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Complement proteins emerged early in evolution but outside the vertebrate clade they are
poorly characterized. An evolutionary model of C3 family members revealed that in
contrast to vertebrates the evolutionary trajectory of C3-like genes in cnidarian,
protostomes and invertebrate deuterostomes was highly divergent due to independent
lineage and species-specific duplications. The deduced C3-like and vertebrate C3, C4
and C5 proteins had low sequence conservation, but extraordinarily high structural
conservation and 2-chain and 3-chain protein isoforms repeatedly emerged. Functional
characterization of three C3-like isoforms in a bivalve representative revealed that in
common with vertebrates complement proteins they were cleaved into two subunits, b
and a, and the latter regulated inflammation-related genes, chemotaxis and phagocytosis.
Changes within the thioester bond cleavage sites and the a-subunit protein (ANATO
domain) explained the functional differentiation of bivalve C3-like. The emergence of
domain-related functions early during evolution explains the overlapping functions of
bivalve C3-like and vertebrate C3, C4 and C5, despite low sequence conservation and
indicates that evolutionary pressure acted to conserve protein domain organization rather
than the primary sequence.

Keywords: conserved domain, functional homologues, parallel evolution, complement C3/C4/C5 family, C3-like
protein a-subunit
INTRODUCTION

The complement system is of central importance for immunity and complement 3 (C3) is at the core
of its function (1–3). C3 belongs to the thioester bond containing protein (TEP) superfamily (4) that
also includes a2-macroglobulin (A2M) (5), pregnancy zone protein (PZP) (6), CD109 (7) and PZP-
like A2M domain-containing 8 (CPAMD8) (8). The appearance and differentiation of C3, A2M and
CD109 occurred after the divergence of the sponges and before the divergence of cnidaria from the
org March 2022 | Volume 13 | Article 8408611
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bilaterian lineage (9, 10). The C3 gene has been identified in all
deuterostomes studied so far (1). Studies directed at deciphering
the evolution of the complement system suggest a common
ancestral molecule gave rise to C3 and to two others
complement molecules C4 and C5 in vertebrates (11–15). The
C3 prototype gene underwent several rounds of duplication
before the cyclostome (lampreys and hagfish) divergence and
in the vertebrates C3, C4 and C5 gene members emerged (11, 13).
Evolution and function of the complement pathway in the
species rich protostome clade is less well resolved (16–20).

The complement system in vertebrates straddles the innate
and acquired immune response. It is activated by three pathways
[the classical, alternative and mannose binding lectin (MBL)]
and all converge on C3 (21, 22). Complement activation causes
proteolytic cleavage of C3, C4 and C5 and generates a smaller
anaphylatoxin “a” protein subunit and larger “b” subunit in
vertebrates. The end point of the cascade is the formation of the
membrane attack complex (MAC, C5bC6C7C8C9) that causes
cell lysis (2, 23–25).

We hypothesized that the non-vertebrate prototype C3 gene,
designated C3-like in this study, is the functional homologue of
vertebrate C3, C4 and C5 genes. Available evidence indicates that
complement activation via both the lectin and alternative
pathways is possible in protostomes and emerged in a similar
evolutionary timeframe in cnidarians (10, 26–29). MAC complex
homologues (C6 and C7/C8/C9) have not been identified in
protostomes and the main activity assigned to complement is
opsonization (30). Nonetheless, genes encoding MAC-type
domain containing proteins (MACPF) have been identified in
a marine gastropod, the periwinkle (Littorina littorea) (31).
Moreover, gastropod and bivalve hemolymph has cytotoxic
activity (32) and duplicate C3-like (C3-like-1 and C3-like 2)
genes with hemolytic activity have been identified in the
Chinese razor clam (Sinonovacula constricta) (14, 33, 34).

Exploiting the burgeoning availability of genomes and
transcriptomes for cnidarian, protostomes and invertebrate
deuterostomes we establish a model for complement evolution
focused on C3-like genes and reveal a common origin with
vertebrate genes but with highly divergent evolutionary
trajectories. The primary amino acid sequence of the deduced
C3-like and vertebrate C3, C4 and C5 proteins has low sequence
conservation but a well conserved domain structure.
Homologues of vertebrate two-chain structural isoforms typical
of mature C3 and C5 proteins (composed of a and b subunits)
and 3-chain isoforms typical of mature C4 protein (with a, b and
g subunits) (3, 35) repeatedly emerged in the protostomes and
other non-vertebrate phyla and share common activities.
RESULTS

C3-Like Genes Evolved by Lineage and
Species-Specific Events
Database searches identified C3-like genes in 56 species
representatives of different phyla (5 Cnidaria, 1 Nemertea, 31
Mollusca, 12 Arthropoda, 4 Echinodermata, 2 Hemichordata,
Frontiers in Immunology | www.frontiersin.org 2
1 Cephalochordata) and revealed that gene number was variable
across species. Phylogenetic analysis (Figure 1 and Supplementary
Figure 1) suggested that the metazoan C3-like ancestral molecule
underwent distinct evolutionary trajectories in different phyla.
Although since most sequences were obtained from transcriptomes
and not genomes it was unclear if all forms of C3-like that exist were
retrieved for all species (Supplementary Table 1). No clustering with
the vertebrate C3, C4 and C5 was found but phyla specific clustering
of themodernC3-like genes occurred and the diverse gene number in
cnidaria, protostomes and invertebrate deuterostomes resulted from:
a) lineage-specific and b) species-specific duplications events.
Clustering of the invertebrate deuterostomes (Hemichordata,
Echinodermata and Cephalochordata phyla) C3-like genes suggest
that evolution was similar to the protostome model, but their early
radiation prior to the protostome and vertebrate clades explains the
greater gene sequence divergence (Figure 1 and Supplementary
Figure 1). The C3-like gene first emerged in the Cnidaria phylum but
was subsequently lost from representative species of the phyla of
Annelida, Dicyemida, Platyhelminthes, Nematoda and in some
subphylum of Arthropoda (Hexapoda and Crustacea). Lineage
duplication events led to multiple C3-like genes in Cnidaria
(Hexacorallia, subclass), Arthropods (Ixodes and Sarcoptiformes
orders) and Mollusca (Gastropoda class) phyla generating two
types of C3-like (Type I and Type II). Species-specific duplications
of the C3-like gene were also identified in species of the Arthropoda
(Scolopendromorpha and Ixodida order), Mollusca (Cardiida,
Venerida, Myida and Unionida orders) and in the deuterostome
Echinodermata (Forcipulatida, Valvatida, Aspidochirotida,
Camarodonta orders) phyla (Figure 1).

C3-Like Proteins Share Conserved
Sequence Motifs and Similar Protein
Chains With Vertebrates
The 13 characteristic domains of the vertebrate C3, C4 and C5
proteins (3, 36, 37) such as the eight macroglobulin domains
(MG1-8); the link domain (LNK), anaphylatoxin domain
(ANATO), the complement C1r/C1s, Uegf, Bmp1 domain
(CUB), the thioester-containing domain (TED) and the
carboxy-terminal domain (C345C) are present in the deduced
cnidaria, protostome and invertebrate deuterostome C3-like
proteins. The deduced protein structure of C3-like also
contained the two enzymatic cleavage sites (a-b and a-g)
(Figure 2 and Supplementary Figure 2A) responsible for the
release of b, a and g protein chains that generate the functional
structure. More specifically the “RXXR” motif (where X is K, P,
Q, M or T) in the a-b cleavage site and the a-g cleavage site was
highly conserved in C3-like from Cnidaria and other phyla up to
the vertebrate C3, C4 and C5 (Figure 2). The a-g cleavage site
was absent from some forms of C3-like for example in the
Cnidarian, the cauliflower coral Pocillopora damicornis C3-like-2
(PdaC3-like-2), in the Arthropoda, the Chinese red-headed
centipede Scolopendra japonica C3-like-1 (SjaC3-like-1), in the
Mollusca, the Chinese razor clam S. constricta C3-like-3 (ScoC3-
l ike-3) and in the Echinodermata , the sea urchin
Strongylocentrostus purpuratus C3-like-1 (SpuC3-like-1). In the
ANATO domain, six cysteine (Cys) residues and a C-terminal
March 2022 | Volume 13 | Article 840861
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arginine (Arg) residue which are responsible for the activity of
the vertebrate protein a-subunit were highly conserved from
Cnidaria C3-like up to vertebrate C3, C4 and C5 (Figure 3 and
Supplementary Figure 2B). But species-specific C3-like gene
duplication events in Mollusca and Arthropoda produced a gene
isoform with a non-conserved thioester “GCGEQ” bond
analogous to what occurs in vertebrate C5. In the gastropods, C3-
like type I gene encoded a protein that lost the a-b cleavage site, the
ANATO domain and had a non-conserved thioester bond.
Frontiers in Immunology | www.frontiersin.org 3
Mollusca Duplicate C3-Like
Isoform Function
The function of protostome C3-like isoforms was explored in, a
bivalvemollusk (theChinese razor clam)and their highly conserved
domain structure across protostomes favors functional inference.
ThreeC3-likegenemembers exist in theChinese razorclam(ScoC3-
like-1 to 3) and arose by species specific gene duplications and their
deduced protein structure contained the 13 characteristic motifs,
and the conserveda-b (665RVKR668) cleavage site and the ANATO
FIGURE 1 | Collapsed phylogenetic tree of the cnidaria, protostomes and invertebrate deuterostomes C3-like genes. The phylogenetic tree was constructed using
the Bayesian Inference (BI) method and posterior probability values for the main branches are represented. Sequences from 56 species of diverse non-vertebrate
phyla and with representatives of different orders and classes were used. Analysis included C3, C4 and C5 from 9 vertebrates for comparisons. To facilitate
visualization some branches were collapsed. The tree was rooted with human CD109 and A2MG but these sequences are not shown in the figure. The unedited
phylogenetic tree is available as Supplementary Figure 1A. Branches with different colors indicate the species of different phyla: Cnidarian (deep blue), Nemertean
(pink), Mollusca (red), Arthropoda (olive green), Echinodermata (purple), Cephalochordata (green), Hemichordata (light blue) and Vertebrata (orange). Circles in the
branches indicate lineage-specific duplication events. The boxes highlight the sequences that arose by species-specific events and a silhouette of the different
animals is presented. The number of species (n) collapsed within each tree branch is indicated. An ML tree with a similar topology is available as Supplementary
Figure 1B. The source and accession numbers of the sequences used are in Supplementary Table 1.
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domain with six conserved cysteine (Cys) residues (14, 33)
(Figure 3 and Supplementary Figure 2B). In ScoC3-like-3, the
thioester bond structure (1038GCVSQ1042) was poorly conserved
(Figure 3). ScoC3-like-1 and ScoC3-like-2 deduced proteins had
the three-chain structure (a-b cleavage site and a-g cleavage site)
typical of vertebrate C4 and ScoC3-like-3 had the two-chain
Frontiers in Immunology | www.frontiersin.org 4
structure (a-b cleavage site only) typical of vertebrate C5. All
three C3-like genes in the Chinese razor clam had a similar tissue
distribution and were present in liver, hemocytes, siphon, mantle,
foot, gill, and gonad (Supplementary Figure 3A). ScoC3-like-3 was
significantly more abundant (p < 0.001) in the liver compared to
ScoC3-like-1 and ScoC3-like-2.
A

C 

B

FIGURE 2 | Schematic representation of the protein domains of the vertebrate C3, C4 and C5 and the non-vertebrate C3-like deduced proteins. (A) Linear
representation of the human C3, C4 and C5 structure with the localization of the 13 domains elucidated from the crystallographic structure of human C3 (3, 36, 37)
[eight MG- macroglobulin domains (MG1-8); the link domain (LNK), anaphylatoxin domain (ANATO), the complement C1r/C1s, Uegf, Bmp1 domain (CUB), thioester-
containing domain (TED) and the carboxy-terminal domain (C345C)]; the a-b (cross symbol) and a-g (parallel lines symbol), cleavage sites and the three protein
chains (b (blue), a (red) and g (green) -chain). (B) Predicted mature protein structure of human C3, C4 and C5. The two mature protein subunits, “a” (only with the
ANATO domain) and “b” for each protein is represented. The star represents the thioester bond, and the connecting lines represent the disulphide bridges that
connect the different protein chains. (C) Mature protein structure predicted for C3-like. Only the predicted chains and ANATO domains, cleavage sites and thioester
bond are represented. The dashed line represents incomplete sequences. The phylogenetic tree represented is a simplified version of Figure 1 and branches with
different colors indicate different phyla. The deduced structure of the C3-like proteins that are proposed to have emerged from species-specific duplication events are
boxed to highlight their predicted structural diversity. The detailed figure with all species and protein motifs is available in Supplementary Figure 2A. The source
and accession numbers of the sequences are given in Supplementary Table 1.
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Cleavage of Bivalve C3-Like Into “a and b”
Functional Subunits
ScoC3-like circulates in the hemolymph (Supplementary Figure 4).
To confirm if ScoC3-like is cleaved into two subunits (a-subunit and
b-subunit) as occurs for vertebrate C3, native ScoC3-like-1, ScoC3-
like-2 and ScoC3-like-3 in LPS activated razor clam hemolymph
(SCH) were analyzed by Mass Spectrometry (MS). The C3-like
peptide sequences obtained confirmed the presence of the N-
terminal a-subunit cleavage site (661RRKR664, 661RRKR664 and
665RVKR668 in ScoC3-like-1, ScoC3-like-2 and ScoC3-like-3,
respectively) and the C-terminal site (754VNR756, 754VNR756 and
760RNR762 was identified in ScoC3-like-1, ScoC3-like-2 and ScoC3-
like-3, respectively) (Supplementary Table 2). The theoretical
molecular weight of the a-subunit for each ScoC3-like protein
isoform (Supplementary Table 3) matched the predicted size of
the deduced protein sequence indicating that in razor clam the three
Frontiers in Immunology | www.frontiersin.org 5
C3-like isoforms are cleaved, to generate functional “a” and “b”
subunits that circulate in SCH.
Functional Divergence of Bivalve
C3-Like Subunits
The function of the two C3-like protein subunits (a and b) of the
three different razor clam C3-like isoforms was characterized.
C3-Like-b Subunit
A hemolysis-inhibition assay with antisera specific for each
ScoC3-like-b isoform was used to determine, which b-subunits
provoked significant hemolysis of rabbit erythrocytes
(Figure 4A). Antisera specific for ScoC3-like-3b did not
significantly modify the hemolysis rate (p > 0.05). Antisera
specific for ScoC3-like-1b (33) and ScoC3-like-2b subunits (14)
FIGURE 3 | Sequence conservation of the C3-like functional domains and motifs. The alignment of the predicted amino acid sequences for the ANATO domain (a-
subunit), the thioester bond and His-Glu amino acid residues essential for the binding of C3 and C4 to the surface of foreign targets, and the two cleavage sites: a-
g(CS) and a-b are represented. This figure is a summary version of the full figure available in Supplementary Figure 2B. The different protein domains and motifs
represented were deduced from the C3-like sequence alignment containing all collected sequences. Amino acids were colored using the MSA default settings and
letters of different heights are indicative of amino acid residue conservation across sequences (the bigger the letter, the higher the sequence conservation). The
dashed line indicates the regions where no sequence overlap was found. The sequences of the Echinodermata, Arthropoda and Mollusca species-specific C3-like
proteins are boxed. The ANATO domain represented is the automatic trimmed sequence alignment of the most conserved regions using the Multiple alignment
trimming tool with a site coverage cut-off= 0.95 in the TBtools software (38). The source and accession numbers of the sequences used are listed in
Supplementary Table 1.
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both caused a significant (p < 0.05) reduction in the hemolysis
rate. Addition of anti-ScoC3-like-1b serum and anti-ScoC3-like-
2b serum to the hemolytic positive control (B) ablated hemolysis,
revealing that ScoC3-like-1b and ScoC3-like-2b were hemolytic
factors but ScoC3-like-3b was not.
Frontiers in Immunology | www.frontiersin.org 6
C3-Like-a Subunit
Cell chemotaxis assays and phagocytosis assays were used to
characterize the function of the C3-like protein a-subunits.
Chemotaxis assays using either razor clam hemocytes (SCHC) or
mammalian J774A.1 cells revealed that the recombinant ScoC3-
A B

C

E

F G

D

FIGURE 4 | Razor clam C3-like protein functional assays. (A) Hemolytic activity. Rabbit erythrocytes were used. The blue line represents the threshold of hemolysis.
Results are shown as the mean ± the standard error (SEM, n = 3 assays). “+” means the reagent was added and “-” means the reagent was not added. The
increase in color tone of the bars represents the intensity of hemolysis. One-Way Anova was used, and different letters indicate the significantly different groups (p <
0.001). (B) Chemotaxis response of SCHC to recombinant S. constricta a-protein subunits. Values represent the mean ± SEM (n = 3 assays). Different letters
indicate significantly different groups (p < 0.05). (C) Effect of heat and trypsinization of recombinant S. constricta a-protein subunits. Bars represent the mean ± SEM
(n = 3 assays). One-Way Anova was used, and different letters indicate significantly different groups (p < 0.05). (D) Effect of recombinant ScoC3-like-a subunits on
chemotaxis of J774A.1 cells. BSA was used as the positive control. Values represent the mean ± SEM (n = 3 assays). One-Way Anova was used and groups with
different letters are significantly different (p < 0.05). (E) Migration of J774A.1 cells in response to ScoC3-like-3a. Dark points represent the center of mass (COM), red
dots represent the upwards-migrating cells (red lines) and blue dots the downwards-migrating cells (black lines). BSA was used as the negative control. The chemotaxic
factors (ScoC3-like-3a or BSA) were added to the lower chamber. The number of cells for which migration was tracked using the automatic setting is indicated: C3-
like-3a (exposed group, n=32) and BSA (control group, n=34). (F) Scatter plot of the displacement of center of mass (COM) of the J774A.1 cells. Values represent
the mean ± SEM (n = 32, automatic detection setting). A students t-test was used to identify significant differences between groups. The p value for the pairwise
comparison is shown. (G) Scatter plot of the forward migration index (FMI) of the J774A.1 cells. Values represent the mean ± SEM (n = 34, automatic detection
setting). A student t-test was used to identify significant differences between groups. The p value for the pairwise comparison is shown.
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like-3a was the most active protein isoform in both assays. In the
SCHC assay all recombinant ScoC3-like-a forms significantly
stimulated cell migration (p < 0.001) but ScoC3-like-3a was
significantly more active (p < 0.001) than the other ScoC3-like a-
subunits (Figure 4B). Heat-treatment of ScoC3-like-a protein
subunits did not significantly modify their capacity to promote
SCHC migration and ScoC3-like-3a was still significantly more
active (p < 0.001) (Figure 4C). Treatment of all recombinant
ScoC3-like-a protein subunits with trypsin ablated their action.

ScoC3-like-3a was the only protein tested that significantly
induced J774A.1 cell chemotaxis (p < 0.001) (Figure 4D). The
induced trajectory of J774A.1 cell chemotaxis towards ScoC3-like-
3a and BSA (Figure 4E) was 94% and ~62%, respectively. The
greater number of J774A.1 cells that migrated towards ScoC3-like-
3a, was revealed by the significant upward shift (p < 0.0001) of the
center mass [COM (blue circle)](Figure 4F) and by the induced (p
< 0.001) ForwardMigration Index (FMI) on the Y axis (Figure 4G).

The SCHC phagocytic activity against Staphylococcus aureus and
Vibrio anguillarum revealed that all recombinant ScoC3-like a-
protein subunits significantly increased (p < 0.05) phagocytosis
compared to the negative control (TBS) and positive control (bovine
serum albumin BSA) (Figures 5A, B and Supplementary
Figure 5). SCHC phagocytic ability was significantly higher in the
presence of ScoC3-like-3a (p < 0.001 and p < 0.05) compared to
ScoC3-like-1a and ScoC3-like-2a.

Bivalve C3-Like-a Subunit Induces an
Inflammatory Response
The consequences of high circulating levels of ScoC3-like-a in
razor clams was assessed by measuring a candidate gene of the
inflammatory response (NF-kB) and a proinflammatory
cytokine (TNF-a) in vivo. Injection of Sco-C3-like-1a
significantly up-regulated (p < 0.001) ScNF-kB in the liver 4
and 8 h post injection and ScTNF-a, 1, 2 and 4 h post injection
(Figures 5C, D). Injection of ScoC3-like-2a significantly up-
regulated (p < 0.001) ScNF-kB, 1, 2, 4 and 8 h post injection and
ScTNF-a at 4 and 8 h post injection. ScoC3-like-3a injections
provoked a significant up-regulation (p < 0.001) of ScNF-kB and
ScTNF-a at 1, 2, 4 and 8 h post injection (Figures 5C, D).

DISCUSSION

The phylogenetic analysis in the present study indicates the
appearance of multiple C3-like genes in cnidaria, protostomes
and invertebrate deuterostomes was independent of the process
that gave rise to the C3, C4 and C5 genes in vertebrates. In phyla
where innate immunity is the main defense mechanism
appearance of multiple C3-like genes is the prevalent
evolutionary model. A putative C3-like prototype gene
emerged early in evolution after Porifera and during the
species radiation it was lost from some species genomes while
in others, lineage and species-specific gene duplications occurred
which probably contributed to structural and functional diversity
(Figure 6). In the bivalve mollusk, the Chinese razor clam, three
paralogue C3-like genes emerged by species-specific gene
duplication and shared functions with the vertebrate orthologues.
Frontiers in Immunology | www.frontiersin.org 7
The complexity of mapping C3 evolution is associated with
the greater importance of protein domains and protein structure
for function and family member assignment than the primary
amino acid sequence. The elucidation of the crystalline structure
of mammalian C3 (3), which uncovered high domain/structural
similarities with C4 and C5 despite substantial primary sequence
divergence consolidated this concept (10). This may explain why
evolutionary models based on the comparison of the primary
amino acid sequence of non-vertebrate C3-like genes fail to
cluster gene isoforms within phyla and generate ambiguous
evolutionary models. Nonetheless, as observed for vertebrate C3,
C4 and C5 high domain/structural similarities existed between the
deduced proteins of different C3-like gene isoforms (Figure 6).

Common structural features of vertebrate C3 and C4 were
identified in C3-like isoforms including in the Cnidaria phylum
where it first emerged (9, 27, 39). This suggests that the ancestral
gene already contained the structural elements responsible for the
modern proteins functions and explains the structure/function
conservation between vertebrate C3, C4 and C5 and cnidarian,
protostome and invertebrate deuterostomes C3-like despite their
evolutionary distance (Figure 6). In the case of the Chinese razor
clam, duplication led to divergence of C3-like isoforms with
secondary loss of some structural domains in ScoC3-like-3 and
associated functional modifications, which echoes what occurred
to vertebrate C4 and C5. The characteristic three-chain structure,
a-b cleavage site and a-g cleavage site of vertebrate C4 was
identified in ScoC3-like-1 and ScoC3-like-2 deduced proteins
and the two-chain structure, a-b cleavage site and absence of
the a-g cleavage site characteristic of C5 (2, 15) was identified in
ScoC3-like-3. In other Mollusks two other C3-like structural
isoforms, specific to this phylum, were also predicted. These
were found in several gastropods and the deduced proteins had
lost important functional domains including the ANATO domain
that is responsible for the function of the protein a-subunit raising
question about their function (Figure 6).

With few exceptions (Gastropods and Scolopendromorpha) a
stable and conserved multi-chain structure is the main
characteristic of C3-like proteins, which contrasts with the
members of the A2M superfamily where no a-b cleavage site
exists (11). The structural similarities between deduced C3-like
proteins and the TEP superfamily are consistent with its
proposed origin from the TEP gene family duplication (1, 9,
40). The C3-like gene duplication in Hexacorallia and loss of the
a-g cleavage site in one of the duplicates is reminiscent of the
situation that arose in the vertebrate duplication that generated
the C3, C4 and C5 genes (11–15). Although in early vertebrates
like the hagfish (Eptatretus burgeri), the a-g cleavage site is still
evident in the deduced C3 protein (41, 42) and generates a
mature protein with 3 chains. The loss of the a-g cleavage site in
non-vertebrates and vertebrates, was a crucial step in the
functional differentiation of the gene duplicates.

The loss of the a-g cleavage site in C3-like occurred
independently many times in cnidaria, protostomes and
invertebrate deuterostomes during lineage or species-specific
gene duplications (Figure 3). This was clearly exemplified by
the genes and their deduced proteins in the razor clam. ScoC3-like-
March 2022 | Volume 13 | Article 840861
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1 and ScoC3-like-2 generated the more ancient three-chain type
protein, while ScoC3-like-3, lost the a-g cleavage site and belongs
to the two-chain type. Functional characterization of the razor
clam C3-like isoforms generating three-chain or two-chain
proteins unveiled the activities of the a-protein subunit, which
were reminiscent of vertebrate C4 and C3/C5, respectively (43,
44). Furthermore, the C3 gene (encoding a two-chain protein) in
advanced vertebrates has a specific functional role in the
complement signaling pathway, however the C3 gene of
cyclostomes (encoding a three-chain protein) still exhibits a
broad activity spectrum (45–47). The functional studies of C3-
like isoforms and C3, C4 and C5 in vertebrates fully support the
notion that the loss of the a-g cleavage site contributed to
functional differentiation of C3, C4 and C5 family genes (48–50).

From a functional perspective the thioester bond directly
interacts with the surface of foreign targets in vertebrate C3 and
Frontiers in Immunology | www.frontiersin.org 8
C4 but not C5 (5, 40) and C3-like in the horseshoe crab
(Crustacean, Arthropoda phylum) that retains the thioester
bond also bind to the surface of bacteria (30, 39). In vertebrate
C3 the thioester bond and the two conserved amino acid residues
(His and Glu) in proximity guide foreign target binding and the
lack of a thioester bond in C5 explains its functional divergence
(5, 40). The results of the phylogenetic and sequence analysis
revealed that secondary loss of the thioester bond in C3-like
occurred independently many times in cnidarian, protostomes
and invertebrate deuterostomes during lineage or species-specific
gene duplications. The consequences of C3-like gene duplication
on the function of the complement system in Mollusca have not
previously been described and infrequent reports of C3-like
genes and immunological activity exist in protostomes (17, 18,
30, 39, 51). The functional significance of the structural changes
in the non-vertebrate C3-like proteins exemplified by the results
A B

C D

FIGURE 5 | Capacity of the recombinant ScoC3-like-a subunit to induce SCHC phagocytic activity and their role in the regulation of the expression of immune
inflammatory factors. For the phagocytosis assays two types of bacteria were used (A) V. anguillarum and (B) S. aureus and analysis were performed by flow
cytometry. One-Way Anova was used and the groups with different letters are significantly different (p < 0.05). Quantitative expression analysis of NF-kB (C) and
TNF-a (D) in Chinese razor clam hemocytes after exposure to recombinant ScoC3-like-a protein subunits. Relative expression level is expressed as fold-change in
comparison to the control groups (TBS and BSA treated group). Values represent the mean ± SEM (n = 3 pools composed of 3 individuals/pool). One-Way Anova
was performed, and different letters represent significant differences (p < 0.05) in relation to the control.
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of the razor clam is reported for the first time. Based on
structure/function relationships the razor clam genes were
divided into 2 groups (ScoC3-like1/2 and ScoC3-like-3) that
mirrored the modified protein structure found in vertebrate C4
and C5 (Figure 6) and both ScoC3-like-1 and 2 were potent
hemolytic factors that bind to the surface of pathogens (14, 33).
In vertebrates, even though C5 lost the thioester bond, C5b is
part of the MAC complex that causes cell lysis. ScoC3-like-3b
also lacks the thioester bond but is not a hemolytic factor and its
function in the mollusca complement pathway remains to
be established.

The complement a-protein subunit is produced from the
ANATO domain, which contains six conserved cysteine
Frontiers in Immunology | www.frontiersin.org 9
residues and one cleavage site (35). The convertase cleavage
site of the ANATO region (L-R) was conserved across most
vertebrates (35, 44) and was missing from the sea cucumber (A.
japonicus, R-R) (20), Ciona (C. intestinalis, Q-G-R) (43) and sea
squirt (Halocynthia roretzi, T-S-R) (52). Nonetheless, although
the L-R site was missing in cnidaria, protostomes and
invertebrate deuterostomes LC-MS of razor clam C3-like
revealed cleavage occurred at non-consensus sites (e.g V-N-R,
R-N-R) to generate the a and b-protein subunit. The
anaphylactic activity of the C3-like-a protein subunits in razor
clam differed in potency (ScoC3-like-3a > ScoC3-like-1a, ScoC3-
like-3a > ScoC3-like-2a) much like the human C3/C4/C5-a
protein subunit (35, 53). The chemotactic activity of the razor
FIGURE 6 | Structural homology of the predicted non-vertebrate C3-like proteins with the vertebrate C3, C4 and C5 proteins. Circles of different color represent the
distinct structural isoforms predicted. Human C3, C4 and C5 are represented at the top for comparison. Dashed circles represent gene absence and the numbers
inside the colored circles indicate the number of proteins with similar structure found in the species. Blue circles, indicate that a C3-like protein is predicted with a
functional structure consistent with the vertebrate C3 (which contains the a-b cleavage site, ANATO and thioester bond); Red circles, indicate that a C3-like isoform
is predicted with a functional structure similar to vertebrate C4 (a-b and a-g cleavage sites, ANATO and thioester bond); Green circles, indicate that a C3-like isoform
is predicted with a functional structure similar to vertebrate C5 (a-b cleavage site and ANATO). Two other C3-like protein structures (colored yellow and pink) that
have no representatives in vertebrates were identified in Mollusca.
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clam C3-like-a protein subunits on hemocytes and mice
macrophage was coherant with their structural and functional
conservation with vertebrate C5a activity on neutrophils,
monocytes, and macrophages (54) and C3a on eosinophils and
mast cells (54, 56, 57). A C3-like-a protein subunit that induces
chemotaxis of ascidian (Pyura stolonifera) hemocytes was
proposed to act via a C3aR-dependent mechanism due to the
conserved high-level structure of ascidian C3-like-a and
vertebrate C3a (58). The recent identification of a complement
a-subunit receptor protein in the Heterodonta clade (29) leads us
to speculate that the mechanisms determining ScoC3-like-3a
induced chemotaxis of bivalve hemocytes may also be via a
C3aR-like dependent pathway.
CONCLUSION

An evolutionary model for the C3 gene family in metazoans was
developed and revealed gene family expansion occurred by both
lineage and species-specific duplications in cnidarian,
protostomes and invertebrate deuterostomes. The main
structural domains characteristic of vertebrate C3, C4 and C5
were already present in the ancestral genes and differentiated
independently during the evolution of C3-like genes.
Conservation of the ancestral prototype C3 protein domains in
cnidarian, protostomes, invertebrate deuterostomes and
vertebrates were associated with functional homology and
indicates parallel evolution occurred. The complement system
provides an example of how proteins with a strong link between
domain structure and function influence gene evolution.

We demonstrate that the parallel functional evolution of the
C3, C4, C5 and C3-like genes resulted from a common process,
the secondary loss of specific functional domains due to gene
duplication, which corroborates the secondary loss evolutionary
model of Nonaka and Kimura (10).

The detailed evolutionary and functional analysis of C3-like in
bivalves leads us to propose that overall, the complement system in
mollusks shares the core functions of C3, C4 and C5 in vertebrates.
The results of the present study, taken with data from other studies
(14, 28, 33, 34) indicate the complement system in cnidarian,
protostomes and invertebrate deuterostomes acquired unique
characteristics: 1) it does not rely on a MAC structure to cause
lysis and 2) novel reaction cascade pathways are triggered by
C3-like.
MATERIALS AND METHODS

Animals, Experimental Conditions, and
Tissue Sampling
Chinese razor clam (Sinonovacula constricta) is a non-
endangered species. Adult razor clams (body weight 8.5 ±
0.5 g, length 5.0 ± 0.3 cm) were collected from Donghang
Farm (Zhejiang Province, China) and used in the experiments.
Approximately 300 adult razor clams were maintained in a 40 L
tank (80×50×30cm) with oxygenated freshwater at 24 – 25°C and
Frontiers in Immunology | www.frontiersin.org 10
20 ‰ salinity. Half of the tank water was renewed daily.
Experimental animals were anesthetized on ice before tissue
collection and were opened by cutting the adductor mussel
and hinge with a blade. The SCH was collected from the
cardiocoelom using a sterile 1000 mL syringe (14) and each
sample represents a pools of 9 animals. The SCH was centrifuged
to separate the SCHC and filtered twice (0.22 mm) to remove any
cells, bacteria, or other debris. The collected SCH was used in:
Western blot (WB), immunoprecipitation (IP), hemolysis assays
and mass spectrometry (MS). The pelleted SCHCs were washed
and resuspended in Tris Buffered Saline (TBS, 50 mM; Tris-Cl
pH 8.0; 300 mM NaCl) before determination of cell migration
and phagocytic activity. All tissues collected were immediately
frozen in Liquid nitrogen and stored at -80°C.

Database Searches, Phylogeny Analysis
and Protein Motif Annotation
Human C3, C4 and C5 sequences were used as queries to retrieve
putative C3-like genes/transcripts (e-value ≤ 1e -40) from 66 species
representative of different animal phyla (Anthozoa, Nemertea,
Mollusca, Arthropoda, Echinodermata, Chordata) in public
databases (Supplementary Table 1). The identity of retrieved
sequences was confirmed by searching against NCBI (nr,
taxid:9606). Multiple sequence alignments (MSA) were made
using the MUSCLE algorithm (59) and the deduced amino acid
sequence (60). For the phylogenetic analysis removal of gaps and
improvement of alignments was achieved by manual editing of the
MSA and two tree-building methods were used: Maximum
Likelihood (ML) and Bayesian Inference (BI). The BI tree was
built in the CIPRES Science Gateway v3 using aWAG substitution
model (selected using model test-ng 0.1.5) and run on XSEDE
v3.2.7a with 1.000.000 generation sampling and probability values
to support treebranching.TheML treewas built inPhyML3.0 from
the ATGC bioinformatics platform (http://www.atgc-montpellier.
fr/phyml/ with the samemodel and 100 bootstrap replicates. Trees
were displayed in FigTree 1.4.3 (http://tree.bio.ed.ac.uk/software/
figtree), rooted with human CD109 and A2MG and edited in the
Inkscape program (https://inkscape.org). AnMSAof the full length
deduced aminoacid sequence of vertebrateC3,C4 andC5andnon-
vertebrate C3-like was used to identify common protein domain
structures according to (3, 36, 37) and specific motifs/domains that
included the a-b cleavage site, ANATO domain, the a-g cleavage
site, Thioester bond site and the downstream His-Glu amino acid
residueswere analyzed in detail.MSAwere displayed using TBtools
(38) software.

Mass Spectroscopy
Mass spectroscopy (MS)was used to determine if ScoC3-like-3 was
cleaved and if cleavage liberated C3-like3a and C3-like-3b protein
subunits. Complement activation reactions were carried out by
adding LPS (0.2mg) to SCH (200mL) and incubating for 1h at room
temperature. The reaction mix (20 mL of the reaction mix) was
analyzed on a 10% SDS-PAGE polyacrylamide gel stained with
Coomassie Brilliant Blue. The region of the gel between 7-15 kDa
(corresponding to the predicted size ofC3-like-3a) and between 60-
135 kDa (corresponding to the predicted size of C3-like-3b) were
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excised and analyzed by MS (UHPLC Systems, UltiMate 3000,
Thermo Fisher, USA) and the output data analyzed using Mascot
2.2 software (see Supplementary Methods).

Hemolytic Activity
The hemolytic activity of three ScoC3-like isoforms was
determined using rabbit erythrocytes in TBS and protein
specific antisera (ScoC3-like-1b and ScoC3-like-2b (34) and
ScoC3-like-3b antisera). For the hemolysis assays, triplicate 200
mL reactions were set-up for each treatment and incubated at
28°C with occasional mixing for 5 h (Supplementary Table 4,
see Supplementary Methods). The experiment was repeated on
two other independent occasions. The hemolysis rate was
calculated using the formula: (Sample OD − PBS OD) × 100/
(water OD − PBS OD). A hemolysis rate of less than 5% was
taken to indicate no hemolysis occurred [Mayer (61)].

Cell Chemotaxis Assay
The capacity of each isoformof ScoC3-like-a (0, 5, 10, 20 and 40mg/
ml) to stimulate chemotaxis was tested with SCHC and with a
mammalianmonocytemacrophage cell line (J774A.1) derived from
tumors of BALB/c mice (FH0329, FuHeng Cell Center, Shanghai,
China). Three independent assays were performed. Cells were
activated by exposure for 12 h to 200 nm/ml LPS (from
Escherichia coli O111:B4, Sigma-Aldrich, USA) and Transwell
chemotaxis assays were performed at 28°C for 3 h with the SCHC
cells and at 37°C for 2 h with the J774A.1 cells (see Supplementary
Methods). Cells that migrated to the lower chamber were analyzed
with a flow cytometer (BD C6Plus, BD Biosciences, USA). Control
assays included the use of C3-like-a proteins exposed to heat-
treated, trypsin-treated, or heat inactivated trypsin. A m-Slide
Chemotaxis assay (m-Slide Chemotaxis ibiTreat, Ibidi, Germany)
(62, 63), was used to confirm the observed effects of ScoC3-like-3a
(see SupplementaryMethods). The m-Slide was observed using an
inverted microscope (DMI8, Leica, Germany) and the cell
migration captured by photographing preparations every 2 min
over 90 min. Cell trajectories (32 and 34 cells in C3-like-a exposed
andBSAgroup, respectively) of the three assayswere analyzedusing
the ImageJ (NIH, Bethesda,MD)programand the Ibidi chemotaxis
with themigration tool.Displacement of center ofmass (COM)and
the forward migration index (FMI) was determined (64).

Phagocytosis Assay
Phagocytosis by SCHC of heat killed bacteria (S. aureus and V.
anguillarum) labelled with FITC was assessed in the presence
and absence of the recombinant ScoC3-like-a proteins by
flow cytometry (BD C6Plus) and dot plots collected (see
Supplementary Material). Three independent assays were set up.
The phagocytic ratio of SCHC was established by applying the
formula: 100%× (total SCHC–non-phagocytic SCHC)/total SCHC.

In Vivo Injection of ScoC3-Like-a
Protein Subunit
The consequences ofhigh circulating levels of eachof the 3 isoforms
of ScoC3-like-a subunits in vivo was analyzed. Approximately 175
adult razor clams acclimated to the experimental conditions
(outlined above) were used and divided into 5 groups (35 animals
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pergroup).The control groupwas injectedwith100mLTBS into the
foot and four treatment groups were injected with either 40 mg of
BSA or the recombinant ScoC3-like-1a, ScoC3-like-2a, or ScoC3-
like-3a (see Supplementary Methods for recombinant protein
production). After injection six individuals from each group were
killed at 0, 1, 2, 4 and8h and the liverwasdissectedout and stored at
-80°C until analysis. The candidate genes chosen to monitor the
immune response were TNF-a and NF-kB obtained from a cDNA
library (65) (Supplementary Table 5). Total RNA, cDNA and
expression analysis were performed as described above.
DATA ANALYSIS

SPSS 19.0 statistical software was used for data analysis. Data
from qRT-PCR and functional assays were analyzed using a
Fisher LSD one-way ANOVA to determines significant
differences between groups (p < 0.05). The data in Figures 4F,
G were analyzed using a Student t-test to determine the existence
of significant differences between groups (p < 0.05). Data are
presented as the mean ± SEM. Figures were plotted using
GraphPad Prism software (V8.0.2, USA).
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