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Stimulator of interferon response cGAMP interactor 1 (STING1), also known as
TMEM173, is an immune adaptor protein that governs signal crosstalk that is
implicated in many physiological and pathological processes. Although it has been
established that STING1 traffics from the endoplasmic reticulum (ER) to Golgi
apparatus (Golgi) upon DNA-triggered activation, emerging evidence reveals that
STING1 can be transported to different organelles, which dictate its immune-
dependent (e.g., the production of type I interferons and pro-inflammatory cytokines)
and -independent (e.g., the activation of autophagy and cell death) functions. In this
brief review, we outline the roles of STING1 in different organelles (including the ER, ER-
Golgi intermediate compartment, Golgi, mitochondria, endosomes, lysosomes, and
nucleus) and discuss the potential relevance of these roles to diseases and
pharmacological interventions.
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INTRODUCTION

Stimulator of interferon response cGAMP interactor 1 (STING1, also known as STING or
TMEM173), an evolutionarily conserved transmembrane protein, is expressed in various
endothelial and epithelial cell types as well as in T cells, B cells, and myeloid cells (e.g.,
macrophages and monocytes) and mainly localized on endoplasmic reticulum (ER). It was
originally described as an adaptor protein that mediated the production of type I interferons
(IFNs) in DNA-induced immune responses (1–4). Although STING1-mediated innate immunity
plays significant roles in shaping host defense against microbe invasion and tumor growth (5),
aberrative activation of STING1 can also disturb immune balance, thereby leading to pathological
conditions and human diseases, such as STING-associated vasculopathy with onset in infancy
(SAVI), Aicardi-Goutieres syndrome, systemic lupus erythematosus (SLE), and sepsis (6, 7), as well
as neurodegenerative diseases (8), and metabolic diseases (9). Therefore, STING1 is an emerging
therapeutic target in translational research.

Accumulating evidence demonstrates that the subcellular distribution of STING1 is not
restricted to an ER-to-Golgi apparatus (Golgi) membranous network. Under different
circumstances, the localization on other organelles enables some immune-independent functions
of STING1, contributing to autophagy (10), regulated cell death (11), ER stress (12), lipid
metabolism (13), and DNA damage response (DDR) (14). The participation and crosstalk of
these organelles determine the function of STING1 in diseases by controlling its location, binding
partners, and signaling recognition. In this mini-review, we highlight recent scientific advances
org March 2022 | Volume 13 | Article 8424891
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regarding STING1 in different subcellular structures, and will
draw parallels and differences across functions and diseases.
ROLES OF STING1 IN ORGANELLES

ER
STING1 possesses an N-terminal transmembrane (TM) domain
that spans the ER membrane four times, a cytosolic cyclic
dinucleotide (CDN) binding domain (CBD), and a C-terminal
tail (CTT) (15). Under steady-state conditions, STING1 is
retained in the ER by its ER-binding partners, with its CBD
face to the cytosol, which facilitates the detection of second
messengers. The second messenger is the small molecule and ion
that transmits the signal received by the cell surface receptor to
Frontiers in Immunology | www.frontiersin.org 2
the effector protein. The cytosolic DNA sensor cyclic GMP-AMP
synthase (CGAS) recognizes various DNA driven from
pathogens or hosts, then generates the second messenger’s
cyclic guanosine monophosphate-adenosine monophosphate
(cGAMP). The cGAMP or bacteria-produced CDNs bind to
STING1, causing STING1 to activate through conformational
changes and oligomerization. This protein secondary structural
change of STING1 subsequently promotes the translocation of
STING1 from ER to Golgi, where the CTT of STING1 binds and
phosphorylates the TANK binding kinase 1 (TBK1) and
interferon regulatory factor 3 (IRF3). Finally, activated IRF3
promotes gene transcription of type I IFNs (Figure 1).
Alternatively, STING1-mediated nuclear factor kappa B (NF-
kB) pathway act iva t ion favors the product ion of
proinflammatory cytokines, such as tumor necrosis factor
FIGURE 1 | STING1-mediated type I IFNs production. In response to DNA or RNA from pathogens and hosts, STING1 activates the TBK1-IRF3 pathway, leading to
the production of type I IFNs. CDN, cytosolic cyclic dinucleotide; cGAMP, cyclic GMP-AMP; CGAS, cyclic GMP-AMP synthase; CGLR, CGAS-like receptor; DDX58,
DExD/H-box helicase 58; ER, endoplasmic reticulum; ERGIC, endoplasmic reticulum-Golgi intermediate compartment; IRF3, interferon regulatory factor 3; MAVS,
mitochondrial antiviral signaling protein; STING1, Stimulator of interferon response cGAMP interactor 1; TBK1, TANK binding kinase 1; type I IFNs, type I interferons.
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(TNF) and interleukin 6 (IL6). This supports the hypothesis that
STING1 is a mediator of inflammatory disease (16).

Although there is no clear consensus on the ER targeting
signal sequence of STING1, several binding partners of STING1
regulate the ER retention of STING1. The ER calcium sensor,
stromal interaction molecule 1 (STIM1), physically interacts with
and retains STING1 in ER, inhibiting downstream immune
responses and ER stress in mouse embryonic fibroblasts
(MEFs) and human embryonic kidney 293 (HEK293) cells
(17). In contrast, transmembrane protein 203 (TMEM203)
competes with STIM1 to bind STING1, promoting cGAMP-
induced STING1 activation in human macrophages (18). In
addition, toll interacting protein (TOLLIP), an ubiquitin-
binding protein that interacts with several components of the
toll-like receptor, can stabilize STING1 on the ER and reduce
cGAMP-induced lysosomal degradation of STING1 in MEFs
(19). These findings reinforce the notion that STING1 is an
adaptor protein with strong activity in binding multiple proteins.
Different STING1 protein complexes not only affect the location
of STING1 in the ER, but also regulate its degradation
and activity.

The exit of STING1 from the ER is a kinetic process involving
interaction with STING1 ER exit protein 1 (STEEP1) to recruit
phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3),
leading to phosphatidylinositol-3-phosphate (PtdIns3P)
synthesis and membrane curvature on the ER, and finally
packaging STING1 into vesicles that bud from the ER (20)
(Figure 2). STING1 mutations in the TM domain cause
constitutive ER exit and subsequent autoimmunity in SAVI
patients, the process of which is independent of cGAMP
binding. Brefeldin A, an inhibitor of protein trafficking
between the ER and Golgi, blocks STING1 trafficking
regardless of its mutation status (21). These data indicate that
the membrane topology of STING1 is attributed to its
transmembrane domain and PtdIns3P synthesis. To support
this, virus-mediated cell fusion, including that of DNA viruses
(e.g., herpes simplex virus type 1 [HSV-1]) and RNA viruses
(e.g., influenza A virus), can activate membrane-proximal
signaling phospholipase C-g (PLC-g) and phosphatidylinositol-
3 kinase (PI3K) pathways, triggering STING1-dependent
immune responses independent of nucleotide recognition (22,
23). Overall, these data suggest that PtdIns3P acts as a key signal
to promote ER exit of STING1. Given that STING1 has two
calcium (Ca2+) binding sites and PtdIns3P triggers Ca2+ efflux
from ER to induce STING1 activation (24, 25), Ca2+ may be
another ER exit signal for STING1.

Phase separation, the process of spontaneous separation of a
mixed solution of macromolecules (such as a protein or nucleic
acid) into two phases, is an alternative location for STING1 after
ER exit. Functionally, to prevent STING1 overactivation, a high
cGAMP level induces STING1 condensation on the ER and the
formation of a puzzle-like droplet that separates STING1 and
TBK1 from downstream IRF3 (26) (Figure 2). However, the
constitutive activating mutants in STING1 (including N154S or
V155Mmutations) reduce STING1 phase separators. The lack of
this sponge-based negative feedback mechanism contributes to
Frontiers in Immunology | www.frontiersin.org 3
the autoimmunity of patients with SAVI. The microtubule
inhibitor colchicine (but not actin polymerization inhibitors or
brefeldin A) inhibits STING1 condensation, indicating that the
ER exit of STING1 is also microtubule-dependent.

Many recent studies have focused on how ER-associated
STING1 modulates ER stress and cell death (Figure 2). For
example, during HSV-1 infection, STING1 inhibits the ubiquitin
degradation of NLR family pyrin domain 3 (NLRP3) in
macrophages through direct protein-protein interaction in the
ER, causing inflammasome activation and subsequent pyroptosis
(27). In bacterial sepsis, the interaction of STING1 with ER Ca2+

channel inositol 1,4,5-trisphosphate receptor type 1 (ITPR1)
increases Ca2+ release from ER to cytoplasm in macrophages,
leading to GSDMD-dependent pyroptosis, the release of
coagulation factor III, and subsequent activation of systemic
coagulation in septic mice (25, 28). The constitutive activation of
STING1 can also trigger apoptosis in CD8+ T cells by disrupting
Ca2+ homeostasis and activating the unfolded protein response
and ER stress through its CBD (12). In contrast, the interaction
of notch intracellular signaling domain (NICD) with STING1
CBD limits STING1-mediated apoptosis in CD4+ T cells,
preventing immunosuppression in the late stage of sepsis (29).
Together, these findings establish STING1-dependent Ca2+

signaling in the control of regulated cell death in immune cells.
ER STING1 also links the lipid metabolism and immune

response through the insulin signaling pathway (30–33). On one
hand, STING1-mediated type I IFN signaling limits cholesterol
biosynthetic flux in MEFs. On the other hand, insulin-induced
gene 1 (INSIG1), sterol regulatory element binding transcription
factor 1 (SREBP), and SREBF chaperone (SCAP) show strong
activity to bind STING1, enhancing STING1-mediated cytokine
production. These results raise the concern of whether lifestyle
factors (such as a high-fat diet) affect STING1 signaling and
thereby affect the outcome of metabolic diseases.

ER-Golgi Intermediate Compartment
The ER-Golgi intermediate compartment (ERGIC) is a pre-Golgi
intermediate composed of vesicular tubular clusters that deliver
secretory cargo from ER exit sites to the Golgi (34). Upon
activation, STING1 exits from ER and relocates to the Golgi
via the ERGIC in a coat protein complex II (COP-II)-dependent
manner (10, 35). Pharmacological or genetic inhibition of ER-to-
ERGIC trafficking significantly suppresses STING1 activation
(21, 36). On the other hand, coat protein complex I (COP-I)
mediates the retrograde transport of STING1 to the ERGIC from
Golgi, while deficiency in COP-I transport causes failure of
Golgi-to-ER STING1 retrieval and ligand-independent
activation of STING1, thus contributing to COPA syndrome
(37–40) (Figure 2). COPA syndrome is a rare inherited
autoimmune disease caused by mutations in the coat protein
complex subunit alpha (COPA) gene. Studies highlight the
importance of the ER-ERGIC/Golgi axis in the control of
STING1 activation, demonstrate a “tug-of-war” between the
ER and the ERGIC/Golgi for STING1, and suggest therapeutic
strategies for inflammatory and autoimmune diseases (37–40).
However, whether STING1 can be directly activated on ERGIC
March 2022 | Volume 13 | Article 842489
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needs to be further clarified by inhibition of “ERGIC-to-Golgi”
membrane trafficking.

In addition to its role in immune response, ERGIC is also
involved in STING1-dependent autophagy, a process that relies on
the formation of various membrane structures to degrade
cytoplasmic cargo. ERGIC could serve as a membrane source for
the formation of autophagosomes through STING1 activation-
induced microtubule-associated protein 1 light chain 3
Frontiers in Immunology | www.frontiersin.org 4
(MAP1LC3) lipidation. This STING1-mediated autophagy
initiation is further enhanced by WD repeat domain,
phosphoinositide interacting 2 (WIPI2) (10) or autophagy-related
16-like 1 (ATG16L1) (41). Given that STING1 directly interacts
with MAP1LC3 upon activation, MAP1LC3 lipidation-mediated
transportation may provide more trafficking routes for STING1 on
intracellular organelles. Nevertheless, autophagy-mediated STING1
degradation limits the immune activity of STING1.
FIGURE 2 | The network of STING1 in different organelles. Activated STING1 traffics to the ER, ERGIC, Golgi, mitochondria, endosomes, lysosomes, and nucleus,
contributing to different cellular processes, including immune response, ER stress, cell death, autophagy, gene transcription, and DNA damage response. ALK, ALK
receptor tyrosine kinase; Ca2+, calcium; COP-I, coat protein complex I; COP-II, coat protein complex II; DDR, DNA damage response; DNA-PK, DNA-dependent
protein kinase; EGFR, epidermal growth factor receptor; ER, endoplasmic reticulum; ERGIC, endoplasmic reticulum-Golgi intermediate compartment; EV,
extracellular vesicle; IRF3, interferon regulatory factor 3; ITPR1, inositol 1,4,5-trisphosphate receptor type 1; MAP1LC3, microtubule-associated protein 1 light chain
3; MFN 1/2, mitofusin 1/2; MTMR3/4, myotubularin-related protein 3/4; NLRP3, NLR family pyrin domain containing 3; NPC1, Niemann-Pick type C1; PI3K,
phosphatidylinositol-3 kinase; PLC-g, phospholipase C-g; PtdIns3P, phosphatidylinositol-3-phosphate; sGAG, sulfated glycosaminoglycan; SLC15A3, solute carrier
family 15 member 3; STING1, Stimulator of interferon response CGAMP interactor 1; STIM1, stromal interaction molecule 1; STEEP1, STING1 ER exit protein 1;
TBK1, TANK binding kinase 1; TGN, trans-Golgi network; TLR, toll-like receptor; type I IFN, type I interferon; UNC93B1, unc-93 homolog B1, TLR signaling
regulator; ZDHHC, zinc finger dhhc-type palmitoyltransferase.
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Golgi
The Golgi connects the ER, mitochondria, endosomes, and other
organelles through membranous networks for vesicular
trafficking and protein/lipid secretion. It also serves as a
platform for signaling transduction connecting multiple innate
immune pathways (42). Consistently, activated and polymerized
STING1 traffics to the Golgi and recruits TBK1 for the
phosphorylation of IRF3, inducing a set of downstream
immune and non-immune events, such as IRF3-mediated type
I IFN production, apoptosis, and necroptosis (11). As a part of
Golgi membranous networks, activated Golgi STING1 is further
transported to endosomes for degradation or transported to ER
for recycling (43).

The Golgi membranous network contains a tubular reticular
network of membranes facing the ER, namely the cis-Golgi
network (CGN, including ERGIC) and another tubular
reticular network of membranes facing plasma membrane and
compartments of the endocytic pathway, called the trans-Golgi
network (TGN) (44). The regulation of ER-to-Golgi trafficking of
STING1 is context-dependent. For example, phosphatidylinositol 3
phosphatases myotubularin-related protein 3 (MTMR3) and
myotubularin-related protein 4 (MTMR4), which inhibits
PtdIns3P production, thereby suppressing STING1 trafficking to
Golgi and subsequent STING1-mediated innate immune response
in mouse macrophage RAW264.7 cells (45). Epidermal growth
factor receptor (EGFR)-mediated phosphorylation of STING1 on
Tyr 245 contributes to STING1 trafficking to Golgi and subsequent
activation in RAW264.7 cells, whereas EGFR deficiency leads to
autophagosome localization of activated STING1, instead of
transport to the Golgi (46). In line with this, the activation of
EGFR and ALK receptor tyrosine kinase can mediate STING1
activation in macrophages caused by CDNs (47). STING couples
with the downstream kinases of EGFR and PI3K to control the
accumulation of F-actin during the activation of B-cell receptor
(BCR) (48), highlighting an interplay between STING1 and
cytoskeleton in B cells. Overall, these data indicate that a
phosphoinositide-dependent cytoskeleton transporting system is
highly associated with ER-to-Golgi trafficking of STING1, and
this process is fine-tuned through the EGFR signal
pathway (Figure 2).

Evidence indicates the potential role of TGN in mediating
STING1 activation. First, the active form of TBK1 is only
localized at the TGN, but not at the rest of the Golgi domains
(49). Second, the lipid molecule D-ceramide-C6 disrupts lipid
rafts at the Golgi and TGN location of proteins, and inhibits
STING1-dependent phosphorylation of TBK1 and IRF3 without
affecting the translocation of STING1 to the Golgi (49). Third,
sphingomyelin and cholesterol are enriched in the TGN, which
contribute to the phosphorylation of STING1 by TBK1 (50).
Understanding the active mechanism of STING1 from TGN is
therefore important in innate immunity. Whether CGN plays the
opposite role in STING1 activation is not fully understood.

STING1 activation is highly dependent on palmitoylation,
which is implicated in the clustering of many proteins into
cholesterol- and sphingomyelin-enriched lipid rafts and TGN
(51). Upon activation, STING1 interacts with several palmitoyl
Frontiers in Immunology | www.frontiersin.org 5
transferases on Golgi, such as zinc finger dhhc-type
palmitoyltransferase (ZDHHC) (43, 52) (Figure 2). The
palmitoylation of two membrane-proximal Cys residues (C88/
91) of STING1 is crucial for STING1 activation, even for gain-of-
function STING1 mutants in SAVI patients, which makes
STING1 constitutively expressed on Golgi (49, 53).
Accordingly, nitro fatty acids directly modify STING1
palmitoylation by nitro alkylation, leading to the inhibition of
type I IFN production in fibroblasts derived from SAVI patients
(54). In addition, 4-hydroxynonenal (4HNE), one of end
products of lipid peroxidation, inhibits STING1 translocation
to Golgi and activation by the carbonylation of STING1 at C88 in
mouse primary peritoneal macrophages (55). This 4HNE-
mediated STING1 inhibition is enhanced by the depletion of
glutathione peroxidase 4 (GPX4), which is known for specifically
catalysing the reduction of lipid peroxides. However, excessive
lipid peroxidation can lead to cell death (especially ferroptosis),
which may trigger damage-associated molecular pattern
(DAMP)-mediated inflammation and immune responses.

In addition, the sulfated glycosaminoglycans (sGAGs) can
bind the TM domain of STING1 and promote STING1
clustering in Golgi and subsequent activation in cancer cells
(THP1, HeLa, and HT1080 cells) (56) (Figure 2). A mutant of
STING1 lacking a TM domain and residues C88/91 could form a
self-clustered tetrameric structure and effectively trigger the
TBK1 and IRF3 activation by cGAMP under physiological
conditions (57). Therefore, clustering of STING1 may be a
prerequisite for the interaction of STING1 and TBK1, although
it is unclear whether this change is different under physiological
and pathological conditions.

Mitochondria
The ER and mitochondria share a close relationship via multiple
molecular interaction-bridged mitochondria-associated
membranes (MAMs), which enable signal messenger movement
between the two organelles, regulating mitochondrial fusion and
fission, immune response, metabolic homeostasis, and cell death
(58). The location of STING1 on mitochondria including MAMs
has recently been documented (59). During some RNA virus
infections, STING1 serves as an immune adaptor on the outer
membrane of mitochondria by interacting with mitochondrial
antiviral signaling protein (MAVS). Viral RNA sensor DExD/H-
box helicase 58 (DDX58, best known as RIG-I) is recruited to the
STING1-MAVS complex on the MAM (4, 60). STING1 then links
IRF3 and TBK1 to MAVS, thus transmitting DDX58-MAVS–
mediated signals (4, 60). Recently, CGAS-like receptors (CGLRs)
were identified as a double-stranded RNA sensors in Drosophila,
which can produce a novel second messenger, cG[3’-5’]pA[2’-5’]p
(3’2’-cGAMP), for activating a STING1-dependent immune
response (61). These data imply a crosstalk between CGAS/
STING1- and DDX58/MAVS-dependent innate immune
response pathways on MAMs (Figure 1).

Mitochondria are the central regulator of cell death. STING1
is accumulated in mitochondria in human ferroptotic pancreatic
ductal adenocarcinoma cells (62). Although reactive oxygen
species (ROS) is closely related to various types of regulated
March 2022 | Volume 13 | Article 842489
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cell death, the specific factors driving STING1 mitochondrial
accumulation in ferroptosis are still elusive. Consequently,
mitochondrial STING1 promotes ferroptosis sensitivity
through binding to mitochondria fusion regulators, namely
mitofusins (including mitofusin 1 [MFN1] and mitofusin 2
[MFN2]), to increase mitochondria fusion-mediated ROS
production and lipid peroxidation (Figure 2). Although these
findings establish a direct role of STING1 in mitochondrial
dynamics and cell death, the mitochondria fission mediator
dynamin 1-like (DNM1L) can function as a negative regulator
of STING1-dependent IFNB/IFN-b production (63, 64). The
dynamic relationship between mitochondrial DNA damage, cell
death, and the STING1 pathway in the control of sterile
inflammation and tissue damage needs further investigation.

Endosomes
Endosomes are essential cellular stations where endocytic and
secretory trafficking routes converge. The proteins transiting at
endosomes are degraded by lysosomes or recycled to the other
organelles (65). STING1 can be translocated to acidified
endosomes and finally degraded by lysosomes at the late stage
of STING1 activation (66). In contrast, inhibition of this process
by the lysosomal inhibitor bafilomycin A1 that targets the fusion
step of endosomes and lysosomes could enhance STING1-
mediated antitumor immune response (Figure 2). Many
endosomal interactors with STING1 have been identified at the
late activation stage in RAW264.7 cells, providing an integrated
mechanism to control STING1 trafficking (43). Unc-93 homolog
B1, TLR signaling regulator (UNC93B1) is a chaperone
of endosomal toll-like receptors (TLRs) and acts as a repressor
of STING1 activation by anchoring STING1 in the endosomes of
human and mouse fibroblasts (67). Endosomal TLRs play a role
in the activation of B cells in the context of autoimmune diseases
(68). STING1-deficient mice had significantly less arthritic joint
inflammation, but these mice still produced autoantibodies (69).
In contrast, depletion of the chaperone protein UNC93B
required for endosomal localization of TLR7 and TLR9 limits
autoantibody production in experimental arthritis models (69).
Notably, a recent study showed that the STING1 pathway is not
essential for the development of experimental SLE in mice,
suggesting that other DNA-sensing pathways have alternative
roles in mediating autoimmune pathology (70). STING1 can also
be exocytosed in CD63+ extracellular vesicles, generating an
antiviral effect in recipient cells during HSV-1 infection (71–
74) (Figure 2). The function of extracellular STING1 in the
setting of disease remains elusive, but it may represent a
mechanism to shape immune response.

Lysosomes
As mentioned above, after the activation of the CGAS-STING1
pathway, STING1 can be transported to the lysosome through
autophagosomes and endosomes for degradation. Lysosomal
disorder is associated with increased STING1-mediated
immune response, highlighting that lysosomal damage and
substance accumulation are the activation signals of the
STING1 pathway. Although the mechanism still depends on
the context, several proteins, including small GTPase RAB7A
Frontiers in Immunology | www.frontiersin.org 6
(10, 66), autophagy receptor sequestosome 1 (SQSTM1) (75),
and lysosomal membrane protein Niemann-Pick type C1
(NPC1) (33), contribute to STING1 translocation to lysosomes
for autophagic degradation in various disease conditions
(Figure 2). This plasticity may explain why the degradation of
STING1 needs different stimulation signals and mediators.

The most well-understood autophagy pathway involving
ubiquitin is selective autophagy. There is a complex
relationship between STING1 and autophagy receptors during
stress. SQSTM1 is required for STING1-dependent autophagy to
inhibitM. tuberculosis infection in macrophages, but SQSTM1 is
dispensable for STING1-mediated autophagy in HeLa cancer
cells (76). STING1 is degraded in a SQSTM1-dependent manner
correlating with its K63-linked ubiquitination in monocyte cells
(75, 77). However, in HeLa cells, the autophagy receptor coiled-
coil domain containing 50 (CCDC50) binds to and targets K63-
polyubiquitinated STING1 for autophagic degradation. Studies
reveal that CCDC50 mainly mediates the delivery of STING1 to
MAP1LC3-positive autophagosomes, rather than directly
promoting STING1 degradation in lysosomes (78). Therefore,
each step of selective autophagy degradation of STING1 may
require different autophagy receptors to mediate.

The inhibition of STING1 degradation in lysosomes
promotes downstream immune responses. A lysosomal protein
solute carrier family 15 member 3 (SLC15A3) can interact with
STING1 and elevate STING1-dependent type I IFN response,
thus protecting against HSV-1 infection in human primary
monocytes (79) (Figure 2). However, whether and how
SLC15A3 mediates the protein stability of STING1 in
lysosomes remains obscure.

In addition to immune response regulation, lysosomal
STING1 can affect the function of lysosomes in cell death and
pH homeostasis (Figure 2). In primary monocytes, activated
STING1 traffics to the lysosomes, triggering lysosomal
membrane permeabilization and subsequently lysosome-
dependent cell death (80). Lysosome STING1 also participates
in lysosomal rupture, cathepsin B release, and lysosome-
dependent cell death in rat neuronal cells after hypoxia
ischemia (81). In addition, circulating mitochondrial DNA-
mediated robust STING1 activation in macrophages induces
STING1 accumulation in lysosomes, which blocks lysosomal
acidification and subsequently autophagic clearance of DAMPs
in lethal sepsis models (82), suggesting a different anti-autophagy
role of lysosomal STING1. Given these contradictory
observations, further research is needed to reveal whether the
dual role of STING1 in autophagy really depends on its
subcellular location. Whether STING1 can act as an autophagy
receptor is still unknown.

The Nucleus
CGAS is present in the nucleus and regulates genomic stability
and cell cycle (83–85), raising the possibility that STING1 may
have a role in the nucleus. In fact, the nuclear STING1 was
originally identified by a proteomics study of the nuclear
envelope, and this finding is supported by two subsequent
studies, which show a role for nuclear STING1 in promoting
chromatin compaction through epigenetic modifications (86–88).
March 2022 | Volume 13 | Article 842489
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STING1 can bind the DNA-dependent protein kinase (DNA-PK)
complex in the inner nuclear membrane, which protects breast
cancer cells from DNA instability by promoting DDR in a CGAS-
independent manner (14). Nuclear STING1 also interacts with
various nucleotide-binding proteins, which regulate gene
transcription of type I IFNs (89). STING1 redistributes from
the nucleus to the ER, increasing both dsDNA- and dsRNA-
triggered immune responses. In addition, subcellular localization
analysis and the nuclear interactome show that STING1 co-
localizes with the lamina, which serves as an anchoring point
for chromatin and transcription factors and interacts with
transcriptional activators and co-activators (14, 89), indicating
that nuclear STING1may be directly involved in the regulation of
gene transcriptional activity (Figure 2).

The precise nuclear location and function of STING1 is still
controversial. By using structured illumination super-resolution
microscopy, STING1 has been found redistributed into different
nuclear envelope locations (89). Given that the ER is adjacent to
the nuclear envelope, STING1 may diffuse to the contiguous
nuclear membrane after its initial insertion into ER membranes
(90). Thus, it is not surprising that STING1 localizes on outer
and inner nuclear membranes. STING1 can also co-localize with
spectrin repeat containing nuclear envelope protein 1 (SYNE1)
at the nuclear lamina, and mediates the docking of capsid protein
of human herpes viruses to nuclear pore complex proteins (91)
(Figure 2). These findings provide a framework to explain the
import of viral genomes into the nucleus of susceptible cells in
the early stages of infection (91). Additional studies are required
to fully elucidate the mechanism of ER-located STING1
trafficking into the nucleus and other nuclear functions of
STING1, particularly in regulating genome transcription and
chromosome stabilization.
CONCLUSIONS AND PERSPECTIVES

STING1 is a multifaceted protein, probably known best as an
adaptor protein of DNA sensor pathways to activate innate
immunity. Under normal conditions, most of STING1 is in the
ER and acts as a regulator of ER homeostasis. Upon challenge with
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a range of environmental stresses, STING1 translocates to other
organelles, such as Golgi, mitochondria, endosomes, lysosomes,
and nuclei, and plays an immune-dependent and -independent role
in infection, cell death, and gene expression. Although the
subcellular localization sequence of STING1 is unclear, the
transport of STING1 in subcellular organelles is regulated by the
cytoskeleton, binding proteins, and posttranslational modifications.

This complexity of location and modulation may increase the
side effects should STING1 be indiscriminately targeted in
diseases. In contrast, using small molecules to target STING1
translocation may be a precision treatment strategy (Figure 2).
Further studies on the effectors that alter STING1 trafficking and
localization may provide novel therapeutic targets for enhancing
STING1-dependent immune response or reducing STING1-
mediated hyperinflammatory and autoimmune responses. In
the meantime, we should uncover the function of cell and
tissue type-specific STING1 in health and disease using
advanced conditional knockout strategies.
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