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Immunomodulatory effects
of microbiota-derived
metabolites at the crossroad of
neurodegenerative diseases and
viral infection: network-based
bioinformatics insights

Anna Onisiforou and George M. Spyrou*

Bioinformatics Department, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
Bidirectional cross-talk between commensal microbiota and the immune

system is essential for the regulation of immune responses and the formation

of immunological memory. Perturbations of microbiome-immune system

interactions can lead to dysregulated immune responses against invading

pathogens and/or to the loss of self-tolerance, leading to systemic

inflammation and genesis of several immune-mediated pathologies,

including neurodegeneration. In this paper, we first investigated the

contribution of the immunomodulatory effects of microbiota (bacteria and

fungi) in shaping immune responses and influencing the formation of

immunological memory cells using a network-based bioinformatics

approach. In addition, we investigated the possible role of microbiota-host-

immune system interactions and of microbiota-virus interactions in a group of

neurodegenerative diseases (NDs): Amyotrophic Lateral Sclerosis (ALS),

Multiple Sclerosis (MS), Parkinson’s disease (PD) and Alzheimer’s disease (AD).

Our analysis highlighted various aspects of the innate and adaptive immune

response systems that can be modulated by microbiota, including the

activation and maturation of microglia which are implicated in the

development of NDs. It also led to the identification of specific microbiota

components whichmight be able to influence immune system processes (ISPs)

involved in the pathogenesis of NDs. In addition, it indicated that the impact of

microbiota-derived metabolites in influencing disease-associated ISPs, is

higher in MS disease, than in AD, PD and ALS suggesting a more important

role of microbiota mediated-immune effects in MS.

KEYWORDS

microbiota, neurodegenerative diseases, immune system, viruses, microbiota-virus-
disease interactions
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1 Introduction

Gut microbiota play an essential role in maintaining

homeostasis in the human host, with more than 100 trillion

microorganisms (including bacteria, viruses, fungi and archaea)

colonizing our gastrointestinal (GI) tract (1, 2). These microbes

do not just habitat our GI tract but rather help to regulate

various host physiological functions, including metabolic,

endocrine and immune functions (3). Gut microbiota have key

role in human metabolism as they encode enzymes that are not

found in the human genome which are important for the

degradation of exogenous and endogenous substrates, resulting

in the production of a range of metabolic products (4–6).These

microbiota-derived metabolites are key orchestrators of the

bidirectional cross-talk that exists between host and

microbiota. This molecular dialogue is essential for the

regulation of immune responses and the formation of

immunological memory, which are important for maintaining

body homeostasis and human health.

Symbiosis between commensal microbiota and the immune

system is a fine-tuned dynamic process. On the one hand, the

immune system plays an important role in maintaining health

homeostasis by reacting and eliciting innate immune responses

against invading pathogenic organisms such as viral infections, and

at the same time maintaining tolerance to beneficial microbiota (7,

8). On the other hand, commensal gut microbiota can regulate and

shape immune responses such as influencing various steps of the

hematopoiesis process, influence the intestine immune cell

population, affecting myeloid cells and lymphoid cell functions

and differentiation, thus affecting responses to viral infections (9). In

addition, commensal microbiota can also influence the formation of

both innate and adaptive memory via the production of

microbiota-derived bioactive molecules, such as short-chain fatty

acids (SCFAs) and neurotransmitters (NTs) (10, 11). However,

although several mechanisms have been identified on how

commensal microbiota can influence the immune system, the

exact mechanisms on how they can affect the formation of innate

and adaptive immune memories is still an emerging area of

investigation (10).

Perturbations of the microbiome-immune system cross-talk

due to microbiome-host dysbiosis can lead to the dysregulation

of immune responses against invading pathogens and/or the loss

of self-tolerance, leading to systemic inflammation and the

genesis of several immune-mediated diseases. Perturbations of

microbiome-host symbiosis, resulting in dysbiosis, can be caused

by both environmental and genetic factors. However it is

believed that the environmental-mediated perturbations

outweigh host genetic polymorphism-mediated perturbations

in shaping microbiome-host interactions (12).Important

environmental factors that can contribute to microbiome-host

dysbiosis is diet, antibiotic use, lifestyle (stress) and infection

with pathogenic organisms, such as viral infections (13, 14).
Frontiers in Immunology 02
Gut microbiota dysbiosis has been associated with the

development and/or progression of several NDs, including ALS,

AD, MS and PD via perturbations of the microbiota-brain-gut

axis (15). Microbiota are involved in the production of several

metabolic products, such as NTs and SCFAs, which are important

for gut-brain communication, brain homeostasis, neurogenesis

and neuroinflammation (3, 16–21). Several pathological

mechanisms have been suggested by which microbiota can

contribute to the development and/or progression of NDs, for

example they can increase blood brain barrier (BBB) permeability,

augment neuroinflammation and affect the production of several

NTs produced by gut microbiota, such as dopamine which is

dysregulated in PD (17, 18). However, although gut microbiota

dysbiosis is associated with the development of NDs, it remains

unknown how ND-associated microbiota profiles contribute to

neuroinflammation and lead to the development of specific

disease phenotypes.

Interestingly, evidences also suggests that commensal

microbiota can suppress or promote certain viral infections via

microbiota- mediated direct or indirect mechanisms (13, 22).

The development of several NDs is associated with numerous

viral infections (23–25), hence this bidirectional interaction

between viruses and commensal microbiota could possibly

contribute to the onset or progression of a ND. According to

the “multiple hit” hypothesis the development of NDs requires

the combinatorial action of multiple ND-associated risk factors

(26). However, it still remains undetermined how the

combinatorial effect of multiple risk factors contributes to

disease development. Therefore, as both microbiota and viral

infections are environmental factors associated with NDs, it is

important to investigate how microbiota-virus interactions

might contribute to ND development.

Network-based approaches have been extensively utilized to

provide insight into microbe-host interactions, through the

analysis of various single-omics data including proteomics,

transcriptomics and metabolomics (27–30).Various network-

based methodologies have been employed to analyze microbe-

host interaction networks, with the most common methods

being topological analysis, such as modules and community

detection, as well as functional analysis (31, 32). In addition,

some studies have used multi-omics approaches to investigate

pathogen-host interactions (33). However, only a few studies

used multi-omics network approaches to investigate

microbiome data (27). Moreover, several studies have used

network approaches to investigate microbe-microbe

interactions, with the majority investigating bacteria-to-

bacteria interactions, whereas only a few studies have

investigated viral or fungal interactions (27, 34). Although

several studies have used network approaches to investigate

the role of viruses in the triggering of diseases, there is a lack

of studies that focus specifically in the development of NDs (35).

In our previous work, we have developed our own integrative
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network-based bioinformatics methodology which was utilized

to identify viral-mediated pathogenic mechanisms by which

viruses associated as risk factors for MS could lead to its

development, through virus-host protein-protein interactions

(PPIs) (36).

In this paper, we extend upon the methodology developed in

our previous work (36) and use an integrative multi-omics

network-based bioinformatics approach to investigate the

immunomodulatory effects of both microbiota (bacteria and

fungi) and viruses in general and ND specific states. To our

knowledge, this is the first study that uses network-based

approaches to investigate how microbiota-virus interactions

might contribute to NDs development. We first, investigate

the contribution of the immunomodulatory effects of

microbiota (bacteria and fungi) in shaping immune responses

and influencing the formation of immunological memory cells

via the production of their metabolic products. We aim to also

identify microbiota components which, through their

immunomodulatory effects, might be able to influence ISPs

involved in the pathogenesis of NDs. In addition, as a case

study, we explore how microbiota-Epstein-Barr Virus (EBV)-
Frontiers in Immunology 03
immune system interactions might facilitate the development

and/progression of several NDs.
2 Methods

Our pipeline approach consists of the following steps: (A)

Collection from well-known Data Sources, (B) Network

Reconstruction and Enrichment Analysis, (C) Similarity-Based

Analysis, (D)Network Topology Analysis, and (F) Network Re-

Wiring Analysis. Figure 1 illustrates the main components of

our methodology.
2.1 Data sources

(i) Collection of microbiota data
To investigate the effects of microbiota-derived metabolic

products on ISPs we first mined the Human Metabolome

Database (HMDB) (version 4.0) (37) to collect microbiota

derived-metabolites found in the feces, blood and cerebrospinal
FIGURE 1

Schematic representation of our methodology used in this paper. We present the various data sources that we used to collect the data (A). Then
we represent the data used for enrichment analysis and how the networks are reconstructed, including the MMI network, MMDI networks, EBV-
ND PPI networks and EBV-host PPI network (B). Then we also present the two similarity-based analysis methods used to analyze the data, the
agglomerative hierarchical clustering analysis and the pairwise similarity network analysis (C). We also indicate the three network topology
metrics (degree, strength and articulation points) (D), that were used to analyze the pairwise similarity network (microbiota-to-microbiota
association network). Finally, we present the re-wiring analysis that was used to perform pairwise network comparison between the MMDI
networks (E).
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fluid (CSF) of human samples. We used an in-house developed R

script to parse the feces, serum and CSF xml datasets (datasets

downloaded in xml format) from the HMDB with the aim to

identify and extract only the metabolites that had biological

disposition in bacteria and/or fungi (release date:2020-09-10).

Specifically, for each of the metabolite’s data contained within

each of the three xml datasets, our script examined whether the

metabolite in their biological disposition section was containing the

terms “Fungi” or “Bacteria”. If these terms were present in the

metabolite data, the algorithm classified the corresponding

metabolites as associated to fungi and/or bacteria and it also

extracted the names of these fungi or bacteria, if they were

available Overall, from the feces, serum and CSF xml datasets,

after removing duplicates, we identified 188 metabolites that were

indicated to be produced by bacteria and fungi. From these 188

metabolites, 157 were indicated to be produced only by bacteria and

11 to be produced only by fungi, whereas 20 of them were indicated

to be produced by both bacteria and fungi. Based on the data

extracted after parsing the xml datasets from HMDB, we were able

to collect the names of microbiota that produce most of the 188

identified microbiota-derived metabolites, which included either

species or strains or genera names. More specifically, we extracted

397 names (genera/species/strains) of bacteria or fungi which were

associated with 138 out of the 188 identified microbiota-derived

metabolites. However, although the other 50 of the microbiota-

derived metabolites were indicated to have biological disposition in

bacteria or fungi, no specific names were provided by the HMDB

database. From these 50 microbiota-derived metabolites, 49 were

indicated to be produced by bacteria and 1 by fungi. Therefore, in

total we extracted 671 microbiota names-to-metabolite associations,

including the 50 microbiota-derived metabolites without associated

names, which were indicated under the general annotation of

bacteria or fungi associated.

Through the above-mentioned parsing of HMDB, we

generated metabolite-to-gene associations by collecting the

associated genes for each metabolite. For the same set of the

188 metabolites, we also collected metabolite-to-gene

associations using the MetaboAnalyst tool (version 5.0) (38),

that provides metabolite-to-gene associations which are

extracted from STITCH (‘search tool for interactions of

chemicals’) database (39). Then we combined the metabolite-

to-gene associations obtained from HMDB and STITCH

databases, and we removed duplicate entries. These resulted in

5931 metabolite-to-gene associations between 130 out of the 188

microbiota-derived metabolites and 2085 human genes, whereas

no metabolite-to-gene association data were available for the rest

58 microbiota-derived metabolites.

(ii) Collection of NDs disease-associated data
Using the same approach as in our previous work (36), we

obtained disease-associated gene data for each of the four NDs

(ALS, AD, PD and MS) using the STRING: disease query of the
Frontiers in Immunology 04
StringApp in Cytoscape, which is a network visualization and

analysis tool (40). The STRING: disease app allows to easily

import disease-associated data which are extracted from the

DISEASES database (41) into Cytoscape, which automatically

creates a PPI disease network. We obtained the top 200 highly

disease-associated genes, which had the highest disease

association score, for each of the four NDs. The confidence

cut-off score of interactions between the human proteins was set

at 0.8 for all four ND disease-associated networks. The

confidence cut-off score determines the quality of the evidence

on whether the interaction between the proteins is likely to be

true, with confidence values ranging from 0 (low) to 1.0

(high) (42).

(iii) Collection of viruses-host PPI data
Virus-host PPI data for EBV were obtained from PHISTO

(43) and VirHostNet 3.0 (44) databases, which provide

experimentally validated pathogen-host PPIs. Then we

combined the virus-host PPIs data that we obtained from

these two databases and removed duplicated entries, resulting

into 7069 EBV-human host PPIs. The data contains 153 EBV

proteins from four EBV viral strains (GD1, B95-8, AG876,

HHV4 type 2) that target 1247 human proteins. Based on its

genome, EBV has been found to have a coding potential of

around 80 viral proteins, however not all proteins have yet been

identified. The generated EBV-human host PPIs dataset

contains 48, 59, 45 and 1 viral proteins from the EBV strains

GD1 (taxid id:10376), B95-8 (taxid id: 10377), AG876 (taxid id:

82830) and HHV-4 type 2 (taxid id: 12509), respectively.
2.2 Network reconstruction and
enrichment analysis

For the purpose of this investigation, using the data collected

above we reconstructed and visualized the following three types

of networks:

(i) Microbiota - metabolites - GO ISP
terms network

To model the immunomodulatory effects of microbiota-

derived metabolites produced by bacteria and fungi, we

constructed a microbiota - metabolites -Gene Ontology

Immune System Processes (GO ISPs) network, called MMI

network, using visNetwork package in R (45). The constructed

network contains three types of nodes, (a) microbiota (bacteria

and fungi), (b) metabolites and (c) GO ISPs terms. It also

contains three types of edge interactions between the nodes:

(a) microbiota-to-metabolite, (b) metabolite-to-GO ISP and (c)

GO ISPs-to-GO ISPs. To identify the GO ISPs that are

modulated by microbiota-derived metabolites, we performed

enrichment analysis on the 2085 human genes that are
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targeted by the 130 microbiota-derived metabolites. Enrichment

analysis was performed using the ClueGO app (46) in Cytoscape

using the GO ISPs database and keeping only significantly

enriched terms with adjusted P -value ≤0.05 (corrected with

Benjamini-Hochberg). Then the enriched GO ISPs terms were

merged with the microbiota-to-metabolite associations obtained

from the HMDB database, in order to construct the MMI

network. Table 1 indicates the characteristics of the MMI

network, which is composed of 472 nodes and 3770 edges.

(ii) Microbiota-metabolites-ND associated
genes- GO ISPs networks

To identify disease-associated genes that can be modulated

by microbiota components in each of the four NDs (ALS, MS,

AD and PD), we merged the microbiota-metabolites-genes

interactions, collected in Section 2.1 (i), with each of the 200

disease-associated genes of these diseases. For each of the four

NDs we then constructed a microbiota-metabolites-ND

associated genes- GO ISPs (MMDI) network. More

specifically, to create the four MMDI networks we first

performed enrichment analysis on the 200 disease-associated

genes for each of the four NDs, using the same parameters as in

the enrichment analysis performed in part (i). Then we merged

the microbiota-metabolites-genes interactions with the ND-

associated genes and the ND siginificantly enriched GO ISP

terms, allowing to construct the four MMDI networks. Then for

each of the four MMDI networks we only retained microbiota

components and metabolites that interact with the ND-

associated genes. This allowed to identify microbiota

components which produce metabolites that target genes

associated with these diseases and therefore can modulate ND-

associated GO ISPs. The characteristics of each of the four

MMDI networks are described in Table 2.

(iii) EBV-ND PPI Networks
To investigate the possible contribution of microbiota - virus

interactions in the development of NDs, we used the case of

EBV, which has been associated with the development of three
Frontiers in Immunology 05
out of the four selected NDs, namely AD, MS and PD (47–49).

The development of ALS was not strongly associated with EBV

and hence was excluded from this part of the analysis. First, we

created an EBV-host PPI network in Cytoscape using the virus-

host PPI data collected in Section 2.1 (iii), resulting in a network

of 1400 nodes and 7069 edges. We then performed enrichment

analysis on the 1247 human protein targets of EBV proteins in

the EBV-host PPI network, using the same parameters as before,

with the aim to identify GO ISPs that can be modulated by EBV.

In order to identify the immunomodulatory effects of EBV in

the three remaining NDs, we merged the EBV-host PPI network

with each of the 200 disease-associated proteins (from the

corresponding genes), resulting in the construction of three

integrated EBV-ND PPI networks. Then we performed

enrichment analysis on the human protein targets of EBV and

their first neighbors, extracted from each of the three integrated

EBV-ND PPI networks. The human proteins used to perform

enrichment analysis were 1392, 1389 and 1381 for AD, PD and

MS respectively.
2.3 Similarity-based analysis

(i) Microbiota and microbiota-derived
metabolites based on GO ISPs interactions

Using the MMI network, we extracted three network

projections that involve the direct relationships between (A)

metabolites and GO ISPs, (B) microbiota and GO ISPs and (C)

microbiota and metabolites, illustrated in Figure 2. From the

MMI network we isolated the edge interactions between

metabolites and GO ISPs, and the edge interactions between

microbiota and metabolites, to generate the two projections

respectivelly, namely the (A) metabolites and GO ISPs and the

(C) microbiota and metabolites. In addition, in order to extract

the projection (B) microbiota-to-GO ISPs, we had to first

identify for each microbiota in the MMI network all the

connected metabolites and also identify the GO ISPs that

interact with these metabolites. For the last two network

projections, (B) and (C), we only retained microbiota with

known genera/species/strain name, thus removing microbiota

with unknown name. Then, we performed similarity-based

analysis to identify clusters of (A)microbiota-derived

metabolites, shown in Figure 2A, and (B) microbiotas (genera/

species/strains), shown in Figure 2B, that have similar or

dissimilar immunomodulatory effects, based on the GO ISPs

that they can modulate. By using the two projections that involve

the direct relationships between (A) metabolites and GO ISPs

and (B) microbiota and GO ISPs we created two binary matrices.

The microbiota to GO ISPs matrix included 256 microbiota and

120 GO ISPs, whereas the microbiota-derived metabolites to GO

ISPs included 73 metabolites and 120 GO ISPs. Then by using

the vegan package in R (50) we measured the similarity between
TABLE 1 Characteristics of the MMI network.

Number of nodes/edges

Nodes

Microbiota nodes 259

Metabolite nodes 93

GO ISPs nodes 120

Total 472

Edges

Microbiota-to-Metabolite 437

Metabolite-to-GO ISPs 3005

GO ISPs-to-GO ISPs 328

Total 3770
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metabolites and microbiota based on GO ISP terms effects using

the Jaccard similarity index. Then, by using the factoextra

package in R (51) we performed agglomerative hierarchical

clustering on the two projection similarity results, using the

average method. Agglomerative hierarchical clustering is an

unsupervised clustering method that allows to group objects

into clusters based on their similarity. It works very well for

small datasets and allows to easily extract information from the

analyzed data. There are several methods that can be used to

compute the distance between the clusters in hierarchical

clustering, such as “average”, “single” or “median” methods. In

analyzing these datasets, we used the “average” method because

it had the highest correlation coefficient value between the

cophenetic distance (distance in the vertical axis of the tree)

and the original distance metric used for the clustering. This was

a marker of validity of the clustering method that we used. The

similarity-based analysis that was performed on the metabolites

and GO ISPs projection, Figure 2A, and the microbiota to GO

ISPs projection, Figure 2B, were used to identify metabolites and

microbiota, respectively, which had similar or dissimilar

immunomodulatory effects.

(ii) Synergestic relatioships between microbiota
components in modulating ISPs

Microbiota components that produce the same metabolites

influence the same ISPs and thus have the same effects on those

processes. Thus, we used the direct relationships of microbiota

components and their metabolic products, Figure 2C, to

investigate the possible presence of synergestic actions between

microbiota components in modulating ISPs. To identify the

microbiota components that can affect the same GO ISPs we

created a microbiota-to-microbiota associations network, based

on pairwise similarity using List2Net (https://c-big.shinyapps.io/

list2net/), a shiny application created by our group, that

transforms lists of data to networks based on pairwise
Frontiers in Immunology 06
commonalities. Therefore, within the network, a microbiota

component is connected with an edge with another microbiota

component based on the common metabolites they produce.

The weight of each edge is the sum of the common metabolites

between each two connected microbiota components. The

application also provides network metrics of various

topological analysis measures, including degree and strength

centralities. The degree centrality indicates the number of

connections between two microbiota components and it was

used to identify the microbiota components that have the

highest number of associations with other microbiota

components. The strength centrality, indicates the sum of the

weights of all the links each node has and it was used to identify

the Top 10 microbiota components with the highest potential to

exert synergistic ISP effects. In addition, List2Net also provides

other network metrics, such as identifying articulation points

within the network whose removal will disconnect the largest

connected microbial module within the network into several

smaller modules. The articulation points metric was used to

identify microbiota components within the network whose

presence was important for ensuring network connectivity.

(iii) EBV and microbiotas common ISP effects in
general and ND specific states

We used a Venn diagram, to compare the 53 EBV

significantly enriched GO ISP terms obtained from the EBV-

host PPI network with the 120 GO ISP terms associated with

microbiota from the MMI network. The comparison revealed 24

common GO ISPs that can be modulated by EBV and

microbiota components. The number of the microbiota

components that co-modulate with EBV these 24 GO ISPs was

found to be 241. Similarity-based analysis was performed

between the 241 microbiotas and EBV based on their

similarity to modulate the 24 common GO ISPs, by using the

same methodology as in part (i). The similarity-based analysis
TABLE 2 Characteristics of the MMDI networks of MS, PD, ALS and AD.

Number of nodes/edges

Nodes MS PD ALS AD

Microbiota nodes 94 108 84 104

Metabolite nodes 27 30 26 29

Gene nodes 50 30 22 32

GO ISP nodes 295 63 28 95

Total 466 231 160 260

Edges

Microbiota-to-Metabolites 119 147 107 133

Metabolites-to-Genes 179 136 97 141

Genes-to-GO ISPs 1680 283 117 515

Genes-to-Genes 313 88 83 148

GO ISPs-to-GO ISPs 3104 251 41 609

Total 5395 905 445 1546
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was used to arrange the 241 microbiotas based on how similar or

dissimilar immunomodulatory effects they had in respect to

these 24 common GO ISPs with EBV.

In addition, we compared the EBV significantly enriched GO

ISPs per disease (AD, MS and PD) with the GO ISPs that have

been identified to be modulated by microbiota components in

the corresponding MMDI networks identified in Section 2.2

parts (ii) and (iii). This allowed to identify ND-associated GO

ISPs that can be modulated by both microbiota components

and EBV.
Frontiers in Immunology 07
2.4 Network re-wiring of the
immunomodulatory effects of microbiota
in ND states

Microbiota-host interactions are not static, but rather a

dynamic process that changes in different conditions, such as in

disease states. Network re-wiring allows to capture how the

connectivity of molecular interactions changes under different

disease states. Therefore, to investigate the role of microbiota-host

interactions in influencing ISPs in the four NDs, we used the DyNet
FIGURE 2

Schematic representation of the three network projections extracted from the MMI network, that involves the direct relationships between:
(A) metabolites and GO ISPs, (B) microbiota and GO ISPs and (C) microbiota and metabolites. For each projection the illustration indicates the
main methodology used and the output obtained from each projection.
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app in Cytoscape which allows to visualize and analyze dynamic

changes in molecular interactions in multi-states (52, 53). The

DyNet app performs pairwise network comparison, where two

networks are compared based on their similarity of their nodes

and edges. Therefore, it allows to identify nodes and edges which are

present in both networks and are indicated in white color, Figure 7.

It also indicates nodes/edges that are only present within one of two

networks, indicated in the one network as red and in the other as

green, Figure 7. Network-rewiring analysis allows to identify

differences and commonalities of the interaction of microbiota

with the GO ISPs associated with the four ND states.
3 Results

3.1 Comparison between bacterial-
versus fungi-derived metabolites

Based on the data collected from the HMDB, we were able to

identify 188 metabolites in the feces, serum and CSF human

samples that can be produced by bacteria and fungi. From these

metabolites, 157 can be produced only by bacteria, 11 can be

produced only by fungi, whereas 20 can be produced by both

bacteria and fungi. Comparison between the bacterial-derived

metabolites found in the different human samples, Figure 3A,

indicates that from the 152 metabolites that were found in the

feces samples, 125 can also be found in the serum samples and 48 of

these metabolites are also in the CSF samples. This possibly suggests

that 125 metabolites from the gut can pass into the bloodstream

(systemic circulation) and then 48 of these metabolites can also

reach the brain. In addition, comparison between the fungi-derived

metabolites found in the different human samples, Figure 3B,

indicates that 21 of the metabolites found in the gut (feces

samples) can enter into the bloodstream and then 12 of these

metabolites can also possibly reach the brain.

However, we also observe that some bacterial-derived

metabolites, Figure 3A, are not found in the feces samples.

More specifically, 17 metabolites are only found in the serum, 6

both in the serum and CSF and 2 only in the CSF. Also, similarly

few fungi-derived metabolites, Figure 3B, are not found in the

feces samples. Specifically, 2 metabolites are only found in the

serum and 2 metabolites are found in both the serum and CSF.

This is probably because these microbiota-derived metabolites are

not produced by microbiota located in the gut, but are rather

produced by other commensal microbiota in other tissues.
3.2 GO ISPs associated with the gene
targets of the microbiota-derived
metabolites

The GO ISPs enrichment analysis results of the 2085 human

genes that are targeted by the 130 microbiota-derived
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metabolites revealed 120 statistically significant GO ISPs,

which are associated with 542 out of the 2085 of the human

genes used for enrichment analysis, Table 3. These 542 human

genes are targeted by 93 microbiota-derived metabolites, of

which 81 are known to be produced only by bacteria and 12

are produced by both bacteria and fungi.

The GO ISPs results, shown in Table 3, indicated that

20.49% of the GO ISP terms belong to the group of positive

regulation of leukocyte migration and 7.38% belong to the group

of myeloid leukocyte differentiation. This indicates that

microbiota can regulate and shape myeloid and lymphoid cells

function and differentiation, which is also supported by existing

literature (9). For example, microbiota-derived metabolites were

shown to be able to stimulate the migration of neutrophiles at

the site of inflammation or injury (54–56).

In addition, 14.75% of the enriched terms belong to the

group of complement activation, classical pathway that involves

processes that lead to the negative or positive regulation of the

complement system via activation through the classical pathway.

The results of our analysis is consistent with existing evidence

indicating that pathogenic bacteria and commensal microbiota

can hijack regulatory proteins of the complement system (57)

and its activation (58). The complement system plays an

important role in innate immune system defenses against

pathogens and it also complements antibody responses against

pathogens by the adaptive immune system (59). It also plays a

critical role in commensal microbiota-immune system symbiosis

and health homeostasis (60, 61). Improper complement system

recognition of commensal microbiota as pathogenic will result in

excessive immune responses and lead to the emergence of

immune-mediated diseases (60, 61). Therefore, the ability of

microbiotas to modulate the classical complement pathway

indicates that they can affect both innate and adaptive

immune responses against opportunistic pathogens and

improper activation of this system can contribute to

disease emergence.

The enrichment analysis results also indicated that 11.48% of

the enriched GO ISPs terms belong to the group of antigen

receptor-mediated signaling pathway, that involves the molecular

signals that are initiated by the cross-linking of an antigen receptor

on B or T cells. This pathway is essential for the activation of B-cells

and their differentiation into either short-lived plasma cells that

produce and secrete antibodies or memory B cells (62). In addition,

this pathway is also essential for the activation of T cells and their

differentiation into effector T cells that have different functions:

cytotoxic T cells, helper T cells, regulatory T cells and memory T

cells (63). Therefore, the results of our analysis indicate that

microbiota have the ability to modulate through metabolite -gene

interactions the signaling pathways that are involved in the

activation and differentiation of B and T cells and thus the

formation of immunological memory.

Moreover, 10.66% of the enriched terms belong to the group

of humoral immune response mediated by circulating
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immunoglobulin, which involves immune responses mediated

by antibodies produced by plasma B cells. Interestingly, 1.64% of

the terms belong to the group of antimicrobial humoral immune

response mediated by antimicrobial peptides, which suggests

that microbiota can also specifically modulate antibody immune
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responses against microbes. In addition, 3.28% of terms belong

to the group of neutrophil-mediated killing of symbiont cell that

involves the direct killing by a neutrophil of symbiotic

microbiota. Therefore, microbiota can upregulate or

downregulate humoral immune responses against invading

pathogens and also modulate ISPs that are involved in host-

symbionts interactions. This is supported by evidence that

indicates that gut commensal microbiota can affect antibody

production, particularly immunoglobulin A (IgA), and the

production of autoantibodies (64, 65).

Furthermore, 1.64% of the terms belong to the group of

microglia cell activation, which are considered as the resident

macrophages of the CNS and play an important role in

inflammation and infection within the brain (66). Therefore,

the results of our analysis indicate that microbiota can also affect

the regulation of innate immune responses in the CNS. This is

supported by experimental evidence indicating that microbiota

can affect the maturation and activation of microglia cells

through the production of SFCAs and NTs (67, 68).
3.3 Similarity-based analysis results on
the immunomodulatory effects of
microbiota and their metabolites

The agglomerative hierarchical clustering of the 93

microbiota-derived metabolites that interact with the 542

genes that are associated with the 120 GO ISPs, indicated the

presence of 14 clusters of metabolites based on similarity of GO

ISP effects, shown in Figure 4. The clustering analysis results

showed that several NTs, such as acetylcholine, gamma-

aminobutyric acid, serotonin, norepinephrine, epinephrine,

histamine and dopamine belong to the same cluster and

descent from the same branch indicating that they exert

similar immunomodulatory effects. Interestingly, acetaldehyde
BA

FIGURE 3

Comparison of the (A) bacterial-derived and (B) fungi-derived metabolites found in the feces, serum and CSF human samples, obtained from
the HMDB database.
TABLE 3 GO ISPs enrichment analysis results of the 2085 human
gene targets of the 130 microbiota-derived metabolites indicating
the % of terms that belong into each functional group.

Functional groups of GO ISPs terms Percentage of Terms
per group

positive regulation of leukocyte migration 20.49

complement activation, classical pathway 14.75

antigen receptor-mediated signaling pathway 11.48

humoral immune response mediated by
circulating immunoglobulin

10.66

myeloid leukocyte differentiation 7.38

neutrophil mediated immunity 6.56

positive regulation of B cell activation 4.92

neutrophil-mediated killing of symbiont cell 3.28

cellular response to interferon-gamma 2.46

negative regulation of inflammatory responses to
antigenic stimulus

2.46

negative regulation of cellular extravasation 2.46

hematopoietic stem cell differentiation 2.46

complement receptor mediated signalling pathway 1.64

antimicrobial humoral immune response mediated
by antimicrobial peptide

1.64

defense response to Gram-negative bacterium 1.64

microglial cell activation 1.64

eosinophil migration 1.64

antigen processing and presentation of exogenous
peptide antigen

0.82

myeloid dendritic cell chemotaxis 0.82

megakaryocyte differentiation 0.82
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metabolite which is a byproduct of alcohol and the metabolite

ethanol also belong to the same cluster and descent from the

same branch as these NTs. Also, the hormone metalonin and the

gasotransmitter hydrogen sulfide belong the the same cluster. In

addition, the SCFAs butyric acid,proprionic acid, and salicylic

acid which is the major metabolite of aspirin are also in the same

cluster. This indicates that these microbiota-derived metabolites

can exert similar immunomodulatory effects.

Whereas, contrary to formic acid and proprionic acid, acetic

acid which is also an SCFA, belongs in a distant cluster,

inidicating dissimilar immunomodulatory effects between

acetic acid and these two SCFAs. Disimilar effects can also be

seen between L-lactic acid and its harmful enantiomer D-lactic

acid, where the former is in the same cluster as 4-

hyd roxc inammic a c id and the neu ro t r an sm i t t e r

phenylethylamine. Whereas, D-lactic acid is in a distant cluster

and exert similar effects with the metabolites hydrocinammic

acid, which is a carboxylic acid, and tyrosol, which is a phenolic

antioxidant compound that can be found in natural sources,

such as wine an virgin olive oil.

Moroevoer, the clustering results indicated that several

metabolites can exert exactly the same immunomodulatory

effects, such as the SCFA formic acid which exerts exactly the

same ISP effects as flutaric acid. Exactly the same

immunomodulatory effects can also be observed between the

metabolites phenol, glycolic acid and ascorbic acid, also known

as vitamin C.

Furthermore, the agglomerative hierarchical clustering

results of the 256 microbiotas based on GO ISP terms

similarity indicated the presence of 14 clusters. The results of

the agglomerative hierarchical clustering can be found in

Figure 1 of Supplementary File 1. The analysis results

indicated that several microbiotas can affect exactly the same

ISPs via their metabolic products. This suggests that groups of

microbiota can influnce the same ISPs, however it does not

necessarily mean that their effect on these processes is the same

as they might Interact with different genes. Therefore, the

composition of the metabolites they produce and their

respective gene targets will determine the outcome of the

interaction between a microbiota and an ISP, resulting in its

activation or inhibition.
3.4 Synergistic combinatorial effects of
microbiota components on ISPs

To identify modules of microbiota that produce the same

metabolites and thus affect the same ISPs, we created a

microbiota-to-microbiota associations network (256 nodes,

2654 edges) based on pairwise similarity of the 72

metabolites the 256 microbiotas (genera/species/strain)

produce. Visualization of the network indicated that the

majority of microbiota components produce at least one
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metabolite that is also produced by another microbiota

component, forming a large connected microbial module.

This suggests that several pairwise groups of microbiota

components can modulate ISPs via similar mechanisms

through their metabolic products, resulting in synergistic

immune mediated effects. In addition, based on the

constructed network, only 6 microbiota components produce

unique metabolites. The network is also composed by two

small connected microbial modules. The first one contains only

methane producing bacteria, known as methanogens, thus

these microbiota components modulate the immune system

in the same way. The second microbial module contains two

Lactobacillus species, the Lactobacillus plantarum and

Lactobacillus paracasei, where they share 1 metabolite that is

not shared by other microbiota components.

In addition, network analysis of the microbiota-to-

microbiota associations network, revealed 9 microbiota

components that can act as articulation points within the

network, namely : Clostr idium bei jer incki i species ,

Pseudomonas putida species, Micrococcus genus, Klebsiella

genus, Pseudomonas fluorescens species, Escherichia coli

species, Lactobacillus genus, Corynebacterium glutamicum

species and Alcaligenes genus. Articulation points are nodes

within the network, whose removal will disconnect the largest

connected microbial module into several smaller modules, thus

these microbiota components are essential for ensuring network

connectivity. Some of the identified articulation points are

known opportunistic pathogenic organisms, such as

Escherichia coli species, Klebsiella genus, Alcaligenes genus and

Pseudomonas putida species. Whereas, other articulation points,

such as Lactobacillus genus, are known beneficial gut microbiota,

which are also found in probiotic supplements. Pseudomonas

fluorescens species, which act as an articulation point, reside in

low levels in various body sites and are considered non-

pathogenic. However, they can cause acute opportunistic

infection in rare occasions, and interestingly they have been

associated with the development of Chron’s disease (69, 70). In

addition, Clostridium beijerinckii is also a non-pathogenic

clostridia species, unlike other known clostridia species, like

Clostridium difficile and Clostridium botulinum that are known

human disease-causing pathogens (71).

Network analysis also allowed to identify the microbiota

components which have the highest degree of pairwise

similarity of metabolites which are also produced by other

microbiota components, with the Top 10 high degree

indicated in Figure 5A. Interestingly, almost all of the Top

10 high degree microbiota components are either known

human pathogenic or opportunistic pathogens, with the

exception of Ruminococcus genus which are not considered

to be opportunistic pathogens. However, several members of

the Ruminococcus genus are commensal gut microflora and

alternations in their abundance has been found in several

NDs, including MS (72, 73), PD (74–76), AD (77) and ALS
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(78), but also other diseases such as Chron’s disease (79–81).

Escherichia coli genus which has the highest degree of

pairwise similarity of metabolites which are also produced

by other 129 microbiota is also a commensal gut microbiota,

but it can become pathogenic when it infects other tissues.

Moreover, several of the other high degree microbiota

components are also commensal microbiota that can

become pathogenic when their abundance increases or they

migrate to other tissues, such as the genera Staphylococcus,

Streptococcus, Alcaligenes and Enterococcus. Therefore, the

network analysis results indicate that human pathogenic

bacteria have a high degree of pairwise similarity with other

microbiota components, which not only allows them to

influence multiple ISPs, but also allows them to exert

synergistic immunomodulatory effects. In addition,

Figure 5B, indicates the Top 10 microbiota components

which have the highest node strength, which is the sum of

weights of the links connected to the node, hence node

strength indicates the microbiota components with the

highest potential of synergistic immunomodulatory effects.
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3.5 Possible microbiome-host-immune
system interactions in NDs

Perturbations in microbiome-immune system interactions

have been associated with the development of NDs (82, 83).

Therefore , to invest igate the poss ib le role of the

immunomodulatory effects of microbiota-metabolic products

in NDs we first identified for each of the four NDs (AD, PD,

MS and ALS) the number of disease-associated genes that can be

also targeted by microbiota components via their metabolic

products, which are termed intersections nodes. More

specifically, we identified 68, 91, 72 and 93 intersection nodes

in MS, AD, ALS and PD, respectively. Table 4, indicates the

number of genes out of the top 200-disease associated genes

included in the analysis for each ND, which can act as

intersection nodes, including also the number of microbiota

components and their metabolic products that interact with

these intersection nodes. The results indicate that AD and PD

have the highest number of disease-associated genes that are

targeted by microbiota-derived metabolites, as they have 91 and
FIGURE 4

Clustering dendrogram of the 93 metabolites that target the 542 genes that were found to be associated with the 120 GO ISPs, based on their
interaction similarity with GO ISPs.
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93 intersection nodes, respectively. In addition, the number of

microbiota components that can interact with these intersection

nodes is also higher in AD and PD compared to MS.

Moreover, through the reconstruction and visualization of

the MMDI networks for the four NDs, we were able to identify

specific disease-associated genes associated with ISPs that are

also interactors and modulated by microbiota viametabolite-to-

gene interactions. Table 5 indicates for each of the four MMDI

networks the number of intersection nodes that are associated

with ISPs and the number of microbiota nodes and their

metabolic products that interact with the ISP- associated

intersection nodes. These results indicate that although MS

has the least number of disease-associated genes that are
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targeted by microbiota-derived metabolites, the majority of

these genes are associated with GO ISP enriched terms. On

the contrary, in AD and PD which have the highest number of

disease-associated genes that are targeted by microbiota-derived

metabolites, only approximately one-third of these intersection

nodes are also associated with GO ISPs. In addition, in ALS less

than one-third of intersection genes are associated with GO ISP

enriched terms. However, the results also indicated that these

GO ISP- associated intersection nodes in each of the four NDs

can influence either all or the majority of the GO ISP terms

associated with these diseases. More specifically, the GO ISP-

associated intersection nodes participate in 295 out of the 303, 63

out of the 63, 28 out of the 30 and 95 out of the 97 ISPs, in MS,
BA

FIGURE 5

(A) The Top 10 microbiota components with the highest degree of pairwise similarity of metabolites that are also produced by another
microbiota component. (B) The Top 10 microbiota components with the highest strength topology, thus having the highest potential to exert
synergistic effects. Figure also illustrates the associated microbiota pairs of each of the Top 10 synergistic microbiota components as a
microbiota-to-microbiota association network.
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PD, ALS and AD, respectively. This suggest that the GO ISPs-

associated intersection nodes which are targeted by microbiota

have pleiotropy in ISP effects, which possible allows microbiota

to affect multiple disease related ISPs.

Comparison between the microbiota components and

microbiota-derived metabolites that have been identified to

influence the ISP-associated intersection nodes for the four

NDs, indicated that there are 65 common microbiotas and 21

common metabolites between all four NDs. In addition,

comparison between the GO ISPs that can be modulated by

microbiota in the four ND states indicated that they share 19

common GO ISPs, that can be modulated by microbiota

components, shown in Figure 6.
3.6 Network re-wiring of the
immunomodulatory effects of microbiota
in NDs

The immune system at equilibrium has a certain set of

interactions and nodes, whereas at disequilibrium new nodes

and interactions will emerge due to the activation of ISPs

associated with the inflammatory trigger or the disease state.

This dynamic change of immune system molecular interactions

gives rise to specific disease immune phenotypic profiles. This

“re-wiring” in the network of molecular interactions due the

presence of a disease state could be also reflected in the re-wiring

in the networks of microbiota-host interactions. Therefore, it is

expected that the effect of the same microbiotas might be

different in different diseases due to the different immune

profiles and different perturbations that will emerge from

microbiota-host interactions. This is because immune system

re-wiring due to a disease condition will lead to the emergence of

new interactions and nodes which would also change the

immunomodulatory effects of microbiota-host interactions.

To inve s t i g a t e t he l e v e l o f r e -w i r i ng o f th e

immunomodulatory effects of microbiota via metabolite-gene

interactions under the four NDs we used the DyNet app in

Cytoscape, where we performed pairwise network comparison

which allowed to identify nodes and edges that differ between

two networks. Figure 7, illustrates the pairwise comparison

between all the pairs of MMDI networks. The pairwise

comparison between the four MMDI networks, indicated that

MS compared to the other three NDs (ALS, PD and AD) has a

higher level of network re-wiring due to the presence of several
Frontiers in Immunology 13
nodes and edges that are not present in the other three networks.

In addition, the pairwise comparison indicated that ALS has the

least level of network re-wiring compared to the other three NDs

(AD, PD and MS). Moreover, the comparison indicated that the

level of re-wiring between AD and PD is not high, as they share

several common nodes and edges, and have relatively few

different nodes and edges.
3.7 Possible contribution of microbiota -
EBV interactions in the development of
NDs

Both microbiota and viruses have the ability to influence

ISPs, with microbiota exerting their immunomodulatory effects

via their metabolic products and viruses through their viral

proteins. In addition, both viruses and microbiota have been

associated with the development of NDs, hence microbiota-virus

interactions might contribute to the development of NDs as well.

Viruses, through PPIs can manipulate host ISPs and lead to their

dysregulation, which might contribute to the development or

progression of NDs. Therefore, we explored whether microbiota

components that have immunomodulatory effects can modulate

similar ISPs as viruses associated with NDs. To explore these

similarities, we used the case of EBV which is associated with the

development of three NDs (AD, PD and MS) and because EBV

is a well-studied virus that has lots of available PPI data.

We first performed enrichment analysis on the 1247 human

protein targets of EBV proteins to investigate the effects of EBV

in general, which revealed 53 significantly enriched GO ISP

terms. Then we compared the EBV significantly enriched GO

ISP terms with the 120 GO ISP terms associated with microbiota

from the MMI network, which revealed 24 common GO ISPs

that can be modulated by both EBV and the 241 microbiotas.

Subsequently by using the microbiota-to-GO ISPs projection of

the MMI network we extracted and identified the microbiota

components which can influence these 24 GO ISPs which are

also modulated by EBV. Then we performed similarity-based

analysis between the 241 microbiotas and EBV to group them

into clusters based on their ability to modulate these 24 common

GO ISPs. The clustering results indicated the presence of 24

clusters of microbiotas. The clustering results (see Figure 2 of

Supplementary File 1) indicated that 9 out of the 241

microbiotas belong to the same cluster with EBV and thus,

like EBV, they can modulate all of the 24 GO ISPs, Figure 8.
TABLE 4 Characteristics of the interaction of microbiota and their metabolites with NDs-associated genes.

PD MS ALS AD

Microbiota nodes that produce metabolites that interact with the intersection nodes 157 107 141 158

Metabolites nodes that target the intersection gene nodes 57 33 50 54

Intersection gene nodes 93 68 72 61
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More specifically these microbiota components are: Roseburia

genus, Lactobacillus genus, Hansenula polymorpha species,

Faecalibacterium prausnitzii species, Eubacterium genus,

Coprococcus comes species, Coprococcus eutactus species,

Anaerostipes genus and Baccillus genus. Lactobacillus are

considered as “friendly” bacteria that live symbiotically within

the human host exchibiting health promoting effects and protect

against pathogenic organisms (84). In addition, the Lactobacillus

and Bacillus genera are found in probiotic supplements, with

Lactobacillus being the most common genus used for probiotics

(85, 86).

However, as already mentioned, pathogen-host interactions in

disease states differ from healthy state due to the emergence of new

interactions and processes that arise based on the pathological

mechanisms activated as a result of the disease. Therefore, in order

to investigate the possiblemicrobiota-EBV interactions inmodulating

GO ISPs associated with NDs, we first created three integrated EBV-

ND PPI networks, where the EBV-host PPI network was merged

with the disease-associated proteins of each of the threeNDs (AD, PD

andMS). Then, to identify GO ISPs that can bemodulated by EBV in

each of the three NDs, we performed enrichment analysis on the

human protein targets of EBV proteins and their first neighbors in

each of the integrated EBV-ND PPI networks. The enrichment

analysis of EBV PPI in NDs, indicated that the number of

significantly enriched GO ISPs that can be modulated by EBV in

MS disease states are 235, in PD state are 87 and in AD state are 99.
Frontiers in Immunology 14
Then we compared the EBV GO ISP enriched results in the

three NDs, with the GO ISPs that can be modulated by

microbiota components in the three ND states, which allowed

to identify for each ND state the GO ISPs that can be modulated

by both microbiota components and EBV. The comparison

between the immunomodulatory effects of EBV and

microbiota in MS disease, indicated that 169 MS-associated

GO ISPs can be modulated by both microbiota components

and EBV. Similarly, comparison of the immunomodulatory

e ff ec t s o f EBV in PD and AD diseases wi th the

immunomodulatory effects of microbiota on the GO ISPs

associated with these disease states, indicated 18 and 36

common ISPs that can be modulated by both microbiota

components and EBV, respectively. These results indicate that

in MS there is a higher number of disease-associated ISPs that

can be modulated by both microbiota and EBV infection, than in

PD and AD. Therefore, it is possible that microbiota-EBV

interactions, in terms of their immunomodulatory effects,

might play a more significant role in MS pathogenesis rather

than PD and AD.
4 Discussion

In this study we performed a network-based bioinformatics

approach with the aim to first investigate the immunomodulatory
TABLE 5 Characteristics of the immunomodulatory effects of microbiota and their metabolites in the MMDI networks.

PD MS ALS AD

Microbiota with immunomodulatory effects 108 94 84 104

Microbiota-derived metabolites that interact with GO ISPs 30 27 26 29

Intersection nodes that are associated with GO ISPs 30 50 22 32

GO ISPs associated with each disease 63 295 28 95
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FIGURE 6

Comparison of the GO ISPs that can be modulated by microbiota components in the four ND states AD, MS, ALS and PD, highlighting the 19
common GO ISPs.
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effects of microbiota (bacteria and fungi) through their metabolic

products. We also explored how various microbiota components,

through their immunomodulatory effects, might be able to

influence ISPs associated with NDs, and thus possibly

contribute to their development and/or progression. In addition,

we explored the immunomodulatory effects of EBV, which is

associated with the development of the three NDs, MS, AD and

PD, both in general and ND specific states. Moreover, we examine

how microbiota-virus interactions might contribute to the

modulation of ISPs associated with pathogenic mechanisms

involved in NDs. Our network-based methodology is

summarized in Figure 1.
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Statistically significant enrichment analysis revealed 120 GO ISP

terms that can be modulated by 93 microbiota-derived metabolites

through their interaction with 542 human gene targets. The GO ISPs

results, Table 3, indicated that 20.49% of the GO ISP terms belong to

the group of positive regulation of leukocyte migration. During tissue

damage or infection migration of circulating blood leukocyte cells are

an important component in the elimination of the inflammatory

triggers and tissue repair process (87). Leukocyte migration is also

essential for the resolution of inflammatory processes and uncontrolled

migration of leukocytes cells is observed in inflammation and NDs.

Therefore, microbiotas through their metabolic products can influence

immune responses during inflammatory triggers.
FIGURE 7

Pairwise network comparisons between the MMDI networks, with red nodes/edges indicating nodes only present in one network and green nodes/
edges indicating nodes that are only present in the other network, whereas white nodes indicate common nodes between the two networks.
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In addition, 7.38% of the enriched terms belong to the group

of myeloid leukocyte differentiation. Myeloid cells are important

in mounting effective inflammatory responses during viral

infections (88). Therefore, microbiota by affecting myelopoiesis

can possibly affect innate immune responses and the formation

of immunological memory against viral infections.

Moreover, 14.75% of the GO ISP terms belong to the group

of complement activation, classical pathway, which plays an

important role in innate immune system defenses against

pathogens and also complements antibody responses against

pathogens by the adaptive immune system. The complement

system also plays a critical role in commensal microbiota-

immune system symbiosis and health homeostasis. Improper

complement system recognition of commensal microbiota as

pathogenic would lead to excessive immune responses and hence

to the emergence of immune-mediated diseases (60, 61).

Therefore, microbiota, by interfering with the complement

system, not only have the ability to affect both innate and

adaptive immune responses against pathogens, but also

regulate host responses against symbionts.

The enrichment analysis results also indicated that

microbiota can affect the formation of memory B and T cells

by modulating the signaling pathways that are involved in the

differentiation of B and T cells, as 11.48% of the GO ISPs terms

belong to the group of antigen receptor-mediated signaling

pathway. In addition, the enrichment results indicated that

microbiota can affect humoral immune response mediated by

circulating immunoglobulin. This suggests that microbiota can

affect antibody production. This is supported by evidence that

indicates that gut commensal microbiota can affect the

production of IgA, and the production of autoantibodies (64,

65). Evidence also indicates that SFCAs, which are produced by

gut microbiota from dietary intake, can influence antibody

production. Reduced intake of dietary fiber leads to the

production of low levels of SFCAs, and this was shown to
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result in defective pathogen-specific antibody responses (89).

Autoantibodies are a common feature of autoimmune diseases,

but also of NDs, like MS, therefore improper diet in combination

with altered microbiota composition might lead to the loss of

se l f - to lerance and impaired immune responses to

pathogenic organisms.

Furthermore, 1.64% of the terms belong to the group of

microglia cell activation. Gut microbiota can affect the

maturation and activation of microglia cells via the production

of SCFAs (67) and microbiota-derived NTs (68). These

microbiota-mediated effects on microglia were shown to also

affect innate immune responses in the CNS against viral

infections, mediated by the production of SCFAs (67).

Microglia dysfunction has been implicated in the pathogenesis

of several NDs, including MS, AD, PD and ALS, as they

contribute to neuroinflammation (90). Altered microbiota

composition has also been associated with the development of

NDs, therefore microbiome-microglia interactions might

influence NDs pathogenesis (68). Viruses which are also

associated with the development of NDs and can also interfere

with microglia functions (91). Therefore, since alternation in

microbiota can influence microglia immune responses against

viral infection, microbiota-virus-microglia interactions could

also influence the pathogenesis of NDs.

The next step of our methodology involved the

reconstruction and visualization of the MMI network that

contained microbiota - metabolites - GO ISP terms

interactions. From the MMI network, we extracted three

network projections that involve the direct relationships

between (a) metabolites and GO ISPs, (b) microbiota and GO

ISPs and (c) microbiota and metabolites, illustrated in Figure 2.

Projections (a) and (b) were used to identify clusters of

microbiota-derived metabolites and clusters of microbiotas

genera/species/strains that have similar or dissimilar

immunomodulatory effects, based on the GO ISPs that they
FIGURE 8

Cluster from the similarity results of EBV with the 241 microbiota that can affect the 24 ISPs that can be modulated by both microbiota
components and EBV, highlighting the branch that EBV belongs to and the microbiota components that can also affect all 24 of the common
GO ISPs.
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can affect. The similarity analysis results of the microbiota-

derived products indicated that the majority of the microbiota-

derived NTs belong to the same cluster, therefore they exert

similar immunomodulatory effects. NTs can influence both

innate and adaptive immune responses, with leukocyte cells

expressing receptors for several NTs including glutamate,

dopamine, serotonin and acetylcholine (92, 93). A

bidirectional cross-talk exists between the brain and the

peripheral immune system as leukocyte can also synthesize

and released NTs and they can also produce cytokines that

participate in the neuroimmunomodulatory circuitry (93).

Therefore, NTs produced by microbiota can indirectly

modulate neuroinflammation and they can also possibly affect

neural regulation of innate immunity, including microglia

activation (68). Interestingly, evidence indicates that microglia

have also the capacity to be ‘primed’ based on their history of

inflammatory stimuli and develop innate immune memory (94).

Depending on the initial stimuli, repeated exposure to secondary

inflammatory stimuli may enhance their responses or lead to

loss of responsiveness (94). This suggests that a form of classical

conditioning learning might exist in the pairing of microglia

with the initial stimuli that influences responses during re-

exposure. In a mouse model of AD, it was shown that

application of a peripheral stimuli caused innate immune

memory training of microglia cells in the brain which

exacerbated b amyloidosis, whereas innate immune tolerance

alleviated this effect (95). Therefore, it is possible that

microbiome-derived NTs and SFCAs, which can modulate

microglia maturation and activation, might also affect the

priming of microglia towards inflammatory stimuli and thus

the development of innate immune memory by microglia, which

might contribute to NDs development.

In addition, the clustering results also indicated that groups

of microbiota can influnce the same ISPs. However it does not

necessarily mean that by targeting the same ISP the outcome of

their effect would be the same as they might interact with

different genes in these ISPs, thus leading to either inhibition

or activation of the ISPs. Therefore, in order to identify

microbiota that have the same outcome on an ISP and thus

possible synergistic effets, we extracted from the MMI network

the direct relationships between microbiota and metabolites,

Figure 2C. Then by using the microbiota to metabolites

relationships we created a microbiota-to-microbiota

associations network based on pairwise similiarity to identify

pairs of microbiota components that can produce the same

metabolites. Topological analysis of the microbiota-to-

microbiota associations network indicated the Top 10

microbiota components that had the highest degree of

pairwise similarity with metabolites produced by other

microbiota components. Almost all of the Top 10 microbiota

components were human pathogenic or opportunistic

pathogens, with the exception of Ruminococcus genus. This

suggests that pathogenic bacteria by producing several
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metabolites that can be also produced by other microbiota

components are able to influence multiple ISPs effects. This

also allows them the potential to exert synergistic

immunomodulatory effects with other microbiota components,

which possibly provides them with increased survival and

pathogenicity. The potential of synergistic actions between

microbiota components through their metabolic products can

possibly affect the immune responses towards the emergence of a

specific immune system phenotype. This can occur when there is

either an increase or a decrease in the abundance of microbiota

components that produce the same metabolite. However, the

outcome of the immunomodulatory effects influenced by

commensal microbiota composition is not only determined by

the combinatorial action of their synergistic relationships, but

also by their antagonistic relationships. The metabolites

produced by one microbiota component can have an opposite

effect on the host’s ISPs compared to the effect of the metabolic

products produced by another microbiota component, thus

leading to the emergence of antagonist relationships.

The reconstruction and visualization of microbiota-host-

interactions in NDs (AD, ALS, PD and MS), allowed to

identify mechanisms by which microbiota components via

their metabolic products might influence pathologies

associated with NDs, Table 4. More specifically, it allowed to

identify intersection nodes, which are nodes that are ND-

associated genes but they are also genes that are targeted by

microbiota components via their metabolic products. In

addition, it allowed to identify intersection nodes which are

associated with GO ISPs in these four ND states, Table 5. The

results indicated that although MS has the least number of

disease-associated genes that are targeted by microbiota-derived

metabolites, the majority of these genes are associated with

almost all of the GO ISPs associated with MS disease. On the

contrary, in AD and PD where microbiota had the highest

number of disease-associated genes that are targeted by

microbiota-derived metabolites, only approximately one-third

of these intersection nodes are also associated with disease-

associated GO ISPs. This possibly suggests that the influence of

microbiota on GO ISPs-associated with MS disease is higher

than in AD and PD, thus microbiota might have a more

significant role in MS disease inflammation. However, this

does not mean that microbiota do not play a role in the

pathogenesis of AD and PD. At least, the impact of microbiota

in these diseases seems not to be mediated by their

immunomodulatory effects but it can be possibly mediated by

the dysregulation of other host processes. Moreover, comparison

between the microbiota components and microbiota-derived

metabolites that influence ND- associated ISPs in the four ND

states indicated that there are 65 common microbiotas and 21

common metabolites between all four NDs, as well as 19

common GO ISPs, indicated in Figure 6.

However, although these four NDs share common microbiota

and metabolites it does not mean that the immunomodulatory
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effects of thesemicrobiotas are the same in these diseases as network

dynamics change, due to the emergence of new interactions and

nodes that stem from the disease pathology. This “re-wiring”

between molecular interactions due to the presence of a disease

state is also expected to change microbiota-host interactions. We

investigated network re-wiring of the immunomodulatory effects of

microbiota between the four NDs (AD, ALS, PD and MS) by

performing pairwise network comparison which allowed to identify

nodes and edges that differ between two network pairs of NDs,

Figure 7. The pairwise comparison between the four MMDI

networks, indicated that MS compared to the other three NDs

(ALS, PD and AD) has a higher level of network re-wiring due to

the presence of several nodes that are not present in the other three

networks. In addition, the network re-wiring analysis indicated that

ALS has the least level of network re-wiring compared to the other

three NDs (AD, PD and MS). Moreover, the comparison indicated

that the level of difference between AD and PD is not high, as they

share several common nodes and edges having only relatively few

different nodes and edges.

Finally, to investigate the possible contribution of microbiota-

virus interactions in the development of NDs, we explored whether

microbiota that have immunomodulatory effects can modulate

similar ISPs as EBV which is associated with the development of

three NDs: AD, PD and MS. To investigate the possible presence of

microbiota-EBV interactions in modulating GO ISPs associated

with NDs, we first constructed three integrated EBV-ND PPI

networks, where the EBV-host PPI network was enriched with

the disease-associated proteins of each of the three NDs (MS, PD

and AD). The enrichment analysis of EBV PPI interactions in NDs,

indicated 235, 87 and 99 significantly enriched GO ISPs that can be

modulated by EBV in MS, PD and AD states, respectively.

Comparison of the EBV GO ISPs results in the three NDs, with

the ISPs that can be modulated by microbiota components in the

three NDs states, allowed to identify for each ND the ISPs that can

be modulated by both microbiota components and EBV. The

comparison results indicated that 160 GO ISPs associated with

MS disease can be modulated by both microbiota components and

EBV, whereas only 18 and 36 GO ISP can be modulated in PD and

AD, respectively. This possibly indicates that microbiota-virus

immunomodulatory-related interactions, might play a more

significant role in MS disease pathogenesis rather than in the

pathogenesis of PD and AD.
5 Conclusion

In this paper, we provided a bioinformatics insight approach

that tries to capture the effects of microbiota, bacteria and fungi,

in shaping immune responses and influencing the formation of

immunological memory cells through their metabolic products,

under ND states and under ND states with EBV viral infection.

We recognize that our study might have certain limitations

mainly based on the completeness and the possible biases of the
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databases used, however despite these limitations our approach

allowed us to formulate the following conclusions.

The enrichment analysis of microbiota-host interactions

allowed to highlight various aspects of the innate and adaptive

immune response systems that can be modulated by microbiota,

which includes responses during inflammatory triggers. The

results also indicated that microbiota can influence the

activation and maturation of microglia which are implicated in

the development of NDs.

The reconstruction of the microbiota-to-microbiota

associations network based on pairwise similiarity of pairs of

microbiota components that can produce the same metabolites

allowed to possibly identify a potential of synergestic

immunomodulatory actions between microbiota components.

The pairwise similarity also indicated that known pathogenic

bacteria, such as the Escherichia coli and Klebsiella genera, that

can produce several metabolites that are also produced by other

microbiota components, allowing them to influence multiple

ISPs and thus possibly contributing to their pathogenicity.

Investigation of possible microbiota-host-immune system

interactions in NDs allowed for the isolation of specific

microbiota components and metabolic products that interact

with disease-associated genes that participate in ISPs. The results

also suggest that the impact of microbiota-derived metabolites in

influencing ISPs is higher in MS, than AD, PD and ALS.

Finally, investigation of the possible contribution of

microbiota- virus interactions in the development of NDs,

allowed to identify ISPs that can be modulated by both

microbiota components and EBV. The result of the analysis

also suggests that the combinatorial action of the

immunomodulatory effects of microbiota-EBV interactions

might play a more significant role in MS disease pathogenesis

rather than in the pathogenesis of PD and AD.
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et al. Diet-dependent gut microbiota impacts on adult neurogenesis through
mitochondrial stress modulation. Brain Commun (2020) 2(2):fcaa165.
doi: 10.1093/braincomms/fcaa165

22. Robinson CM, Pfeiffer JK. Viruses and the microbiota. Annu Rev Virol
(2014) 1:55–69. doi: 10.1146/annurev-virology-031413-085550

23. Kristensson K. Potential role of viruses in neurodegeneration. Mol Chem
Neuropathol (1992) 16(1–2):45–58. doi: 10.1007/BF03159960

24. Zhou L, Miranda-Saksena M, Saksena NK. Viruses and neurodegeneration.
Virol J (2013) 10:172. doi: 10.1186/1743-422X-10-172

25. De Chiara G, Marcocci ME, Sgarbanti R, Civitelli L, Ripoli C, Piacentini R,
et al. Infectious agents and neurodegeneration.Mol Neurobiol (2012) 46(3):614–38.
doi: 10.1007/s12035-012-8320-7

26. Patrick KL, Bell SL, Weindel CG, Watson RO. Exploring the “Multiple-hit
hypothesis” of neurodegenerative disease: Bacterial infection comes up to bat. Front
Cell Infect Microbiol (2019) 9:138. doi: 10.3389/fcimb.2019.00138

27. Jiang D, Armour CR, Hu C, Mei M, Tian C, Sharpton TJ, et al. Microbiome
multi-omics network analysis: Statistical considerations, limitations, and
opportunities. Front Genet (2019) 10:995. doi: 10.3389/fgene.2019.00995

28. Durmus ̧ Tekir SD, Ülgen KÖ. Systems biology of pathogen-host interaction:
Networks of protein-protein interaction within pathogens and pathogen-human
interactions in the post-genomic era. Biotechnol J (2013) 8(1):85–96. doi: 10.1002/
biot.201200110

29. Levy R, Carr R, Kreimer A, Freilich S, Borenstein E. NetCooperate: A
network-based tool for inferring host-microbe and microbe-microbe cooperation.
BMC Bioinf (2015) 16(1):164. doi: 10.1186/s12859-015-0588-y
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