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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of
the ongoing coronavirus disease 2019 (COVID-19) pandemic. Viral replication in the
respiratory tract induces the death of infected cells and the release of pathogen-
associated molecular patterns (PAMPs). PAMPs give rise to local inflammation,
increasing the secretion of pro- inflammatory cytokines and chemokines, which attract
immune cells from the blood into the infected lung. In most individuals, lung-recruited cells
clear the infection, and the immune response retreats. However, in some cases, a
dysfunctional immune response occurs, which triggers a cytokine storm in the lung,
leading to acute respiratory distress syndrome (ARDS). Severe COVID-19 is characterized
by an impaired innate and adaptive immune response and by a massive expansion of
myeloid-derived suppressor cells (MDSCs). MDSCs function as protective regulators of
the immune response, protecting the host from over-immunoreactivity and hyper-
inflammation. However, under certain conditions, such as chronic inflammation and
cancer, MDSCs could exert a detrimental role. Accordingly, the early expansion of
MDSCs in COVID-19 is able to predict the fatal outcome of the infection. Here, we
review recent data on MDSCs during COVID-19, discussing how they can influence the
course of the disease and whether they could be considered as biomarker and possible
targets for new therapeutic approaches.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the
ongoing coronavirus disease 2019 (COVID-19) pandemic. It is a positive-sense, single-stranded
RNA virus of the Coronaviridae family. The pathogenesis of SARS-CoV-2 initiates when the viral
particles infect airway epithelial cells, alveolar epithelial cells, vascular endothelial cells, and
macrophages in the lung through angiotensin-converting enzyme 2 (ACE2) (1). Viral replication
induces the cell destruction and the release of pathogen-associated molecular patterns (PAMPs),
inducing local inflammation characterized by increased secretion of the pro-inflammatory cytokines
and chemokines interleukin 6 (IL-6), interferon gamma (IFN-g), monocyte chemoattractant protein
org April 2022 | Volume 13 | Article 8429491
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1 (MCP1), and IFN-g-inducible protein 10 (IP-10) (2). These
cytokines and chemokines attract immune cells, notably
monocytes and T lymphocytes, from the blood into the
infected lung (3).

In most individuals, lung-recruited immune cells clear the
infection, and the immune response retreats. However, in some
cases, a dysfunctional immune response occurs, which triggers a
cytokine storm, mediating widespread lung inflammation. In
particular, IL-6 was associated with a high risk of mortality
during COVID-19 (4). IL-6 can stimulate various cell types
expressing the membrane-bound IL-6 receptor and the
glycoprotein (gp130) receptor, leading to constitutive
activation of the Janus kinase (JAK) signal transducer and
activator of transcription (STAT) (5, 6). Accordingly, JAK-
STAT signaling has been shown to be increased in COVID-19
patients (7, 8). STAT3 activation promotes IL-6 gene expression,
amplifying this inflammatory pathway (6). On the other hand,
the suppressor of cytokine signaling 3 (SOCS3) pathway, which
has negative feedback on IL-6 production, is downregulated
during COVID-19, thus contributing to IL-6 hyper-production
(9). In turn, the uncontrolled inflammation can cause multi-
organ damage, leading to organ failure. A large body of literature
reported the effects of immune-based therapies targeting
inflammatory mediators such as JAK or cytokine inhibitors,
demonstrating improved outcomes and survival (10, 11).

Beyond cytokine storm, lymphopenia, high leukocyte counts,
and increased neutrophil–lymphocyte ratios have been described
as features of severe COVID-19 (12). Neutrophils have been
demonstrated to play a role in COVID-19 pathology through the
release of neutrophil extracellular traps (NETs). Indeed, tracheal
aspirates and pulmonary autopsies from COVID-19 patients
showed NET-containing microthrombi` and neutrophil–
platelet infiltration (13, 14). SARS-CoV-2 can directly induce
the release of NETs by healthy neutrophils, and NETs released by
SARS-CoV-2-activated neutrophils promote lung epithelial cell
death in vitro (14).

In order to dissect the biology of the virus–immune system
interaction during COVID-19, several studies employed high-
dimensional phenotypic and molecular approaches. These
studies highlighted the absence of an IFN signature in severe
patients compared to mild and moderate cases and evidenced a
sustained emergency myelopoiesis associated with an increase in
immature neutrophils and monocytes with immunosuppressive
features (15–18). Among immunosuppressive cells, myeloid-
derived suppressor cells (MDSCs) emerged as one of the
players in the pathogenesis of SARS-CoV-2 infection.

Herein, we review recent data on MDSCs during COVID-19
and their pleiotropic activities, discuss how they can influence
the course of the disease, and whether they could be considered
as possible targets for new therapeutic approaches.
MDSC DIFFERENTIATION

A huge number of leukocytes are generated and replaced daily.
Different pathological conditions can perturb the leukocyte
Frontiers in Immunology | www.frontiersin.org 2
turnover, resulting in the emergency of myelopoiesis (19) to
provide cells for eliminating tumor cells, infectious agents, or
tissue damage. If these conditions resolve quickly, the
myelopoiesis declines without negative consequences for the
host. However, a number of conditions associated with various
types of chronic inflammation result in aberrant sustained
myelopoiesis characterized by the accumulation of immature
myeloid cells with regulatory functions, ultimately defined as
MDSCs (20–22). The first observation of myeloid cells with
suppressive functions was reported in cancer-bearing mice,
where they were able to inhibit T-cell activities (23). The
importance of this cell population has been pointed out by
accumulating evidence on its contribution to the negative
regulation of immune responses during cancer and other
diseases in humans. MDSCs are able to inhibit T-cell
proliferation and activation (24, 25), modulate cytokine
production by macrophages (26), suppress the function of
natural killer (NK) cells (27), impair dendritic cell (DC)
differentiation and action (28, 29), and induce regulatory T
cells (Tregs) (30). Furthermore, MDSCs are capable of
inhibiting the proliferation and differentiation of B cells and
inducing regulatory B cells in several pathological conditions
(31–34).

Besides their immunological functions, MDSCs exert other
actions such as the promotion of tumor angiogenesis (35, 36),
invasion, and metastasis (37), indicating that they can exert
pleiotropic activities.

A pro-inflammatory microenvironment is responsible for
MDSC expansion, inducing their proliferation, recruitment,
and activation. Several factors, usually associated with pro-
inflammatory processes, are involved in MDSC differentiation:
prostaglandin E2 (PGE-2) (38), cyclooxygenase-2 (COX-2) (39),
stem cell factor (SCF) (40), macrophage colony-stimulating
factor (M-CSF), granulocyte/macrophage colony-stimulating
factor (GM-CSF) (41), IL-6 (42), tumor necrosis factor alpha
(TNF-a) (43), IFN-g (44), and vascular endothelial grow factor
(VEGF) (45). These molecules trigger the STAT3 pathway,
which is the master transcription factor regulating the
expressions of genes involved in the expansion of MDSCs (46).
MDSC IDENTIFICATION AND FUNCTION

MDSCs include two major subsets based on their phenotypic and
morphological features: polymorphonuclear (PMN) and
monocytic (M) MDSCs. In physiological conditions, bone
marrow hematopoietic stem cells (HSCs) differentiate into
common myeloid progenitor (CMP) cells and then into
immature myeloid cells (IMCs). Normally, IMCs migrate to
different peripheral organs, where they differentiate into
dendritic cells, macrophages, and granulocytes. However, factors
produced by tumor cells or during acute or chronic infections and
after trauma promote MDSC generation by preventing IMC
differentiation and acquiring immunosuppressive functions (38,
44, 47, 48). The classic definition of MDSCs as immature myeloid
cells blocked in their differentiation has been updated by recent
April 2022 | Volume 13 | Article 842949

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Grassi et al. MDSCs During COVID-19
studies suggesting that, under certain conditions, M-MDSCs and
PMN-MDSCs may originate from monocytes and granulocytes
(49). Thus, the family of MDSCs includes not only immature cells
but also highly differentiated elements belonging to the monocyte
and granulocyte lineages.

Murine PMN-MDSC can be clearly identified as CD11b+
+Ly6G+Ly6Clow cells, while M-MDSCs as CD11b+Ly6G−Ly6Chigh.
Due to the lack of specific markers for human MDSCs, recently, a
standard characterization has been suggested for their
identification: among human peripheral blood mononuclear cells
(PBMCs), the equivalent to PMN-MDSCs is defined as HLA-DR−/

lowCD11b+CD14−CD15+ (or CD66b+) and M-MDSCs as HLA-
DR−/lowCD11b+ (or CD33+) CD14+CD15−. A third group of
MDSCs, early-stage MDSCs (e-MDSCs), can be identified as
HLA-DR−CD33+CD15−Lin− (CD3−CD56−CD19−CD14−) (50).
The ability to suppress immune cells is an important
characteristic of MDSCs, and the gold standard for the
designation of cells as MDSCs is the inhibition of T-cell
functions (50).

MDSCs have a potent immunosuppressive function that is
mediated by different mechanisms: they are able to deplete L-
arginine from the microenvironment by secreting arginase 1
Arg-1 and inducible nitric oxide synthase (iNOS). The
deprivation of L-arginine inhibits the activity of T cells by
decreasing CD3z, a key molecule in T-cell receptor (TCR)
signaling. Other important factors that contribute to the
suppressive activity of MDSCs are reactive oxygen species
(ROS) and reactive nitrogen species (RNS). ROS production
reduces the expression of CD3z on T cells (51), and its inhibition
abrogates the suppressive effects of MDSCs in vitro (52). The
RNS peroxynitrite produced by MDSCs is able to silence T-cell
activation by nitrating TCR and CD8 molecules, thus preventing
antigen-specific stimulation (25). Furthermore, the production
of nitric oxide (NO) by iNOS interferes with the JAK/STAT
signaling pathway in T cells (24, 53).

MDSCs can secrete transforming growth factor beta (TGF-b)
and IL-10, which exert direct immunosuppressive effects on T
cells, induce the generation of Tregs (30), and inhibit IL-12
production by macrophages (26). Moreover, MDSCs can
suppress the activity of NK cells by expressing membrane-
bound TGF-b (27). Finally, MDSCs express programmed death-
ligand 1 (PD-L1), a potent mediator of immunosuppression (54,
55). The engagement of PD-L1 with programmed cell death
protein 1 (PD-1) in T cells induces dysfunction, exhaustion, and
IL-10 production (56).
MDSCS AND COVID-19

MDSC Expansion During SARS-CoV-2
Infection
Several reports have highlighted the potential role of MDSCs during
infections. In particular, in humans, some bacterial (57), viral (58),
and parasitic (59) infections are characterized by the expansion of
the MDSC population. The first paper showing the expansion of
MDSCs during COVID-19 was published in October 2020 by our
Frontiers in Immunology | www.frontiersin.org 3
group, showing a high frequency of phenotypically resembling
MDSCs in PBMCs from patients with COVID-19 (60). MDSCs
frequency correlated with the level of inflammatory mediators in
patients with COVID-19. We then showed a massive expansion of
PMN-MDSCs in severe COVID-19 patients with the capacity to
inhibit T-cell proliferation and IFN-g production upon superantigen
stimulation (61). In the same paper, we followed COVID-19
patients after hospital admission and found a persistently higher
frequency of PMN-MDSCs in patients with severe compared to
those with mild disease.

One of the features of severe COVID-19 is the altered
neutrophil abundance, phenotype, and functionality. A high
number of neutrophils have been observed in the
nasopharyngeal epithelium (62), the lung (63), and in the blood
of patients infected with SARS-CoV-2 (64). Interestingly, single-
cell RNA sequencing (scRNA-seq) revealed the emergence of
CD10lowCD101−CXCR1+ immature neutrophils that are
reminiscent of PMN-MDSCs (65, 66). Thus, immunosuppressive
neutrophil precursors, such as the pre-neutrophil (preNeu)
population, which is CXCR4-positive (67), may be released
prematurely into the blood from the bone marrow and infiltrate
the lung tissue in patients with severe disease. We could then
speculate that the expansion of PMN-MDSCs may account, at
least in part, for the neutrophilia observed during severe
COVID-19.

ScRNA-seq revealed high levels of HLA-DR−/low monocytes in
patients with severe COVID-19, whose phenotype resembled M-
MDSCs (65, 66, 68). The scRNA-seq data were confirmed by
Falck-Jones et al. using flow cytometry, showing an increased
frequency of M-MDSCs in the blood of patients with severe
COVID-19 (69), even if to a lesser extent than PMN-MDSCs.
The highest levels of MDSCs were reported in fatal cases of
COVID-19 (69, 70), suggesting a detrimental role of MDSCs in
COVID-19. A significant increase of low-density neutrophils
(LDNs) expressing lectin-type oxidized low-density lipoprotein
receptor 1 (LOX-1) in the blood of patients with acute COVID-19
was also observed (71). Functional assays demonstrated the
immunosuppressive capacities of these cells, thus confirming
them as PMN-MDSCs. LOX-1 has been recently identified as a
spec ific marker dis t inguishing PMN-MDSCs from
polymorphonuclear cells (PMNs). In fact, among PMNs, the
LOX-1+ subset exerted a potent suppressive activity (72).

Immunometabolic phenotypical characterization of PBMCs
from COVID-19 patients also highlighted the presence of
voltage-dependent anion channel (VIDACI)+ hexokinase II
(HKII)+ PMN-MDSCs (73). The concurrent upregulation of
VIDACI and HKII has been described to be associated with the
production of ROS (74) and with the prevention of ROS-induced
cell death (75), aimed, with other mechanisms, at increasingMDSC
survival in the presence of high ROS levels (76). Moreover,
carnitine palmitoyltransferase 1a (CPT1a)+VIDCAI+DR− M-
MDSC expansion was observed in patients with severe COVID-
19 (73). CPT1a is involved in fatty acid oxidation and has been
correlated with the recruitment and differentiation of MDSCs (77).

Hyper-inflammation is a hallmark of severe COVID-19 (2).
Pro-inflammatory mediators are pivotal in the regulation of
April 2022 | Volume 13 | Article 842949
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MDSC differentiation and accumulation (78). Indeed, during
COVID-19, the frequency of MDSC correlated with the plasma
levels of IL-1b, IL-6, IL-8, and TNF-a (69–71), confirming that
the immune system attempted to curb the excessive and
potentially harmful immune response to SARS-CoV-2
infection. However, in severe COVID-19 patients, in addition
to monocytes, MDSCs were able to produce IL-6 under
stimulation (79), suggesting that they could contribute to
hyper-inflammation in certain conditions.

Suppressive Functions of MDSC
During COVID-19
Studies evaluating MDSC function showed that MDSCs from
COVID-19 patients were correlated with Arg-1 activity. Several
papers have reported high levels of Arg-1 in the plasma of patients
with moderate to severe/fatal COVID-19 (69, 80). Accordingly,
Reizine et al. found that the expansion ofMDSCs was paralleled by
a high Arg-1 activity, evaluated as the ornithine/arginine ratio in
plasma of patients with ARDS at hospital admission. However, the
difference in Arg-1 activity was lost at the subsequent time points
(81). The high activity of Arg-1 paralleled with plasma L-arginine
shortage (80–82). Importantly, the addition of L-arginine to
MDSC/T-cell co-cultures partially restored the production of
IFN-g and the proliferation of T cells (69, 81). Bost et al.
obtained similar results, showing a correlation between the
percentage of suppression of M-MDSCs and the plasma levels of
Arg-1 (83). PMN-MDSCs from COVID-19 patients were able to
inhibit the SARS-CoV-2-specific IFN-g production by T cells (70)
and expressed high levels of Arg-1, iNOS, and TGF-b messenger
RNAs (mRNAs). However, treatment with a specific inhibitor of
Arg-1 was not able to restore IFN-g production. Differently, an
increase of IFN-g release was observed by inhibiting iNOS or by
neutralizing TGF-b (70). Furthermore, a persistently higher
indolamine-2,3-dioxygenase (IDO) activity was found in
patients with ARDS compared to those with moderate
pneumonia (79, 81). IDO catabolizes tryptophan, which is
another essential amino acid for T-cell function; indeed, the
decrease of tryptophan and the accumulation of its catabolites
inhibited the activation of T cells (84).

Altogether, these data indicate that MDSCs from COVID-19
patients exert their suppressive activity using different
mechanisms, which possibly depend on the MDSC subsets
involved. MDSCs establish different metabolic pathways in
different microenvironments , determining different
mechanisms of suppression (85). Whether the diverse degrees
of severity of COVID-19 could influence the suppressive
functions of MDSCs needs further investigation.

MDSCs seem to be able to infiltrate the lung during infection.
Immunohistochemistry and immunofluorescence on the lung
autopsy of patients who died due to COVID-19 showed the
presence of large numbers of Arg-1-positive cells and a high
expression of intracytoplasmic Arg-1 in CD66b+, confirming
them to be Arg-1-positive PMN-MDSC-like cells (80).

It has been demonstrated that MDSCs regulate the immune
response of B cells directly by the expression of effector molecules
and indirectly by controlling other immune regulatory cells (86).
Frontiers in Immunology | www.frontiersin.org 4
While the suppressive ability of MDSCs on T-cell proliferation
and cytokine production has been assessed during COVID-19,
their potential action on B-cell function has not been explored.
To our knowledge, only one paper evaluated the correlation
between the frequency of PMN-MDSCs and the level of anti-
SARS-CoV-2 S1 immunoglobulin G (IgG) in 10 convalescence
patients who recovered from a mild or asymptomatic SARS-
CoV-2 infection. The authors showed an almost significant
negative correlation between PMN-MDSCs and anti-S IgG
(87), suggesting a possible involvement of MDSCs on B-cell
functional modulation. However, a larger group is needed to
confirm this preliminary result.

MDSC and Platelet Activation
We and others found a decrease of plasma L-arginine during
severe COVID-19 that correlated with the activities of Arg-1 and
iNOS (80–82). We also demonstrated that the frequency of
PMN-MDSCs directly correlated with platelet activation, and
purified PMN-MDSCs from patients with COVID-19 were able
to induce platelet activation, possibly by reducing L-arginine. The
concentration of L-arginine can modulate platelet activation and
aggregation (88). Indeed, its deprivation reduced substrate
availability for iNOS, thus reducing NO production. NO plays
a pivotal role in inhibiting platelet activation. It enters the
platelets and promotes the upregulation of cyclic guanosine
monophosphate (cGMP). cGMP activates protein kinase G,
which directly diminishes platelet reactivity by phosphorylating
crucial proteins involved in platelet activation (88).

Altogether, these data highlight a novel role of MDSCs in
driving the immunopathogenesis of COVID-19 and increasing
the complexity of the immune response to SARS-CoV-2.

MDSCs as a Biomarker of
COVID-19 Severity
Studies evaluating the frequency of MDSC-like cells in patients
with different COVID-19 disease severities showed the highest
MDSC percentages in the severe form of the disease (61, 68–71,
79, 80, 89). In detail, patients with more severe COVID-19
disease had significantly higher percentage of M-MDSCs and
PMN-MDSCs compared with those with mild disease and
healthy donors (HDs) (61, 69, 70, 80). The frequency of M-
MDSCs in blood from patients with COVID-19 seemed to
decrease over time and returned to frequency similar to those
seen in HDs in follow-up samples taken during convalescence
(69). ScRNA-seq revealed the expansion of monocytes with a
MDSC-like phenotype only in severe COVID-19 patients (68).
The expansion of LDNs with suppressive function was observed
in severe COVID-19 patients. In particular, LOX-1+ LDNs were
higher in severe COVID-19 compared to mild cases (71). Tomic
et al. showed increased frequency and number of both M-
MDSCs and PMN-MDSCs in the group of patients with severe
disease compared to those with mild COVID-19 and in HDs.
Moreover, principal component analysis (PCA) showed a clear
clustering of severe, mild, and non-COVID-19 disease,
suggesting that MDSCs are associated with the severity of
COVID-19. Moreover, the frequency of MDSCs producing IL-
April 2022 | Volume 13 | Article 842949
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10 was higher in severe compared to mild COVID-19 patients
and in HDs (79). Some studies also observed a higher frequency
of MDSCs in non-survival compared to survival patients (69–
71), suggesting that the frequency of MDSCs could be used as a
predictive marker of the disease outcome. Specifically, a receiver
operating characteristic (ROC) curve analysis indicated that the
frequency of MDSCs at the time of hospitalization might predict
fatal outcomes of the disease, with a cutoff value of 54.91% (70).
Moreover, by estimating the hazard ratio (HR) of death adjusted
for age and gender, it has been observed that the percentage of
PMN-MDSCs at the time of hospitalization was independently
associated with fatal outcomes of COVID-19 (70).

Overall, several publications have shown that the MDSC
frequency could be used as a biomarker of COVID-19 severity.
However, larger prospective multicenter studies are needed to
evaluate the predictive biomarker potential of MDSCs and its
possible use in monitoring disease progression.

Due to the suppressive role of MDSCs, it would be very
interesting to examine whether they could play a role in the
response to anti-SARS-CoV-2 vaccinations in fragile patients.
Vaccines are the main tools in counteracting SARS-CoV-2-
induced disease. Several studies have reported a low humoral
response after vaccination in patients with malignancies or
diseases that required immunosuppressive therapies (90–94).
Different mechanisms can be postulated, such as the underlying
disease and, mostly, the treatment of the specific disease. Whether
MDSCs can impact on the effectiveness of vaccination is completely
unexplored and should be investigated in order to evaluate new
markers for patient monitoring and vaccine treatment optimization.

MDSCs as Therapeutic Targets
in COVID-19
Data on MDSCs during COVID-19 suggest the detrimental role of
this suppressive cell population and highlight the rationale for
Frontiers in Immunology | www.frontiersin.org 5
possible use of therapeutic approaches focused on reducing
MDSC number/function. Surprisingly, Bost et al. reported a
decline in the percentage of T-cell suppression by monocytes/M-
MDSC-like and LDNs/PMN-MDSC cells in severe compared to
mild patients. An even lower percentage of T-cell suppression was
observed in non-survival patients (83). Altogether, these data raise
the question of the balance between the beneficial/detrimental roles
of MDSCs during the different stages of COVID-19 (Figure 1).

Preclinical studies on new cancer therapy approaches
proposed numerous strategies to target MDSCs: i) depletion of
MDSCs (95, 96); ii) inhibition of the suppressive functions of
MDSCs (97–99); iii) prevention of MDSC recruitment (100,
101); and iv) induction of MDSC differentiation toward
monocytes/granulocytes (102, 103).

Among the therapeutic approaches that are being tested to
treat COVID-19, some could affect MDSC differentiation and
function. The first example is the anti-IL-6 receptor tocilizumab.
As mentioned above, due to the association between the plasma
levels of IL-6 and the fatal outcomes of COVID-19, the anti-IL-6
receptor monoclonal antibody tocilizumab was introduced for
treatment of the disease, showing reduced mortality, an
increased chance of successful hospital discharge, and a
reduced risk of invasive mechanical ventilation (104). IL-6
inhibitors have been successfully tested for their ability to
block MDSC expansion (105). However, the impact of
tocilizumab, or other immunomodulatory agents, on MDSC
frequency has been poorly explored. Tomić et al. did not find
any difference in the frequency of M-MDSCs and PMN-MDSCs
in a very small group of COVID-19 patients previously treated
with tocilizumab compared to non-treated patients matched for
age, sex, and disease severity (79). New studies are necessary to
clarify the effect of this inhibitor on the modulation of the
number and function of MDSCs during treatment and its
association with therapy efficacy.
FIGURE 1 | The good and the paradox of myeloid-derived suppressor cell (MDSC) activities during coronavirus disease 2019 (COVID-19). During severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, MDSC subsets increase and are activated by the virus-induced inflammatory response. The left panel
shows the plausible beneficial role of suppressive molecules produced by MDSCs during COVID-19 (the good); the right panel shows the downside of good,
pointing out the detrimental effects of the same molecules (the paradox). Arg-1, arginase 1; IDO, indoleamine-2,3-dioxygenase; iNOS, inducible nitric oxide synthase;
ROS, reactive oxygen species; PD-L1, programmed death-ligand 1; TGF-b, transforming growth factor beta.
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Some clinical trials are ongoing evaluating the effect of L-
arginine supplementation on clinical improvements of COVID-
19 (clinicaltrials.gov). L-Arginine is involved in several biological
processes, including the regulation of endothelial function,
serving as a substrate for NO production by endothelial cells,
thus regulating cardiovascular homeostasis (106). MDSCs exert
their suppressive functions through Arg-1 and iNOS, which are
involved in reducing the availability of L-arginine during
COVID-19 (107). In vitro L-arginine addition increased the
proliferation rates of CD4 and CD8 T cells from COVID-19
patients (81). It would be interesting to evaluate whether in vivo
L-arginine supplementation may overcome the MDSC-mediated
L-arginine deprivation.

A few studies also suggested an association between vitamin
D deficiency and hospitalization risk or COVID-19 severity (108,
109), and several trials are evaluating the impact of vitamin D
treatment on the outcomes of COVID-19. Vitamin D has been
demonstrated to inhibit the expansion and suppressive functions
of MDSC (110, 111), but studies evaluating the correlation
between vitamin D levels and MDSC functions during
COVID-19 are still lacking.

Another example is leronlimab, an inhibitor of CCR5
signaling. Preliminary studies have shown that leronlimab
treatment of COVID-19 patients induced a reduction of
plasma IL-6, restoration of the CD4/CD8 ratio, and resolution
of SARS-CoV-2 plasma viremia (112). CCR5 has a critical role
not only in the recruitment but also in the activation of MDSCs
in tumor lesions (113), and targeting the CCR5/CCL5 axis may
reduce the suppressive activity of MDSCs (114).

Many other molecules have been successfully tested in cancer
settings to reduce the accumulation and suppressive functions of
MDSCs. Some of these had STAT3 signaling as a target: sunitinib
reversed tumor MDSC accumulation through STAT3 or c-Kit
signaling, and metformin downregulated the function of MDSCs
through the AMPK/STAT3 pathway. Entinostat, a class I histone
deacetylase inhibitor, neutralized MDSCs through reducing the
expressions of both Arg-1 and iNOS [reviewed in (115)].
Another molecule tested is all-trans retinoic acid (ATRA).
ATRA is a standard component of therapy for patients with
acute promyelocytic leukemia (116), and several reports
indicated its efficacy in reducing the number of MDSCs in
murine cancer models (96, 117, 118). ATRA acts by inducing
the differentiation of MDSCs toward monocytes, DCs, or
granulocytes, thus abolishing their suppressive functions (119,
120). Interestingly, ATRA has shown an anti-SARS-CoV-2
activity in vitro (121, 122), possibly by increasing the
Frontiers in Immunology | www.frontiersin.org 6
expression of retinoic acid-inducible gene I (RIG-I) on target
cells (123).

Altogether, these data suggest the possibility of combining
immunomodulatory treatments and new approaches targeting
MDSCs to avoid the detrimental role of MDSCs on SARS-CoV-
2-specific immunity and platelet activation and, at the same time,
to reduce the harmful impacts of the inflammatory storm and
viral replication.
CONCLUSION

SARS-CoV-2 infection induces massive activation of the immune
system, ultimately leading to the suppression of innate and adaptive
immune responses. MDSCs are key cellular players in this
complicated process. Both M-MDSCs and PMN-MDSCs
accumulate in patients with COVID-19 and represent an attempt
to maintaining a homeostatic balance between protective immune
response and a maladaptive damaging uncontrolled inflammation.
However, MDSC accumulation associates with fatal disease
outcomes, indicating the detrimental role of MDSCs possibly
mediated by the suppression of the adaptive immune response.
More investigations are essential to define when (in terms of time or
percentage) the suppressive functions of MDSCs could be harmful
rather than beneficial during COVID-19. Clarifying this issue is
pivotal to evaluating the timing and type of possible therapeutic
approaches targeting MDSCs.
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