had evaporated (within 30 seconds) hemolymph

(approximately 300-400ul/snail) was extracted with a sterile

scalpel according to the ‘headfoot puncture protocol’ described by

(44). Hemolymph was allowed to collect for only a short period of

time (< 5 minutes) to avoid cells adhering to the dish. Hemolymph

from each snail was then removed from the dish using a sterile p200

pipette and combined into a single falcon tube on ice (to prevent

clumping) through a 70mm cell strainer (Falcon® Cell Strainer;

Fisher Scientific Co., UK) to prevent shell debris or cell clumps

passing into the sample. The research was conducted with ‘Animal

Research: Reporting In Vivo Experiments’ (ARRIVE) guidelines

(45) in mind.
Preparation of chemical stocks

Master stock solutions of 17b-estradiol (2.5g/l >99.9% pure),

Bisphenol-A (200mg/L ≥ 99%) and p,p’-DDE (500mg/L ≥98%)

dissolved in analytical grade ethanol (Sigma-Aldrich, UK) were

prepared in solvent-rinsed clear glass sample vials with rubber-

lined screw cap lids. Master stock solutions were serially diluted

in 10-fold steps to produce the concentration range of working

stocks needed for the various immune assays. Ethanol

containing chemicals was evaporated to dryness before

dissolving in CBSS whenever possible.
Preparation of the effluent extract

Six 47mm Octadecyl C18 extraction disks (EmporeTM)

layered with 1cm of Filteraid glass beads (~50mm, Empore)

were secured into the extraction manifold. Each disk was

conditioned and primed using a sequence of solvent washes

(methanol, ddH2O and methanol) according to the

manufacturer’s instructions. Treated domestic effluent was

then drawn through each disk under vacuum. Disks required

changing every 1-3L due to gradual blocking resulting in

substantial decreases in filtering rate. Following extraction,

used disks were left to air dry under vacuum for ~30 minutes.

The pump was then turned off and the glass apparatus (as well as

the disk) was removed from the manifold in one piece with the

clamp in place. The outlet of each manifold was placed inside a

separate glass collection tube (15ml) and positioned to avoid

obstructing the air flow. 10ml of methanol was then allowed to

pass slowly through the disk and into the collection tube to

ensure maximum recovery of compounds from the disk. Tubes

containing the concentrated effluent extract in 100% methanol

were then sealed with screw-tops and Parafilm and stored at 4°C.

The extracts were then evaporated to dryness using a TurboVap

operating at 50°C under nitrogen (~15 bar). Samples were

periodically checked until they reached ‘incipient dryness’; the
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point at which the methanol had essentially evaporated with

only enough remaining to leave a viscous residue (rather than a

completely dry sample) that could be more easily dissolved in

ethanol. Finally, 1ml of ethanol was added to each centrifuge

tube, the tubes were mixed vigorously until no obvious residue

remained. Concentrated extracts were then pooled together to

form the final stock with a known concentration relative to the

original sample.
Incubation of hemocytes with test
chemicals and effluent extract

All test chemicals and the effluent extract were made up in

analytical grade ethanol (Sigma-Aldrich, UK). Controls (i.e.

those containing no test-chemical) contained an amount of

ethanol equal to the chemical doses to account for possible

solvent effects. Chemical stocks were serially diluted in absolute

ethanol to produce a range of working stocks, and these were

aliquoted into the relevant well, allowed to evaporate to dryness

and then dissolved in CBSS. In order to avoid excessive

manipulation of hemocytes, and the associated problems with

cell clumping, the desired concentration of test chemical in the

hemocyte sample was achieved by making a double strength (2x)

solution in CBSS and then mixing this with an equal volume of

hemolymph to produce a solution of 50% hemolymph and 50%

CBSS/test chemical.
Parasite culture

As in vitro assays required working with snail-infective

stages of S. mansoni it was necessary to harvest eggs from

infected tissues, hatch the eggs to produce miracidia, and

transform these into sporocysts. The sporocyst stage is

representative of the earliest stage of the parasite in snail

tissue, and is the form that is subject to initial attack from the

snail immune system.

Mouse stage and egg collection
All parasites were obtained by infection of mice carried out

under the United Kingdom Animal’s Scientific Procedures Act

1986, at the London School of Hygiene and Tropical Medicine

under their project license. Mice (purchased from Charles River,

Margate, Kent, UK) were typically infected by subcutaneous

injection of approximately 100 cercariae. After 7-8 weeks (or

sooner if visibly suffering from the infection), animals were

euthanized with an intra-peritoneal injection of Tiletamine/

Zolazepam (800 mg/kg) and Xylazine (100 mg/kg). Following

euthanasia, the adult worms were collected from mice by

perfusion of the hepatic portal system and the eggs collected

by removal of the liver.
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Egg extraction and hatching
Eggs were typically harvested from infected mouse livers

within 24h of removal to ensure optimum yields. The infected

mouse liver can be stored at 4°C for 48 to 72 hours, but recovery

of viable miracidia reduces steadily over time. The liver was first

washed with a solution of 1.2% NaCl to remove excess tissue and

then placed on a metal sieve with a 180 mm pore mesh. The sieve

was placed on top of a conical measuring flask. The tissue was

manually homogenized using a porcelain pestle, with the

addition of more NaCl solution to aide passage through the

mesh. Once all the tissue had passed through the sieve the flask

was topped up with 1.2% NaCl to a final volume of 200ml, at

which point it was placed in a fridge at 4°C for 30 minutes. The

combination of saline solution and low temperature prevents

premature hatching of the eggs. After this settling period a tissue

sediment was formed, the flask was removed and half of the

supernatant was carefully poured off and discarded, ensuring

minimal disturbance of the sediment. The flask was then topped

up to 200ml with fresh 1.2% NaCl and returned to 4°C for a

further 30 minutes. This process was repeated 2-3 times until the

supernatant appeared clear at which point the majority of the

solution was poured away (leaving the sediment undisturbed)

and replaced with freshwater.
Miracidia collection and transformation
into sporocysts

The method was adapted from (46) which uses the positive

geo and phototaxic responses of miracidia to separate themselves

from settled tissue debris resulting in a clean parasite sample for

immuno-histochemistry, molecular, and biochemical studies. The

system essentially uses a wooden box fully enclosing a 500ml

conical filtering flask with side arm (Figure S1). The side arm is

accessible through a small hole on one side only, just large enough

to attach a collection jar externally to the box onto the side arm of

the flask which is exposed to light. The side arm was also modified

by inserting a p20 pipette tip (secured by a non-toxic silicone) to

serve as a funnel trap. This allows miracidia to pass into the

collection bottle by swimming through the wide end, whilst

preventing their return into the flask through the narrow end

on the tip. The inside of the box was painted black and a foam seal

was placed around the hole to reduce the chances of stray light

entering the main flask. Although a small amount of light

inevitably entered the main flask through the collection jar this

was advantageous as it formed a phototaxic gradient without

which the parasites might be unable to locate the main light source

and enter the collection jar. Transformation media was added to

the collection jar to further encourage the movement of miracidia

towards the collection jar and to cause their transformation into

sporocysts. Undiluted transformation media causes miracidia to

immediately cease movement and transform into sporocysts,

thereby reducing the likelihood of miracidia escaping back into

the main flask and also generating the life stage needed for in vitro
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tests. To collect parasites, the cleaned egg/liver homogenate

solution was poured into the main flask and allowed to settle

for 30 minutes, after which the collection jar (containing

transformation buffer) was exposed to light. The flask was

placed at an angle of 15 degrees in order to encourage

movement of transformation media from the collection

chamber into the flask, thereby producing a geotaxic gradient

for miracidia to follow (Figure S2). Once miracidia had ceased

entering the collection jar, it was unscrewed from the side-arm jar

and sealed with an unmodified lid. Parasites were then transferred

to well-plates and left to complete transformation into sporocysts.

Due to the 6-8 week intervals in the delivery cycle of eggs

harvested from mouse livers sourced at LSHTM, it was decided

to fix transformed sporocysts with Karnovsky’s fixative (2.5%

gluteraldehyde plus 2.5% formaldehyde in CBSS buffer) for use in

encapsulation assays.
Encapsulation assay

Sporocysts in transformation buffer were removed from the

culture dishes into a 15ml falcon tube containing 10ml CBSS.

The tube was placed on ice to reduce further development and

allow the sporocysts to naturally settle to the bottom of the tube

over 15 minutes. Supernatant was extracted and replaced with

Karnovsky’s fixative solution at room temperature. Once fixed,

the concentration and purity of the sporocyst ‘stock’ was

assessed under a microscope. Fixed sporocysts could be used

after 1 hour offixing or after considerably longer periods of time.

After fixing, the required number of sporocysts were stained in

the dark with 5mg/ml solution FITC (Fluorescein isothiocyanate

made up in CBSS) for 25 minutes to aid identification of fully

encapsulated sporocysts from dispersed cell aggregates in the

assay (47) as illustrated in the Supplementary Information.

Staining was adapted from the protocol used by (48). After the

incubation period a washing step was performed whereby the

sporocysts were spun at 2000rpm for 5 minutes and the

supernatant removed and replaced with an equal volume of

FITC-free CBSS. This process was repeated approximately three

times until the CBSS was free of visible stain and the tube was

gently vortexed to separate the sporocysts. A simple chamber

slide (1cm3) was developed using a siliconized Vacutainer tube

and non-toxic silicone putty (Figure S3). Chamber slides

materials were sterilized by soaking in 70% ethanol and

allowed to dry under a cell-culture hood. The components

were assembled under the hood and the slide was then subject

to UV for 30 minutes. Hemolymph was collected from snails,

and three separate pools were made, each containing equal

amounts of hemolymph from eight snails and placed on ice

(see Figure S6 for approach). For each separate slide/chemical

dose a sample of 200ml hemolymph was taken from each pool,

mixed with an equal volume of 2x (double-strength) chemical in

CBSS and added to the chamber slide (n=3 for each dose).
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Stained sporocysts were added to the chamber slide at a ratio of 2

per ml of hemolymph, and each chamber was then sealed with a

vacutainer top to prevent desiccation and incubated at 27°C for 4

hours. After the incubation period most of the liquid was

removed leaving only approximately 50ml, along with the

settled stained sporocysts and hemocytes. The chamber wall

was then removed, and a cover-slip was placed over the sample

and the slide then taken for counting under a fluorescence

microscope. Analysis was undertaken using the index used by

(49) illustrated in Figure S4 and Figure S5. All sporocysts on the

slide were counted and assigned values of 1 (no cells attached), 2

(up to 10 cells attached), 3 (>10 cells, <50% coverage) or 4 (>50%

coverage). The individual values were tallied to give a total score

which was then divided by the total number of sporocysts

counted, to produce the final encapsulation index value. The

relationship between dose (X) and encapsulation index score (Y)

was modelled by first, second or third order polynomial

regression models. All values for Y were entered as three

independent observations (n =3) and values were not averaged

prior to analysis, nor were they transformed. X values were

log transformed.
Motility assay

Cell motility tracking was performed on B. glabrata

hemocytes using a low-cost motility tracking system

(LOCOMOTIS) reported previously (50). Sterile B. glabrata

hemolymph was collected as described previously and cells

were diluted 50% in snail saline (CBSS PH 7.4; (41)) and

allowed to settle for 30 minutes at 27°C before time-lapse

began. B. glabrata hemocytes were left to attach to the plate or

were placed onto a surface of 0.01% poly-L-lysine according to

(51) with some minor modifications. All time-lapse images were

taken every minute for 1 hour. For each chemical and dose,

results were collected from four independent assays (cell pools)

on different days (see Figure S6 for further information).

Analysis was performed on the MTrack2 data generated from

the time-lapse files. A Kruskal-Wallis test was performed in SPSS

version 20 (IMB) to determine whether recorded velocity values

differed significantly for the various exposure treatments. As a

post-hoc test, pairwise comparisons were performed using

Dunn’s procedure with a Bonferroni correction for multiple

comparisons. The dose-response curves for the test chemicals

were plotted in Graphpad Prism 6.0 using linear and non-

linear regression.
Phagocytosis assay

Cells were prepared as a monolayer and were exposed to the

same chemicals at the same concentrations as previously

described. 10ug/ml cytochalasin B in CBSS was used as a
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control since it has been shown to be a potent inhibitor of

phagocytosis in mollusc hemocytes (52). All other parameters

were the same as those used for the chemical exposure study.

400ml of pooled hemolymph was added to individual wells of a

24-well plate and the cells were allowed to adhere for 30 mins at

27°C. After 30 mins the supernatant (including non-attached

cells) was removed and replaced with 400ml of test chemical in

CBSS and incubated for a further 30 mins at 27°C. After pre-

incubation with chemicals or solvent control, 10ul of a 1/10

diluted stock of 1.0um green amine modified latex beads (Sigma,

L2778) as antigens was added, and the plates were incubated at

27°C on a gentle shaker for 2 hours. Latex beads provided a

relatively uniform size and high degree of fluorescence (53) for

visualization. Following incubation, the supernatant was then

aspirated and replaced with 200ml of a-CE to detach the cells,

and transferred to an Eppendorf and kept on ice until use in the

ImageStream. Imaging flow cytometry (IFC) was performed

using the ImageStreamX system (Amnis Inc., Seattle,

Washington). The 40x objective was used to acquire images in

each experiment.

ImageStream settings were controlled using the INSPIRE

software interface to analyze 3000 cells from four independent

replicates (pools) for each chemical dose. Classifiers (used to

determine single cells and exclude cell clumps and debris

according to size) and laser power (to visualize beads

correctly) were set at: 75-300, 488nm laser excitation: 20,

785nm laser excitation to exclude debris (e.g. cell clumps).

Based on the population of cells in focus, a scatter graph of

area vs. aspect ratio was produced using IDEAS 6.0 software, and

a region drawn to define single cells while excluding clumps,

non-cellular debris and free (i.e. non-internalized) antigens post

data acquisition informed by individual image data collected

from the ImageStream. To exclude cells in which the beads were

not internalized, a morphology mask corresponding to the inside

of the cell was created based on the bead positive population. To

quantify the number of internalized beads a spot count feature

based on the internalization positive population was created

using the morphology/spot count mask. This function counts

objects with high fluorescence which fall within the mask

thereby providing a count of the number of beads inside each

internalization positive cell.

All dose-response data collected from the ImageStream was

subsequently analyzed using non-linear regression. Number of

beads per cell was treated as continuous in order to utilize the

spot count data.
Validation experiments

The following validatory tests were performed to help ensure

that sub-lethal immune effects of chemicals on hemocytes were

being measured, and to avoid potential confounders, such as

direct cytotoxicity.
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Dose-range effects of test chemicals on
hemocyte viability

For each replicate, 100ml pooled hemolymph was collected

as described earlier and mixed with an equal volume of CBSS,

containing the dose range of test chemical, and transferred to

wells of a 24-well plate. After incubation for 1-hour at 27°C, the

majority of hemocytes had spread to form a monolayer. The

supernatant was removed from the monolayer and replaced

with 100ml a-CC and incubated for a further 10 minutes. After

the final incubation an equal volume of 0.4% trypan blue was

added to the well and the solution mixed. Immediately after

mixing, a 10m l sample was taken and added to a

hemocytometer where 100 cells were assessed for exclusion

or incorporation of the dye. This process was repeated three

times for each experimental replicate of each dose (see

Figure S6).

Inhibitor (sodium azide) dose-response
for in vitro assays

To determine if chemically-induced alterations in the

immune-response of interest can reliably be measured, it was

important to include compounds with established and reliable

effects which are not due to direct cytotoxicity. Sodium azide

(NaN3) is known to be a potent cytochrome C inhibitor in many

different cell-types from numerous species, including molluscan

hemocytes (54). Inhibition of cytochrome C results in the

inhibition of ATP-synthesis, ATP being the main source of

energy for the majority of cellular functions (55). Cellular

functions dependent on ATP, and thus shown to be inhibited

by sodium azide, include phagocytosis, motility and aggregation

(56) (54). In studies involving molluscan hemocytes sodium

azide, at concentrations of up to 2%, has been shown to

considerably reduce phagocytosis without significant reduction

in cell viability (57, 58).
Results

Dose-response of individual
chemicals and effluent extract on
hemocyte viability

Percentage viability in unexposed (control) hemocytes

typically ranged between 80% and 90%. None of the test

chemicals showed any meaningful relationship between

increase in dose, within the concentration range, and

reduction in cell viability according to the trypan blue

exclusion assay (Figures 1A–D). There was a very slight

positive relationship between viability and exposure

concentration for BPA (Figure 1C), which was probably due

to natural variability and low viability in the lowest

exposure group.
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Effect of sodium azide (NaN3) inhibitor
on the performance of the different
immune assays

Figures 2A–C shows that the response of each immune-

endpoint was strongly suppressed with increasing doses of

NaN3, while hemocyte viability was minimally affected across

the same dose range (Figure 2D). These results are in accordance

with previous reports on the ability of NaN3 to suppress

hemocyte function at similar concentrations, without inducing

significant loss in viability (54, 58).
Encapsulation assay

All chemicals were best described in their relationship with

the encapsulation index by a nonlinear dose-response curve. The

relationship between encapsulation index and dose for BPA and

the effluent extract was best modelled by a second order

(quadratic) polynomial (y = a + bx + cx2) curve whereas E2 was

best modelled by a third order (cubic) polynomial (Y = a + bx +

cx2 + dx3). The dose-response relationship for p,p’-DDE was the

most simplistic, being best described by a first order (straight line)

polynomial model (y = b0 + b1x) (Figure 3D).

The results from the multiple comparisons test showed that

only the top doses of BPA (2mg/L) and p,p’-DDE (5mg/L) were

significantly different from their controls (Figure 3). Tukeys

HSD multiple comparisons test was also performed to compare

all chemicals and doses with each other. Numerous significant

differences between combinations of different doses/chemicals

were found, with 0.1x effluent appearing in the largest number of

significant combinations. Within chemicals, aside from the

differences shown by Dunnett’s test, a significant difference

was found between 0.1x and both 1x and 10x for effluent and

between 5ng/L and 5 mg/L for p,p’-DDE.
Phagocytosis assay

Figure 4 illustrates the effect of chemicals and effluent extract

on the ability of hemocytes to phagocytose beads. As with the

encapsulation assays, all dose-response relationships were best

fit by non-linear polynomials, with BPA and effluent following a

second order (quadratic) curve and E2 and p,p’-DDE following a

third order (cubic).

p,p’-DDE dose showed the strongest ability to predict the

value of mean beads per cell explaining >59% of the variation

(Adjusted R 2 = 0.5943). The next strongest relationship was for

E2, where 32% of the variation in mean beads per cell was

explained (Adjusted R 2 = 0.32), closely followed by BPA dose

which explained 31% of the variation (Adjusted R 2 = 0.31).

Effluent concentration showed a very weak relationship with
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phagocytosis response, accounting for just 6.8% of the variation

in the mean number of beads per cell (Adjusted R 2 = 0.06851).

Results from the multiple comparisons test showed no

significant difference from the control for E2 and the effluent

extract. Indeed, variability in the level of phagocytosis in

hemocyctes exposed to each dose of E2 varied widely as

shown in Figure 4. For both BPA and p,p’-DDE the responses

at the highest three doses (200ng/L, 20µg/L, 2mg/L and 500ng/L,

50µg/L and 5mg/L respectively) were found to be significantly

lower than their respective controls, indicating a degree of

inhibition in phagocytosis response at these doses.
Motility assay

With the exception of E2 (which was best modelled by a 2nd

order polynomial), all chemicals followed a negative linear

relationship (Figure 5). All relationships were relatively strong

and suggested that the majority of variation in cell velocity was

explainable by chemical dose. Effluent displayed the strongest

relationship (Y = -0.6705*X + 2.359) with a very high r2 value of
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0.9754 followed by p,p’-DDE (r2 = 0.8483, Y = -0.1046*X +

2.290) and E2 (Adjusted R2 of 0.8155). The relationship with

BPA was somewhat weaker, but exposure still explained a

considerable degree of the variation in cell velocity (r2 =

0.5122, Y = -0.1749*X + 2.572). BPA appeared to induce a

degree of stimulation, relative to control, at the lowest dose but

overall followed a negative linear relationship with increasing

dose. In each case, diagnostic tests were satisfactory (i.e.

normality, insignificant deviations from linearity in the case of

BPA, effluent and p,p’-DDE).
Discussion

The potential importance of chemically-induced changes to

immune system function in molluscs inspired us to develop a novel

toolkit of in vitro toxicity tests usingmollusc hemocytes that broadly

captures critical immune cell response behaviors. The ability of

individual chemicals found in the aquatic environment, and an

effluent extract from a typical UK tertiary-treated domestic sewage

effluent, to influence hemocyte motility, phagocytosis and
B

C D

A

FIGURE 1

Toxicity evaluation of different doses of selected chemicals to snail hemocytes over the selected dose range for each test chemical.
(A) 17b-estradiol (E2); (B) Effluent extract; (C) Bisphenol-A (BPA); (D) p’p-Dichlorodiphenyldichloroethylene (p,p’-DDE). Hemocyte viability
measured as % of viable cells (± SEM of three independent replicates) according to Trypan blue exclusion.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.839746
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lynch et al. 10.3389/fimmu.2022.839746
encapsulation has been assessed. Whilst developing the suite of

immune tests we discovered that inter- and intra-variation in the

responsiveness of snail hemocytes harvested from individual snails

was relatively high compared to other types of cells (59–61). In B.

glabrata, responses between individual snails can sometimes show

considerable, and often unexplainable, variation. For example, the

majority of cells from one animal may spread readily on contact

with glass, while the majority of cells from another individual will

remain rounded (44). Such variation introduces challenges when

undertaking immunocompetence assays (62). In order to

compensate for this variability we pooled hemolymph samples

from several animals before splitting the sample into sub-samples

on which in vitro tests are carried out. This approach is reported in a

large number of studies (63, 64) and reduces the influence of

unresponsive snails on test procedures, and provides a larger

volume of hemolymph needed for sufficient biological replicates

by most definitions (65).

Although the snail immune system can theoretically attack

any intra-molluscan stage of the parasite, the primary response is

usually directed toward the early sporocyst (66–68). In order to

achieve a realistic in vitro representation of the snail immune

response, it was necessary to use sporocysts, and this

necessitated the in vitro transformation of collected miracidia.

Sporocysts are defined as miracidia that have shed their ciliated
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plates and exhibit muscular squirming (69), and can be

maintained in vitro for at least 14 days under basic conditions

and potentially continuously, up to and including the

production of cercariae, although this is considerably more

difficult (69). For our purposes we were interested in early

sporocysts around 6-hours after first contact with the medium

as the ciliated plates have mostly shed and the syncytial

tegument is formed. At this time the parasite is at the early

stages of snail infection, and is most vulnerable to elimination by

the snail immune system (70, 71). A variety of transformation

media are reported in the literature but the most commonly used

is the same CBSS used for hemocyte culture (71–73). Despite

multiple tests using separate batches of CBSS, carried out at two

different optimum pH values reported in the literature (7.2 and

7.4), it was not possible to achieve sufficient transformation of

miracidia to sporocysts, let alone > 90% rates reported for CBSS

(72, 74). Since CBSS worked very well for supporting hemocyte

culture and untransformed miracidia, it is likely that this was

due to differences in the parasite strain used, rather than the

composition of the media. As an alternative transformation

medium, we also tested Dulbecco’s modified Eagle’s medium

(DMEM; Sigma-Aldrich, UK) supplemented with 10% fetal

bovine serum and 2mM L-glutamine (69) because it is

routinely used to culture adult worms. Indeed, we achieved
B

C D

A

FIGURE 2

Dose-response relationships between the metabolic inhibitor NaN3 and different hemocyte immune endpoints. (A) encapsulation index;
(B) mean velocity; (C) phagocytosis and (D) % viability, plotted points represent the SEM of three independent replicates. Adj R2 is the regression
value based on the mean response at each dose.
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transformation rates close to 100% using DMEM. Moreover,

removal of the bovine serum did not alter the effectiveness of

DMEM, which further simplified the method and reduced the

cost. The collection jar system which combined multiple

washing steps of the eggs, and the use of photo and

chemotaxis behaviours of the hatched miracidia yielded a very

clean preparation of sporocysts that was free of interfering

mouse tissue. We also fixed sporocysts for use in the immune

assays. Unlike internal features, the immunoreactivity of

external features, including antigens, are well preserved by

fixatives (75). Fixing parasites also prevented protein turnover

and provided a more stable target (76) for repeated tests.

Given that the research was designed to detect alterations in

hemocyte immune-responses and not direct cytotoxicity, it was

important to test the effect of the chosen chemicals, across the

chosen dose ranges, on hemocyte viability. Without establishing

whether chemical doses result in reduced viability, we cannot

establish to what extent an observed reduction in immune-

response is a consequence of toxicity, as opposed to subtler

and non-lethal changes in behavior and function of cells. None

of the test chemicals showed any reduction in cell viability over

the concentration range used according to the trypan blue
Frontiers in Immunology 10
exclusion assay. We also determined if chemically-induced

alterations in the immune-responses of interest could be

reliably measured in the absence of direct cytotoxicity. Sodium

azide (NaN3) is known to be a potent cytochrome C inhibitor in

many different cell-types from numerous species, including

molluscan hemocytes (54). Inhibition of cytochrome C results

in the inhibition of ATP-synthesis, ATP being the main source

of energy for the majority of cellular functions (55). Cellular

functions dependent on ATP, and thus shown to be inhibited by

NaN3, include phagocytosis, motility and aggregation (54, 56).

Studies involving molluscan hemocytes have reported NaN3 to

considerably reduce phagocytosis without significant reduction

in cell viability at concentrations of up to 2% (57, 58). Indeed, the

response of each immune endpoint was strongly suppressed with

increasing doses of NaN3, while hemocyte viability was

minimally reduced across the same dose range. These results

are in accordance with previous reports on the ability of NaN3 to

suppress hemocyte function, without inducing significant loss in

cell viability (54, 58).

There are presently no studies investigating in vitro

encapsulation by invertebrate hemocytes in response to

environmental contaminants. Despite this, a number of studies
B
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FIGURE 3

Regression relationships between log dose of test chemicals against encapsulation response toward S. mansoni sporocysts by B glabrata
hemocytes exposed in vitro. Hemocyte response plotted as mean encapsulation index value ± SEM of three independent replicates.
(A) Hemocyte encapsulation response to E2 exposure (B) Hemocyte encapsulation response to BPA exposure (C) Hemocyte encapsulation
response to Effluent exposure (D) Hemocyte encapsulation response to p,p’-DDE exposure. Asterisks indicate significant differences to the
respective control (p = < 0.05) according to Dunnett’s test for multiple comparisons.
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exist (the majority reported by Canesi and colleagues), on the

effects of BPA and E2 on in vitro immune parameters in bivalve

molluscs (mussels) due to their commercial importance. While

their work does not investigate the encapsulation response, E2

was found to rapidly affect various immune parameters in

mussel hemocytes through modulation of Mitogen-activated

protein kinases (MAPK) via the activation of kinase cascades

(34). Interestingly, since such functions are often well conserved,

the same signaling pathways are believed to be important in

regulating cell adherence and spreading in B. glabrata, which are

two of the fundamental stages leading to encapsulation (77).

From this we can speculate to a possible mechanism by which E2

may influence encapsulation. p,p’-DDE and the effluent extract

appeared to display hormesis-like trends on encapsulation,

characterized by low-dose stimulation and high-dose

suppression. This phenomenon has been reported in a wide

range of animal and plant species, and is also often associated

with immune function dose-response relationships (78). Certain

environmental pollutants do appear to exert a modest effect on

in vitro sporocyst encapsulation, but the relationship is relatively
Frontiers in Immunology 11
complex. However, the aim was not to intentionally achieve a

dramatic and stark response by using high doses which entirely

disrupt the process. Concentrations of chemicals used in this

study were chosen to ensure a degree of environmental relevance

(based on water concentration alone), although we should be

mindful that that concentrations of some chemicals in

hemolymph, in vivo, could be significantly higher due

to bioconcentration.

Quantifying phagocytosis in molluscan hemocytes is an

innately challenging process resulting in considerable intra-

and inter-assay variation regardless of the species for which

they are used (79). This is potentially exacerbated by the fact that

biological variation in primary cell cultures is typically

considerably higher than in cell lines (80), and cell numbers

from primary sources can be limited. Nevertheless, assays can be

developed to study the process of phagocytosis in primary cells if

their particular nature is considered and procedures are adapted

accordingly. Given the nature of B. gabrata hemocytes, the

measured intra and inter-pool CVs for phagocytosis of 6.6%

and 22.3%, respectively, were considered satisfactory, and were
B

C D
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FIGURE 4

Regression relationships between log dose of test chemicals against phagocytosis of latex beads by B glabrata hemocytes exposed in vitro.
Hemocyte response plotted as mean number of beads per cell ± SEM of four independent replicates. (A) Hemocyte phagocytosis response to
E2 exposure (B) Hemocyte phagocytosis response to BPA exposure (C) Hemocyte phagocytosis response to Effluent exposure (D) Hemocyte
phagocytosis response to p,p’-DDE exposure. Asterisks (*) indicate significant differences relative to the control (p = < 0.05) according to
Dunnett’s test for multiple comparisons.
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consistent with a previous report using oyster hemocytes (81). A

key advantages of imaging flow cytometry is its ability to fuse the

sensitivity of microscope visualization with the high-throughput

nature of standard flow cytometry via the collection of detailed

images for every data point. To date there are no published

examples of the application of imaging flow cytometry to

mollusc hemocytes in any capacity. In fact, phagocytosis in B.

glabrata has only been reported using standard flow cytometry

by Bakry and colleagues (64). The majority of phagocytosis

studies in molluscan hemocytes have quantified effects based on

visual examination of cells under light microscopy. The

phagocytosis dose-responses showed some moderate

similarities to those of the encapsulation assays, possibly due

to the similarities in the mechanisms that govern both responses.

Phagocytosis responses following exposure to various doses of

E2, BPA and the effluent extract were all best modelled by third-

order polynomials, as was the case for encapsulation response. p,

p’-DDE was the only chemical to show a markedly different

shaped dose-response between phagocytosis and encapsulation

(third-order polynomial vs. first-order respectively). The

strength of the relationships were comparable, as were the

results for Dunnett’s test when comparing against the control.

As with the encapsulation assays, certain doses of BPA and p,p’-
Frontiers in Immunology 12
DDE produced responses that were significantly different from

the control group. For the encapsulation assays only the highest

doses of BPA and p,p’-DDE significantly inhibited the response

compared to the control (Figure 3). However, all but the lowest

dose of these chemicals (200ng-2mg; BPA and 500ng – 5mg; p,

p’-DDE) significantly inhibited the phagocytosis response

compared to the controls, suggesting that the phagocytosis

assay is perhaps more sensitive than the encapsulation assay

using these chemicals. An exception to the general similarities

between the encapsulation and phagocytosis responses was

observed with the effluent treatment, which showed a

moderate to high coefficient of determination when predicting

encapsulation but a very weak one when predicting

phagocytosis. One possible explanation for the observed

differences between these responses may be the choice of

antigens used i.e. latex beads rather than sporocysts which are

biological and have surface antigens. It has been shown that

there may be differences in the responses of cells to different

phagocytosis antigens under the influence of certain

stressors (82).

Both E2 and BPA have generally been found to have a

stimulatory effect on mollusc hemocyte phagocytosis at low

(environmentally relevant) concentrations in vitro and
B
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FIGURE 5

Regression relationships between log dose of test chemicals against B glabrata hemocyte motility in vitro. Data points for hemocyte motility
plotted as mean velocity (µm/min) ± SEM of three independent replicates. (A) Hemocyte motility response to E2 exposure (B) Hemocyte
motility response to BPA exposure (C) Hemocyte motility response to Effluent exposure (D) Hemocyte motility response to p,p’-DDE exposure.
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inhibition at higher concentrations (83, 84). This non-

monotonic dose response shape was somewhat evident in E2,

with the first three doses appearing to have a higher mean

response compared to the control, although the differences were

not significant (Figure 4). It should be noted that in other reports

the low dose stimulation often took longer (~6 hours) to occur

than higher dose effects (83), and this time frame was longer

than that used here. Comparisons with the literature are

complicated by the fact that several studies use hemocytes

collected from animals that have been injected with test

chemical, after which the cells are quickly removed for

analysis. In these cases, the quantity of chemical injected into

the animals is known, but the precise level of systemic exposure

to the cells is not (83, 84)

Only one other study exists describing the effects of

xenobiotics on the motility of molluscan hemocytes (85). The

in vitro motility of hemocytes from mussels collected at a

polluted site was lower compared to a relatively non-polluted

site (85). A direct comparison with our data is not possible due

to differences in study designs, although we also found

considerable reductions in hemocyte motility with increasing

doses of our test chemicals. One exception to this was for E2,

which showed a non-monotonic response in the middle of the

dose range. In terms of mechanisms for the observed response,

as with phagocytosis the ERK signaling pathway would again

appear to represent a potential candidate since it is key in

regulating cell motility and has also been shown to be

negatively impacted in mollusc hemocytes by in vitro exposure

to environmentally relevant doses of xenobiotics, including E2

and BPA (34, 86, 87).

To conclude, a novel suite of in vitro toxicity tests using

mollusc hemocytes suggests that the innate immune system of B.

glabrata is susceptible to the influence of aquatic pollutants.

Although dose-response relationships were not always simple,

there was a greater chance of suppression of immunity overall,

even at environmentally-relevant concentrations. The assays we

have developed can be used link changes to immune cell

behavior in response to chemical exposures to molecular

pathways, thereby enabling the development of Adverse

Outcome Pathways (88) associated with vector borne diseases.

Given the importance of B. glabrata as a vector for the

transmission of Schistosomiasis to humans it will also be

important to understand if early developmental exposure of B.

glabrata to aquatic pollutants increases their susceptibility to

parasitic infection, thereby potentially reinforcing transmission

of the disease to humans.
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