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Background: Immune checkpoint inhibitors (ICIs) have revolutionized systemic anti-
tumor treatments across different types of cancer. Nevertheless, predictive biomarkers
regarding treatment response are not routinely established yet. Apart from T-
lymphocytes, the humoral immunity of B-lymphocytes is studied to a substantially
lesser extent in the respective setting. Thus, the aim of this study was to evaluate
peripheral blood B-cell subtypes as potential predictors of ICI treatment response.

Methods: Thirty-nine cancer patients receiving ICI therapy were included into this
prospective single-center cohort study. All had a first blood draw at the date before
treatment initiation and a second at the time of first response evaluation (after 8-12 weeks).
Seven different B-cell subtypes were quantified by fluorescence-activated cell sorting
(FACS). Disease control- (DCR) and objective response rate (ORR) were co-primary study
endpoints.

Results: Overall, DCR was 48.7% and ORR was 25.6%, respectively. At baseline, there
was no significant association of any B-cell subtype with neither DCR nor ORR. At the first
response evaluation, an increase in the frequency of CD21- B-cells was a statistically
significant negative predictor of response, both regarding DCR (OR=0.05, 95%CI=0.00-
0.67, p=0.024) and ORR (OR=0.09, 95%CI=0.01-0.96, p=0.046). An increase of the
frequency of switched memory B-cells was significantly associated with reduced odds for
org April 2022 | Volume 13 | Article 8402071
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DCR (OR=0.06, 95%CI=0.01-0.70, p=0.025). Patients with an increased frequency of
naïve B-cells were more likely to benefit from ICI therapy as indicated by an improved DCR
(OR=12.31, 95%CI=1.13-134.22, p=0.039).

Conclusion: In this study, certain B-cell subpopulations were associated with ICI
treatment response in various human cancer types.
Keywords: B cells, cancer, immune checkpoint inhibitor therapy, lymphocytes, response
1 INTRODUCTION

The recent introduction of immune checkpoint inhibitors (ICIs)
as systemic treatment modality of solid malignancies has
significantly improved patients’ survival outcomes across a
variety of human cancer types (1). By monoclonal antibody-
mediated blocking of certain IC-molecules, mainly the
programmed cell death protein 1 (PD-1), programmed cell
death ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated
protein 4 (CTLA4), cancer cells immune evasion can be
reprogrammed and an immune response against cancer cells
can be induced (2).

Although a substantial number of patients respond with long-
lasting remissions or even complete remissions (CRs) upon ICI
treatment initiation, a significant proportion of patients does not
respond to ICI treatment at all (2). Depending on cancer entity,
predictive biomarkers, such as the PD-(L)1 expression and
related scores are routinely used as a potential decision tool
and as predictive biomarkers in clinical practice in certain types
of cancer (3, 4), yet their predictive ability is nevertheless
inaccurate in most treatment settings. Besides sometimes
complicated and dangerous side effects, these novel agents
carry substantial treatment costs, which warrant the ongoing
search for predictive biomarkers all the more, to better select
appropriate candidates for ICI therapy (5–7).

To date, the crucial role of T-lymphocytes in the mode of
action of ICIs in cancer therapy is well known (8–12).
Nonetheless, recent evidence suggests a major role of B-
lymphocytes and various B-cell subtypes in ICI-based cancer
treatment (13). In addition, B-cells forming tertiary lymphoid
structures (TLS) in the tumor microenvironment may also play
an important role for an efficient anti-cancer immune response
upon ICI therapy (14). However, a better functional
understanding of different B-cell populations in ICI treatment,
as well as prospective clinical studies evaluating B-cells as
potential biomarkers for treatment efficacy in cancer patients
undergoing ICI therapy are in general scarce. For instance, in
cancer the relevance of CD21-/low B-cells, a subset which linked
to several autoimmune diseases (15) and are considered an
exhausted and anergic B-cell subpopulation (15–19), undefined
yet. Recently, the frequency of peripheral blood B-cells was
associated with response rates in a retrospective cohort study,
albeit an analysis of the B-cell subtypes involved was missing
(20). As such, the potential value of peripheral blood B-cells as an
easily accessible blood-based biomarker for the prediction of
treatment response currently remains undefined. The aim of this
org 2
study was to prospectively evaluate the potential predictive value
of peripheral blood B-cells for ICI treatment efficacy and to
monitor the change of B-cell population levels during ICI
treatment in a human pan-cancer setting.
2 METHODS

Forty-five consecutive cancer patients who were treated at the
Division of Oncology, Department of Internal Medicine, Medical
University of Graz and received ICI therapy between January
2017 and December 2020, were included into this prospective
longitudinal biomarker study. Patients of all cancer types who
were older than 18 years of age and who received mono- or
combination ICI were included in the study. Patients with
preexisting autoimmune diseases were excluded from the study.

All patients underwent a first blood draw at the date before
treatment initiation and a second one 8-12 weeks after initiation
of ICI treatment at the time of the first response evaluation. All
patients were seen by an experienced oncologist before each
treatment administration and they were evaluated for treatment
response every 8-12 weeks by CT- or MRI-scans as appropriate,
considering RECIST version 1.1 criteria. All blood samples were
delivered in a standardized manner after collection to the
Laboratory of the Division of Rheumatology and Immunology,
Department of Internal Medicine, Medical University of Graz.
All assays were calibrated and standardized for routine clinical
sample testing.

The absolute number of CD19+ B cells was determined by
flow cytometry as previously described (21). B-cell subsets were
analyzed in peripheral blood, mononuclear cells isolated from
lithium heparin blood by Ficoll gradient density centrifugation.
One million cells were incubated with antibodies against CD19,
IgD, CD24, CD38, CD27, CD86, CD21, and IgM (Miltenyi
Biotec, Bergisch Gladbach, Germany) (Supplementary
Table 1). Samples were measured using a FACS Canto II
flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA).
Data were analyzed using the FACSDiva software (BD
Biosciences) using a gating strategy as published previously
(22) (Supplementary Figure 1).

B-cell subsets were classified according to the EUROclass
gating strategy by Wehr et al. (23) as follows: CD21- (CD19+

CD38- CD21-), unswitched memory B cells (or marginal zone)
B-cells (CD19+ CD27+ IgD+ IgM+), naïve B-cells (CD19+ CD27-

IgD+ IgM+), transitional B-cells (CD19+ CD38++ IgM++),
switched memory B-cells (CD19+ CD27+ IgD- IgM-),
April 2022 | Volume 13 | Article 840207
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regulatory B-cells (CD19+ CD24+ CD38++) and plasmablasts
(CD19+ CD38++ IgM-). Regulatory B-cells were defined as
proposed by Das et al. (24) and Blair et al. (25).

2.1 Statistical Analysis
Co-primary endpoints of this study were disease control rate
(DRC), defined as the rate of patients who experienced CR,
partial remission (PR) or stable disease (SD), and objective
response rate (ORR), defined as the rate of patients who
experienced CR or PR.

To assess for the association of clinico-pathological
parameters with the B-cell measurements, the Mann-Whitney-
U-test and the Kruskal-Wallis-test were used where appropriate.
At baseline, uni- and multivariable logistic regression models
were performed to assess whether different B-cell subpopulations
might predict for treatment responses, whereby odds ratios
(ORs) and 95% confidence intervals (CIs) are reported.
Throughout the analysis, ORs for different B-cell subtypes were
calculated and reported as per 1000, 100 or 10 units increase, as
appropriate. Due to the hypothesis-generating character of our
study, multivariable analyses were only adjusted for tumor type.
To avoid perfect prediction of the outcome in the multivariable
logistic regression analysis at the second blood draw, tumor types
for adjustment were summarized as Non-Small Cell Lung Cancer
(NSCLC), genitourinary [Renal cell carcinoma (RCC) and
urothelial carcinoma (UC)], gastrointestinal (CRC, gastric and
cholangiocellular carcinoma) and head and neck cancer. Increase
vs. decrease or no change, absolute change (2nd blood draw – 1st

blood draw) and relative change [(2nd blood draw - 1st blood
draw)/1st blood draw*100] were considered in the analysis of
changes in B-cell levels after 8-12 weeks of ICI treatment.
Changes of B-cell levels were assessed using the Wilcoxon-
Sign-Rank Test. A two-sided p-value of <0.05 was considered
statistically significant in all analyses.

All statistical analyses were performed using Stata forWindows
Version 16.1 (StataCorp LP, Collage Station, TX, USA). Box plots
were created using GraphPad Prism Version 9.1.2 for Windows
(GraphPad Software, San Diego, California, USA).

2.2 Ethics
Written informed consent was obtained from each patient included
into this study. This study was approved by the local ethics
committee of the Medical University of Graz (29-593 ex 16/17).
3 RESULTS

Overall, 45 patients treated with ICIs were included into this
prospective single-center cohort study. One patient was excluded
due to loss of follow-up. Five patients did not have B-cell FACS at
treatment initiation and were subsequently excluded from
analyses. Thus, 39 patients were included into the final analysis.

3.1 Baseline Characteristics
Twenty-seven (69%) patients were male, and the median age was
64 years. Fourteen (36%) patients had histologically verified
Frontiers in Immunology | www.frontiersin.org 3
NSCLC, 9 (23%) patients had RCC, 7 (18%) patients had UC
of the urinary bladder, 4 (10%) patients had head and neck
squamous cell carcinoma and one (3%) patient each had gastric
or cholangiocellular carcinoma. More than half of the patients
(51%) were treated either with pembrolizumab (51%) or
nivolumab (43%), whereas one patient each received treatment
with atezolizumab or a combination therapy of nivolumab plus
ipilimumab. More than half (51%) of the study population were
in a 2nd line treatment setting, 14 (36%) patients received 1st line
treatment and 5 (13%) patients received immunotherapy as a 3rd

line treatment (Supplementary Table 2).
PR was achieved in 10 (26%) patients. No patient experienced

CR during ICI treatment. Nine (23%) patients had SD and 20
(51%) patients had progressive disease (PD) at the time of first
response evaluation after 8-12 weeks of ICI treatment. In the
overall cohort, DCR was 48.7% and ORR was 25.6%. Due to the
limited sample size and the hypothesis-generating character of
the study, multivariable analyses were only adjusted to tumor
type in all further analysis. However, the clinico-pathological
parameters including age, sex, tumor type, treatment line,
treatment modality, and histology were neither associated with
DCR nor ORR in the univariable logistic regression model (all
p>0.05, data not shown).

3.2 Association of Response-Rates With
B-Cell Levels at Baseline
Summary measures of the B-cell subpopulations at baseline and
respective associations with clinico-pathological parameters are
shown in Table 1. Interestingly, absolute B-cell counts were
significantly higher in female (median 6826 cells/µl; IQR 1369-
10,018 cells/µl) than male patients (median 3053 cells/µl; IQR
639-5032 cells/µl) [p=0.0452] and the B-cell frequency was
significantly higher in smokers (median 3.25%) vs. never-
smokers (median 1.80%) [p=0.0119]. Apart from this
observation, no differences in the B-cell distribution depending
on clinico-pathological parameters were recorded.

Except for plasmablasts, which were significantly increased in
responders, as indicated by DCR (p=0.048), there was no difference
in the distribution of B-cell subtypes in responders and non-
responders, as indicated by DCR and ORR (Figures 1A–D).

At baseline, there was no significant association, neither with
DCR nor ORR of total B-cell, CD21- B-cells, unswitched memory
B-cells, transitional zone B-cells, naïve B-cells, switched memory
B-cells, CD24+CD38++ regulatory B-cells and plasmablasts
measurements in both, univariable logistic regression models,
as well as in the multivariable analysis adjusted for tumor
entity (Table 2).

3.3 Change of B-Cell Counts and
Frequency During ICI-Treatment
Twenty-seven (69.2%) patients had a second follow-up blood
draw at the time point of first response evaluation after the start
of ICI treatment, while 12 (30.8%) patients either dropped out of
the study before having a second blood draw due to PD, death,
unfitness for further treatment, or they had received no ICI
therapy within 8 weeks for any other reason.
April 2022 | Volume 13 | Article 840207
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TABLE 1 | Association of B-cell subpopulations with clinico-pathological parameters.

p-valuesMedian [IQR]

Age (>65yrs.) Gender Smoker Tumor type Treatment line

Lymphocytes absolute count 145,922 [93,985 - 190,337] 0.6642 0.3745 0.8786 0.3338 0.5102
B-cells - total absolute count 3725 [928 – 6,726] 0.4746 0.0452 0.0612 0.1768 0.6281

% lymphocytes 2 [1.19 – 5.33] 0.4619 0.7348 0.0119 0.1249 0.5249
CD21-negative absolute count 860 [246 – 2149] 1.0000 0.2098 0.0696 0.1477 0.7930

% B cells 27 [21.4 – 48.4] 0.0642 0.4044 0.4234 0.5512 0.3513
unswitched memory B-cells absolute count 241 [56 – 367] 0.8615 0.4048 0.1640 0.4200 0.8512

% B cells 6.45 [4.31 – 9.18] 0.6043 0.1782 0.4780 0.3154 0.3909
Transitional Zone B-cells absolute count 45 [12 – 193] 0.4876 0.9461 0.4735 0.3978 0.3483

% B cells 1.55 [0.64 – 4.95] 0.6091 0.5732 0.8951 0.6548 0.1580
Naive B-cells absolute count 1,818 [590 – 4,095] 0.3766 0.0606 0.2138 0.4098 0.6164

% B cells 59.2 [48.1 – 78.3] 0.2429 0.3745 0.7919 0.5709 0.0664
Switched memory B-cells absolute count 419 [179 – 915] 0.7421 0.0926 0.0934 0.2321 0.6357

% B cells 16.7 [8.26 – 24.2] 0.5704 0.7584 0.8950 0.4727 0.1916
CD24+CD38++ Regulatory B-cells absolute count 0 [0 – 0] Maximum 2 0.5198 1.0000 0.3521 0.1714 0.8889

% B cells 0 [0 – 0] Maximum 0.33 0.4532 0.8743 0.1715 0.1329 0.9366
Plasmablasts absolute count 78 [19 – 266] 0.9275 0.0844 0.4737 0.2484 0.7873

% B cells 2.97 [1.48 – 5.49] 0.3615 0.2578 0.5499 0.6135 0.9364
Frontiers in Immunology | www.frontiers
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IQR, interquartile range; significant values are highlighted in bold.
A B

C D

FIGURE 1 | (A) Relative distribution of different B-cell subtypes in responders and non-responders as indicated by disease control rate (DCR) at baseline.
(B) absolute counts of different B-cell subtypes in responders and non-responders as indicated by DCR at baseline. (C) Relative distribution of different B-cell subtypes
in responders and non-responders as indicated by objective response rate (ORR) at baseline. (D) absolute counts of different B-cell subtypes in responders and non-
responders as indicated by ORR at baseline. Values in (A, C) are percentages of total lymphocytes (for B-cells), and percentages of total B-cells (for B-cell subsets). All
groups compared by Mann-Whitney-U-test.
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Regarding absolute counts at the first time of response
evaluation, 11 (41%) patients had an increase in lymphocytes, 8
(30%) patients had an increase in total B-cells, 10 (37%) patients had
an increase in CD21- B-cells, 7 (26%) patients had an increase in
unswitched memory B-cells, 10 (37%) patients had an increase in
naïve B-cells, 13 (48%) patients had an increase in transitional zone
B-cells, 9 (33%) patients had an increase in switched memory B-
cells, and 15 (56%) patients had an increase in plasmablast counts.
No individual showed an increase in CD24+CD38++ regulatory B-
cell counts. Significant changes in absolute counts of total B-cells
(median change -789 cells/µl, p=0.0422), unswitched memory B-
cells (median change -76 cells/µl, p=0.0237) and switched memory
B-cells (median change -140 cells/µl, p=0.0463) could be observed,
which were significantly lower at the time of response evaluation of
ICI treatment in the overall cohort. However, there was no
significant change of lymphocyte counts (p=0.3997), CD21- B-
cells (p=0.0815), naïve B-cells (p=0.1775), transitional zone B-cells
(p=0.9859), CD24+CD38++ regulatory B-cells (0.6406), and
plasmablasts (p=0.8919) (Figure 2B).

Regarding the frequency of B-cell subpopulations, 10 (37%)
and 12 (44%) patients showed an increase in total B-cells and
CD21- B-cells, respectively. Fourteen (52%) patients each had an
increase in unswitched memory B-cells, naïve B-cells, or
switched memory B-cells, whereas 18 (67%) patients each
showed increased frequencies transitional zone B-cells or
plasmablasts after ICI treatment. No single patient had an
increase in CD24+CD38++ regulatory B-cell frequency. Yet, no
significant changes in the frequencies of total B-cells (p=0.0772),
CD21- B-cells (p=0.2198), unswitched memory B-cells
(p=0.5149), naïve B-cells (p=0.7496), transitional zone B-cells
(p=0.1286), switched memory B-cells (p=0.9247), CD24+CD38++

regulatory B-cells (p=0.6406) and plasmablasts (p=0.0954) were
observed (Figure 2A).
Frontiers in Immunology | www.frontiersin.org 5
3.3.1 Association of Changes in B-Cells With
Response Rates
Patients with an increase in the frequency of naïve B-cells
showed significantly greater odds for DCR in both, univariable
(OR=7.00, 95%CI=1.10-44.61, p=0.039) and multivariable
(OR=12.31, 95%CI=1.13-134.22, p=0.039) analyses. There was
no statistically significant relationship between the frequency of
naïve B-cells and treatment response, as indicated by ORR in
uni- and multivariable analyses (Table 3). Yet, although a higher
absolute change was not significantly associated with DCR and
ORR in the univariable model, multivariable adjustment for
tumor entity revealed a significant relationship of an absolute
increase in the frequency of naïve B-cells with DCR (per 10-unit
increase: OR=1.94, 95%CI=1.05-3.59, p=0.035) and ORR (per
10-unit increase: OR=2.15, 95%CI=1.07-4.34, p=0.033)
(Table 4). There was no significant association with DCR and
ORR when considering relative changes of naïve B-cell
measurements (Supplementary Table 3).

Conversely, an increase of the frequency of switched memory
B-cells was significantly associated with reduced odds for DCR in
the univariable (OR=0.06, 95%CI=0.01-0.62, p=0.018) and
multivariable (OR=0.06, 95%CI=0.01-0.70, p=0.025) logistic
regression models. When considering ORR, the results were
trending towards the same direction in both, the uni- and
multivariable model (Table 3). However, there were no
significant associations with neither DCR nor ORR when
considering absolute and relative changes of the frequency of
switched memory B-cells (Table 4 and Supplementary Table 3).

Patients who had an increase in the frequency of CD21- B-
cells during ICI treatment were less likely to respond to ICI
treatment, as indicated by DCR in univariable (OR=0.11, 95%
CI=0.02-0.72, p=0.021) and multivariable analyses adjusted for
tumor type (OR=0.05, 95%CI=0.00-0.67, p=0.024). Concerning
TABLE 2 | B-cell measurements and associations with disease control rate (DCR) and objective response rate (ORR) at baseline.

Disease Control Rate Objective Response RateVariable

Univariable Analysis Multivariable Analysis Univariable Analysis Multivariable Analysis

OR (95%CI) p-value OR (95%CI) p-value OR (95%CI) p-value OR (95%CI) p-value

Lymphocytes count* 1.01 (0.99-1.02) 0.067 1.01 (1.00-1-02) 0.037 1.01 (1.00-1.02) 0.039 1.01 (1.00-1.02) 0.045
B-cells – total count* 1.08 (0.93-1.26) 0.300 1.15 (0.92-1.43) 0.222 1.10 (0.95-1.28) 0.189 1.10 (0.95-1.29) 0.200

% lymph 0.96 (0.79-1-17) 0.679 0.99 (0.80-1-23) 0.925 1.02 (0.80-1-31) 0.853 1.00 (0.80-1.25) 0.984
CD21- B-cells count* 1.13 (0.81-1.59) 0.462 1.19 (0.81-1-76) 0.374 1.34 (093-1.96) 0.117 1.36 (0.92-2.02) 0.124

% B*** 0.87 (0.60-1.25) 0.441 0.86 (0.58-1.28) 0.463 1.05 (0.70-1.58) 0.803 1.05 (0.70-1.60) 0.793
Unswitched memory B-cells count** 1.06 (0.92-1-22) 0.445 1.06 (0.91-1.23) 0.462 1.08 (0.94-1.24) 0.254 1.08 (0.94-1.24) 0.260

% B 0.95 (0.85-1.05) 0.300 0.92 (0.83-1.03) 0.174 0.94 (0.81-1.08) 0.359 0.92 (0.78-1.08) 0.317
Transitional Zone B-cells count** 1.05 (0.88-1.26) 0.580 1.06 (0.87-1.29) 0.539 1.07 (0.89-1.28) 0.459 1.07 (0.89-1.29) 0.446

% B 1.00 (0.91-1.11) 0.945 0.99 (0.99-1.1) 0.916 0.94 (0.78-1.11) 0.448 0.94 (0.79-1.12) 0.456
Naive B-cells count* 1.08 (0.91-1.28) 0.372 1.11 (0.90-1.39) 0.333 1.11 (0.94-1.30) 0.217 1.11 (0.94-1.30) 0.218

% B*** 0.92 (0.65-1.30) 0.639 0.92 (0.64-1.32) 0.662 0.89 (0.60-1.32) 0.569 0.90 (0.60-1.35) 0.625
Switched memory B-cells count** 1.08 (0.96-1.23) 0.210 1.14 (0.96-1.35) 0.139 1.08 (0.97-1.20) 0.161 1.07 (0.97-1-19) 0.177

% B*** 1.27 (0.65-2.49) 0.489 1.21 (0.60-2.45) 0.600 1.07 (0.50-2.30) 0.849 1.03 (0.46-2.31) 0.942
CD24+CD38++ Regulatory B-cells count 1.72 (0.42-7.13) 0.453 1.50 (0.34-6.72) 0.596 0.43 (0.05-3.41) 0.422 0.37 (0.04-3.26) 0.370

% B NA NA NA NA
Plasmablasts count** 1.23 (0.87-1.73) 0.245 1.41 (0.89-2.24) 0.146 1.26 (0.90-1.76) 0.174 1.29 (0.91-1.85) 0.157

% B 1.18 (0.94-1.48) 0.148 1.20 (0.94-1.52) 0.148 0.96 80.76-1.21) 0.731 0.96 (0.76-1.23) 0.756
April 2022 |
 Volume 13 | Article
*per 1000 Unit increase, **per 100 Unit increase, ***per 10 Unit increase; % lymph – percent of total lymphocytes; % B – percent of total B-cells; NA – not applicable, significant values are
highlighted in bold.
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ORR, an increase in the frequency of CD21- B-cells was not
significantly associated with response rate in the univariable
model (OR=0.18, 95%CI=0.03-1.09, p=0.061), while it was a
significant negative predictor for response when adjusted for
tumor entity (OR=0.09, 95%CI=0.01-0.96, p=0.046) (Table 3
and Figure 3). Similar results could be observed when
considering absolute changes of the frequency of CD21- B-cells
between the first and second blood draw. An increase was
significantly negatively linked to DCR in uni- (per 10-unit
increase: OR=0.32, 95%CI=0.11-0.95, p=0.040) and
multivariable analyses (per 10-unit increase: OR=0.19, 95%
CI=0.04-0.81, p=0.025). Concerning ORR, an absolute change
was not associated with ORR in the univariable analysis, but was
Frontiers in Immunology | www.frontiersin.org 6
a significant predictor of response when adjusted for tumor
entity (per 10-unit increase: OR=0.34, 95%CI=0.12-0.93,
p=0.036) (Table 4). A relative change was numerically linked
to DCR in uni- and multivariable analyses, yet the association
was not statistically significant. Considering ORR, although close
to significance, a relative change in the frequency of CD21- B-
cells was not associated with ORR in the univariable analysis
(OR=0.09, 95%CI=0.01-1.25, p=0.073), but reached statistical
significance in the multivariable logistic regression model
(OR=0.21, 95%CI=0.00-0.71.9, p=0.032).
4 DISCUSSION

There is evidence that B-cells and TLS in the tumor
microenvironment might be linked to ICI treatment response
(14). However, the role of peripheral blood B-cells as potential
biomarkers for treatment response has yet to be defined. Within
our recent study, we prospectively evaluated the potential
predictive value, as well as the changes over time of different
B-cell subtypes in the peripheral blood of cancer patients
undergoing ICI therapy. While we did not observe a
statistically significant association of any B-cell subtype with
treatment response at baseline, after 8-12 weeks of ICI treatment,
we observed an increase of the frequency of CD21- B-cells to be
consistently associated with decreased odds for treatment
response as indicated by both, DCR and ORR. Moreover, an
increase of the frequency of naïve B-cells was significantly
associated with increased odds for response, as indicated by
DCR. Lastly, an increase in the frequency of switched memory B-
cells was significantly negatively associated with treatment
response indicated by DCR, whereas there was at least a
numerical association with ORR.

The role of T-cells in cancer immunity and especially in the
treatment with ICIs is well known (8, 9), however, although the
importance of B-cells in forming anti-cancer immune reactions
has been gradually revealed in recent years, a much better and
detailed understanding of the role of different B-cell populations
in cancer is still required (13). By their ability to present tumor
antigens, to activate T-lymphocytes and a subsequential
cytotoxic T-cell response, as well as to produce anti-tumor
antibodies and cytokines, intra-tumoral B-cells and B-cells in
regional tumor-draining lymph nodes support an effective anti-
tumor immune response (13, 26, 27).

Recent evidence suggests that B-cell markers might be increased
in tumors of patients who respond to ICI treatment (28). This was,
for example, demonstrated by Helmink et al. (14) in small
individual cohorts of melanoma- and RCC-patients, as well as in
a TCGA (The Cancer Genome Atlas) RCC cohort. Additionally,
tumor-infiltrating B-cells were previously linked to both longer
survival and tumor stage in NSCLC (29, 30). Taken together, this
suggests that the role of B-cells in cancer immunity might be
independent of cancer entity, thus highlighting their importance
across various cancer types. Furthermore, it does support the pan-
cancer approach when evaluating the impact on peripheral blood
B-cells on ICI treatment response in our present prospective study.
A

B

FIGURE 2 | (A) Frequencies of different B-cell subtypes at baseline (1st blood
draw) and after 8-12 weeks (2nd blood draw) of immune checkpoint inhibitor
(ICI) treatment (n=27). Values are in percentages of total lymphocytes (for B-
cells), and percentages of total B-cells (for B-cell subsets). (B) Absolute
counts of different B-cell subtypes at baseline (1st blood draw) and after 8-12
weeks (2nd blood draw) of ICI treatment (n=27). All groups compared by
Mann-Whitney-U-test.
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In addition, Helmink at al (14). observed that B-cells in the tumor
microenvironment are primarily localized in TLS and a higher
density of B-cells and TLS was associated with response. Mass
cytometry in tumor and blood samples in a small sample study
(n=10) revealed that non-responders had a higher frequency of
naïve B-cells. Moreover, intra-tumoral CXCR3+ switched memory
B-cells were increased in responders vs. non-responders (14). Since
we observed a decrease of the frequency of switchedmemory B-cells
in peripheral blood to be associated with response in our cohort, we
hypothesized that switched memory B-cells might be drawn to and
are subsequentially enriched in the tumor microenvironment and
Frontiers in Immunology | www.frontiersin.org 7
TLS of responders during ICI treatment, thus resulting in a decrease
in peripheral blood. Eventually, switched memory B-cells could
differentiate into plasma cells (31) in the tumor microenvironment,
thereby supporting an anti-cancer immune reaction. Interestingly,
plasma cells were also enriched in responders in the study of
Helmink et al. (14). Yet, further longitudinal studies are
warranted to better evaluate this hypothesis.

Regarding our observation of naïve B-cells with ICI-response,
the number of naïve-like B-cells was previously shown to be
higher in tumor samples of patients responding to ICI therapy
before treatment initiation (32). In line with these results, in the
TABLE 3 | Increase vs. decrease or no change (reference) after 8-12 weeks of ICI treatment.

Disease Control Rate Objective Response RateVariable

Univariable Analysis Multivariable Analysis Univariable Analysis Multivariable Analysis

OR (95%CI) p-value OR (95%CI) p-value OR (95%CI) p-value OR (95%CI) p-value

Lymphocytes count 1.60 (0.30-8.50) 0.581 1.64 (0.22-12.30) 0.628 0.95 (0.19-4.68) 0.952 1.29 (0.21-7.84) 0.785
B-cells – total count 1.75 (0.28-11.15) 0.554 1.06 (0.14-7.85) 0.951 4.67 (0.80-27.10) 0.086 5.07 (0.75-34.20) 0.095

% lymph 0.63 (0.12-3.22) 0.574 0.28 (0.04-2.13) 0.220 1.22 (0.25-6.11) 0.807 0.91 (0.15-5.33) 0.913
CD21- B-cells count 0.63 (0.12-3.22) 0.574 0.23 (0.28-1.89) 0.170 1.22 (0.25-6.11) 0.807 0.88 (0.15-5.24) 0.891

% B 0.11 (0.02-0.72) 0.021 0.05 (0.00-0.67) 0.024 0.18 (0.03-1.09) 0.061 0.09 (0.01-0.96) 0.046
Unswitched memory B-cells count 1.35 (0.21-8.82) 0.757 0.74 (0.09-5.76) 0.771 3.11 (0.53-18.38) 0.210 3.04 (0.45-20.37) 0.253

% B 0.40 (0.08-2.12) 0.282 0.30 (0.04-2.04) 0.217 0.47 (0.10-2.29) 0.348 0.39 (0.07-2.10) 0.271
Transitional Zone B-cells count 1.25 (0.25-6.24) 0.785 1.15 (0.16-8.11) 0.886 4.28 (0.80-22.93) 0.090 3.88 (0.61-24.74) 0.151

% B 2.08 (0.39-11.06) 0.390 2.52 (0.39-16.29) 0.330 2.80 (0.45-17.38) 0.269 3.10 (0.45-21.21) 0.248
Naive B-cells count 2.80 (0.45-17.38) 0.269 2.86 (0.40-20.79) 0.298 4.88 (0.90-26.42) 0.066 5.63 (0.93-34.05) 0.060

% B 7.00 (1.10-44.61) 0.039 12.31 (1.13-134.22) 0.039 3.33 (0.63-17.57) 0.156 4.41 (0.70-27.74) 0.113
Switched memory B-cells count 1.00 (0.18-5.46) 1.000 0.54 (0.08-3.87) 0.541 1.60 (0.31-8.25) 0.574 1.20 (0.20-7.16) 0.845

% B 0.06 (0.01-0.62) 0.018 0.06 (0.01-0.70) 0.025 0.23 (0.04-1.25) 0.090 0.18 (0.03-1.18) 0.073
CD24+CD38++ Regulatory B-cells count NA NA NA NA

% B NA NA NA NA
Plasmablasts count 1.00 (0.20-5.00) 1.000 0.34 (0.03-4.15) 0.395 1.33 (0.27-6.50) 0.722 0.86 (0.12-6.19) 0.878

% B 1.00 (0.18-5.46) 1.000 0.92 (0.12-7.03) 0.938 1.27 (0.24-6.82) 0.778 0.99 (0.16-6.07) 0.989
April 2022 |
 Volume 13 | Article
% lymph – percent of total lymphocytes; % B – percent of total B-cells; NA – not applicable, significant values are highlighted in bold.
TABLE 4 | Absolute changes of B-cells after 8-12 weeks of ICI treatment and associations with disease control rate (DCR) and objective response rate (ORR).

Disease Control Rate Objective Response RateVariable

Univariable Analysis Multivariable Analysis Univariable Analysis Multivariable Analysis

OR (95%CI) p-value OR (95%CI) p-value OR (95%CI) p-value OR (95%CI) p-value

Lymphocytes count* 1.00 (0.99-1.01) 0.630 1.00 (0.99-1.01) 0.755 1.00 (0.99-1.01) 0.748 1.00 (0.99-1.01) 0.635
B-cells – total count* 0.99 (0.86-1.14) 0.907 0.96 (0.78-1.19) 0.724 0.98 (0.86-1.12) 0.776 0.96 (0.84-1.11) 0.609

% B 1.09 (0.81-1.45) 0.577 0.98 (0.69-1.40) 0.931 1.13 (0.84-1.53) 0.416 1.07 (0.77-1.49) 0.691
CD21- B-cells count** 0.99 (0.95-1.04) 0.778 0.98 (0.92-1.04) 0.514 0.99 (0.94-1.03) 0.470 0.98 (0.94-1.02) 0.340

% B*** 0.32 (0.11-0.95) 0.040 0.19 (0.04-0.81) 0.025 0.49 (0.21-1.19) 0.116 0.34 (0.12-0.93) 0.036
Unswitched memory B-cells count** 0.96 (0.78-1.20) 0.730 0.94 (0.71-1.25) 0.663 1.00 (0.83-1.21) 0.999 0.98 (0.81-1.19) 0.822

% B 0.95 (0.75-1-20) 0.655 0.91 (0.70-1.19) 0.494 0.99 (0.79-1.23) 0.898 0.96 (0.76-1.21) 0.709
Transitional Zone B-cells count** 1.08 (0.86-1.35) 0.525 1.05 (0.80-1.37) 0.742 1.12 (0.85-1.47) 0.427 1.11 (0.83-1.50) 0.484

% B*** 2.47 (0.58-10.48) 0.220 2.27 (0.54-9.61) 0.265 3.95 (0.76-20.53) 0.102 4.38 (0.88-21.80) 0.071
Naive B-cells count* 1.01 (0.84-1.21) 0.931 1.00 (0.80-1.26) 0.976 0.99 (0.82-1.18) 0.879 0.97 (0.80-1.17) 0.738

% B*** 1.54 (0.85-2.79) 0.156 1.94 (1.05-3.59) 0.035 1.67 (0.87-3.20) 0.122 2.15 (1.07-4.34) 0.033
Switched memory B-cells count** 0.97 (0.87-1.09) 0.619 0.96 (0.83-1.10) 0.528 1.00 (0.91-1.10) 0.970 0.99 (0.90-1.09) 0.886

% B*** 0.30 (0.07-1.32) 0.110 0.26 (0.05-1.38) 0.113 0.81 (0.30-2.23) 0.688 0.64 (0.21-1.93) 0.426
CD24+CD38++ Regulatory B-cells count NA NA NA NA

% B NA NA NA NA
Plasmablasts count** 1.21 (0.81-1.82) 0.349 1.08 (0.63-1.87) 0.780 1.05 (0.70-1.56) 0.827 0.94 (0.57-1.54) 0.795

% B 1.09 (0.88-1.34) 0.446 1.09 (0.84-1.41) 0.514 0.98 (0.88-1-08) 0.622 0.97 (0.87-1.08) 0.590
% B – percent of total B-cells, *per 1000 unit, **per 100 unit, ** per 10 unit increase; NA – not applicable, significant values are highlighted in bold.
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present study the increase of naïve B-cells during ICI treatment
was associated with increased odds of response. Conversely,
naïve B-cells have also been reported to be increased in tumors
of non-responders to ICI treatment (14), thus definitive
conclusions cannot be drawn and further studies are needed to
clarify the role of naïve B-cells in ICI response.

Lastly, CD21-/low B-cells that are linked to several
autoimmune diseases, including rheumatoid arthritis, systemic
lupus erythematosus, Sjogren’s syndrome or common variable
immunodeficiency (15), were previously reported in a context of
B-cell exhaustion and might represent an anergic B-cell
population (15–19). Yet, their role in cancer and especially
under ICI treatment is still undefined. To the best of our
knowledge, the present study is the first report showing a
consistent significant association of CD21- B-cells in the blood
of cancer patients with ICI treatment efficacy. Considering our
results of an increased frequency of CD21- B-cells being
independently associated with decreased odds of response, an
increase in peripheral blood CD21- B-cells during ICI treatment
may resemble B-cell exhaustion over the course of treatment and
could thus be linked to the failure of ICI therapy.

A recent retrospective study found pretreatment peripheral
B-cells to be significantly decreased in patients showing response
to ICI treatment in a pan-cancer cohort including 75 patients
(20), which we could not validate in our prospective study.
However, both uni- and multivariable regression models were
not implemented in the cited study and an analysis of different B-
cell populations was not conducted, which should be mentioned
as an important limitation (20).

Some limitations of our present study have to be noted.
Firstly, due to the limited sample size, our study might be
underpowered to detect smaller differences in the distribution
and association of B-cell subtypes with the clinical endpoints.
However, we did observe significant signals of CD21-, naïve and
Frontiers in Immunology | www.frontiersin.org 8
switched memory B-cells which presence in the tumor
microenvironment has been previously linked to ICI treatment
response. Thus, our data might be important for further planned
larger scaled studies. Moreover, the clinical relevance of smaller
changes may at least be questionable. Secondly, selection bias
cannot be entirely excluded since the study was performed at a
single center. Thirdly, due to the pan-cancer study design,
follow-up protocols and ICI treatment dosing schemes may
vary depending on cancer entity. Fourthly, PD-L1 expression
status was missing for most patients since in most cases it was
routinely assessed only in NSCLC. Fifth, we might have lost
single plasmablasts due to our conservative CD19 gating.

In conclusion, different B-cell subtypes, notably CD21-, naïve
and switched memory B-cells in the peripheral blood of cancer
patients might represent potential novel biomarkers regarding
treatment response during ICI therapy.
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