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Tumor immune microenvironment (TIME) include tumor cells, immune cells, cytokines,
etc. The interactions between these components, which are divided into anti-tumor and
pro-tumor, determine the trend of anti-tumor immunity. Although the immune system can
eliminate tumor through the cancer-immune cycle, tumors appear to eventually evade
from immune surveillance by shaping an immunosuppressive microenvironment.
Immunotherapy reshapes the TIME and restores the tumor killing ability of anti-tumor
immune cells. Herein, we review the function of immune cells within the TIME and discuss
the contribution of current mainstream immunotherapeutic approaches to remolding the
TIME. Changes in the immune microenvironment in different forms under the intervention
of immunotherapy can shed light on better combination treatment strategies.
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INTRODUCTION

The immune system can eliminate tumor cells through the cancer-immune cycle (1). This process is
not sustained because tumors can gradually shape the tumor immune microenvironment (TIME)
into an immunosuppressive state to combat host immunity, and the balance between pro- and anti-
tumor inflammatory mediators may determine tumor progression. Tumors have evolved various
mechanisms to evade immune surveillance, such as defecting the antigen presentation machinery,
enhancing negative immune regulatory pathways, recruiting tumor-promoting immune cells, and
others (2–4). The result is that the function of anti-tumor immune cells is blocked, and it is difficult
to maintain anti-tumor immune responses. The tendency for antitumor immunity is determined
within the TIME by two immune components, antitumor and pro-tumor (5). Despite heterogeneity
across different cancer types and populations, the role of the TIME in tumor progression is similar.
The goal of immunotherapy is to restore the killing effect of anti-tumor immune cells on tumors,
especially cytotoxic T lymphocytes (CTL). However, pro-tumor immune cells, such as regulatory T
cells (Tregs) and myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages
(TAM), and group 2 innate lymphoid cells (ILC2s), play an important role in impairing anti-
tumor immune responses and shaping an immunosuppressive microenvironment. Studying the
functions and mechanisms of tumor-promoting immune cells will help to improve the response rate
of immunotherapy and develop new immunotherapeutic strategies.
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Based on the understanding of tumor immune escape, several
cancer immunotherapies have been developed to reshape the
TIME to subdue tumor cells. Blocking CTLA-4 and PD-1/PD-L1
immune checkpoints can relieve the functional inhibition of T
cells (6). Changing the polarization state fromM2 to M1 in TAM
(dual blocking of PI3K-g pathway and CSF-1/CSF-1R) can lead
to the reduction of immunosuppressive macrophages and the
activation of CD8+T cell response (7). DC-based vaccines can
activate T cell responses by removing the inhibition of antigen
presentation (8). Therapies that reshape TIME could, in theory,
remove tumors through the body’s immune system. This mode
has higher specificity and lower side effects, and the generation of
memory T cells guarantees a sustained response. Understanding
the changes in the TIME during tumor development can help to
develop targeted therapeutic strategies and improve response
rate of immunotherapy. Recently, new advances have been made
in the study of the TIME. This review provides a brief overview of
the role of tumor-associated immune cells during remodeling of
the TIME. In addition, we introduce the contribution of current
mainstream immunotherapy approaches to remolding TIME,
with a particular focus on immune cell changes.
TIME

Tumor-associated immune cells can be divided into two
categories, anti-tumor and tumor-promoting. Antitumor
immune cells mainly include effector T cells (including
cytotoxic CD8 + T cells and effector CD4 + T cells), natural
killer cells (NK), dendritic cells (DC), and M1-polarized
macrophages. The tumor-promoting immune cells are mainly
Tregs, MDSCs, M2-polarized macrophages, N2-polarized
neutrophils, natural killer T Type 2 cells (NKT2) cells, and
ILC2s (Figure 1). In addition, metabolic and biochemical
components significantly influence immune cell function.
Frontiers in Immunology | www.frontiersin.org 2
Anti-Tumor Immune Cells
T cells are the main executor of anti-tumor immune response,
including CTL and T helper cells. CTL recognizes MHC-I
molecules expressed by tumor cells (9), exerting tumor killing
mechanisms through granule exocytosis (granzyme A and B) or
death ligand-induced necrosis and apoptosis under the action of
chemokines (10). IFN-g and TNF-a are secreted to induce tumor
cells cytotoxicity (10). CD4+T cells can promote CTL
proliferation, increase antigen presentation by DCs, promote
CTL activation, and promote memory CTL formation (11, 12).

DCs, as the most potent specific antigen-presenting cells
(APCs), initiate adaptive immune responses by activating naive
T cells (13). DCs can also express CD80/CD86, which interacts
with CD28 to generate costimulatory signals that increase T cell
activation (14). DCs produce TNF-a, IL-6, IL-8, and IL-12 to
participate in anti-tumor immunity. Tumor cells lose MHC-I
molecular to evade immune surveillance by T cells (activation of
CD8 + T cells requires MHC-I molecule dependent antigen
presentation). The activation of NK cells is inhibited by binding
of inhibitory receptors to MHC-I molecules, so NK cells can
eliminate targets with defective expression of MHC-I molecules
through a “missing self” mechanism (15, 16). NK cell lysis of
tumor cells is mainly dependent on granzymes and perforin (17).

The polarization of classically activated macrophages (M1) is
mainly mediated by GM-CSF, IL-12, IL-18, IFN-g, and TNF-a
(18, 19). M1 promote Th1 response by secreting TNF-a, IL-1b,
and IL-12, and promote the recruitment of Th1 cells to
inflammatory sites by secreting chemokines CXCL9 and
CXCL10 (20). Besides, M1 macrophages exert antitumor effects
through the release of reactive oxygen/nitrogen species (ROS/
RNS) directly mediated cytotoxicity and antibody-dependent
cell-mediated cytotoxicity (21, 22).

Tumor-Promoting Immune Cells
Tregs play a key role in maintaining immune homeostasis and
peripheral tolerance (23). The physiological function of Tregs is
FIGURE 1 | Crosstalk of tumor-associated immune cells in tumor microenvironment.
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to prevent the spread of inflammation and limit tissue damage,
but it acts as a feedback mechanism to inhibit anti-tumor
immune response in the TIME. Tregs inhibit anti-tumor
immune response through production of immunosuppressive
cytokines, such as TGF-b, IL-10 and IL-35 (24). Furthermore,
Tregs can inhibit anti-tumor immune responses in several
ways:1) Tregs inhibit CTL-mediated tumor killing via TGF-b
-dependent cell contact (25), promoting polarization of M2
macrophages by inhibiting IFN-g secretion by CTL cells (26),
and inhibiting the generation of memory CD8+T cell through
CTLA-4 (27). 2) Tregs inhibit NK cell proliferation, IFN-g
production, degranulation and cytotoxicity, which is related to
TIM-3 (28). 3) Treg induces DC functional inhibition in these
two ways. Treg-expressed CTLA-4 binds to CD80/CD86 on the
DC to down-regulate costimulatory signal (29). Furthermore,
MHC class II molecules are the major ligands for LAG-3 (30).
LAG3 expressed by Tregs can inhibit the expression of MHC II
molecules in DCs (31). 4) MDSCs and Tregs reinforce each other
to enhance the immunosuppressive microenvironment.
Induction of Tregs can be facilitated by TGF-b, IL-10 and
IFN-g secreted by MDSCs. Tregs enhance the function of
MDSCs through TGF-b and IL-35 (31). 5) Tregs can induce
NK and CD8+T cell death in a granzyme B and perforin
dependent manner (32, 33).

MDSCs represent a heterogenous population of immature
myeloid cells with different transcriptional activities and
differentiation states, characterized by immunosuppressive
activity in pathological states (34). MDSCs can be roughly
divided into two groups, granulocytic or polymorphonuclear
MDSCs (PMN-MDSCs) and monocytic MDSCs (M-MDSCs).
PMN-MDSCs can produce ROS and reduce T cells responses to
antigens (34). PMN-MDSCs induce CTL apoptosis through the
Fas/FasL axis, whereas M-MDSCs produce nitric oxide to inhibit
immune activation (35). M-MDSCs can also differentiate into
immunosuppressive macrophages and inhibit T cell activation
(36). In addition to interacting with Tregs, IL-10, and TGF-b
produced by MDSC also impair CTL function (37). MDSCs
reduce NK cell numbers and inhibit their function via
membrane-bound TGF-b (38). MDSCs express galectin 9,
which binds to TIM-3 on lymphocytes and induces T cell
apoptosis (39). Inhibition of MDSCs enhances the function of
T cells (36, 40).

M2 macrophages are usually the dominant cells in TAM. M2
macrophage polarization is mediated by M-CSF, IL-4, IL-10, IL-
1 3 a n d TGF -b ( 4 1 ) . M2 ma c r o p h a g e s s e c r e t e
immunosuppressive cytokines, TGF-b, IL-4, IL-10 and IL-13
(19, 42–44). M2 macrophages are involved in activating Th2
immune response (45). In addition, M2 macrophages, involved
in the recruitment of Tregs cells via M2 derived CCL20/CCL22
(46), as well as by increasing the expression of PD-L1 to
attenuate the effects of CTLs and induce MDSC differentiation
(47, 48).

Polarization of N2 neutrophils is mainly mediated by TGF-b
(49). Recently, IL-6 produced by gastric cancer mesenchymal
stem cells was also found to determine N2 polarization (50). N2
neutrophils induce CD8 +T cells apoptosis through TNF-a and
Frontiers in Immunology | www.frontiersin.org 3
NO-dependent mechanism (51). In addition, N2 can also inhibit
T cell proliferation by releasing argininase-1 (ARG1) and
regulating PD-L1/PD-1 signaling (52), as well as secreting
chemokine CCL17 to recruit Tregs (53). Although the exact
mechanism remains nonclear, studies have shown that N2
neutrophils inhibit NK cell function (54).

ILC2 secrete cytokines (IL-4, IL-5, IL-9, IL-13) and recruit
immunosuppressive cells to shape the TIME (55). ILC2 secrete
IL-13, which promotes the aggregation of MDSC and inhibits the
anti-tumor response of CTL (56, 57). Besides, ILC2 induce the
production of TGF-b from MDSCs, which contributes to
the polarization of M2 macrophages (58). LC2s produce the
epidermal growth factor (EGF)-like molecule Amphiregulin
(AREG), which costimulates ICOSL/ICOS to establish and
maintain an immunosuppressive microenvironment, leading to
Treg activation and accumulation (59, 60). In addition, ILC2s
may inhibit the activity of NK cells (61).

NKT switch between inflammatory and immunosuppressive
subsets to respond to the TIME status (62). NKT1 is antitumor,
while NKT2 is primarily tumor-promoting.IL-13 produced by
NKT2 induces MDSC to produce TGF-b, which inhibits the
anti-tumor immune response mediated by CD8+T cells (63). In
myeloma, the weakening of NKT2 cell population has the
potential to mediate tumor regression (64).

Metabolic: Hypoxia-Adenosinergic
Immunosuppression
The numerous and complex cell populations and the limited
vasculature within the tumor microenvironment render nutrient
and oxygen delivery and waste clearance inefficient. In addition,
tumor cells shape the metabolic fitness of tumor infiltrating
immune cells by competing for and consuming essential
nutrients or otherwise, such as the classical ‘Warburg effect’.
Tumors prefer to perform aerobic glycolysis to convert virtually
all glucose to lactate even in the presence of oxygen (65).
Metabolism in the microenvironment, such as nutrient
consumption, increased oxygen consumption, and production
of reactive nitrogen and oxygen intermediates, significantly
influences antitumor immune responses. As a result, high
lactate and low pH, hypoxia, and high levels of ROS are
prevalent in the TME. This hostile environment shapes the
metabolic adaptation of tumor infiltrating immune cells, and
these metabolic changes in immune cells undermine the
effectiveness of antitumor immune responses. (A more detailed
overview of immunometabolism in review (66, 67)). The main
focus here is on the role of the hypoxia adenosine in
immunosuppression as well as adenosinergic blockade in
reprogramming the TIME. Tumor, especially the solid tumor
microenvironment, provides fertile soil for adenosine
production. A series of cascades driven by the hypoxia/HIF-
1a-CD39/CD73 axis represent major sources of adenosine (68,
69). In addition, some alternative activation modalities, CD38,
CD203a, and PAP also contribute to adenosine levels in the
TIME (70, 71). There are four receptors for extracellular
adenosine, A1, A2a, A2b, and A3. Adenosine is an
immunosuppressive metabolite, signaling largely through the
July 2022 | Volume 13 | Article 844142
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A2a receptors on innate and adaptive immune cells (72). A2AR
is upregulated due to hypoxia induced HIF-1a transcriptional
activity (73). Adenosine accumulation in the TIME can inhibit
antitumor immune cell functions by binding to A2AR. For
example, T cells and NK cells (68, 74, 75). In addition,
adenosine enhances the activity of immunosuppressive cells,
such as MDSCs and Tregs, contributing to CAF shaping as
well as inducing the formation of new blood vessels (76–80).
THERAPY TO RESHAPE TIME

Currently mainstream immunotherapies, Immune checkpoints,
CAR-T, DC cell vaccines, contribute to reshaping the TIME,
(e.g., changes in immune cells and cytokines after immune
checkpoint blockade, changes in T cell function and
microenvironmental status after CAR T infusion). This has
driven the development of combination therapies. The effects
of different immunotherapies on the TIME help us to find
effective combination treatment strategies (Figure 2). For
example, most classically, CAR T cells provide infiltration
while Immune checkpoints inhibitors (ICIs) reverse CAR T
cells inhibition and restore functional persistence.

Targets for Antibodies and Small Molecule
Inhibitor
At present, the mainstream strategy of immunotherapy is to
target some components of the TIME through antibodies or
small molecule inhibitors (Table 1). We will summarize the key
functions of major immunotherapies in the TIME, with an
emphasis on how therapeutically enabling the TIME to
generate an anti-tumor immune response. During anti-tumor
immunity, negative regulators of T cell activation act as
“checkpoint molecules” to modulate the immune response.
Depending on checkpoints. This strategy can be implemented
by inhibiting inhibitory checkpoints or activating stimulant
Frontiers in Immunology | www.frontiersin.org 4
checkpoints. CTLA-4 and PD-1 are the most effective
examples of immune checkpoint therapy.

CTLA-4 is induced on the cell surface of conventional T cells
by antigen activation and is constitutively expressed on Treg
(85). As having the same B7 ligands as CD28, including B7-1
(CD80) and B7-2 (CD86), CTLA-4 with a higher affinity
competes with CD28 expressed on effector T cells for binding
to B7-1 and B7-2 which ubiquitously expressed on B
lymphocytes, dendritic cells, and other immune cells (112).
The result is that costimulatory signals CD80/CD86 which can
activate T cells by ligating CD28 are inhibited. As a result, T
lymphocyte proliferation and cytokine secretion are hampered
(113). CTLA-4 can reduce the activation of T cells by generating
inhibitory signals, thereby attenuating the anti-tumor immune
response. CTLA-4 can induce indoleamine 2,3-dioxygenase
(IDO) and trigger reverse signaling through B7 ligands to
inhibit T cell proliferation (114). Inhibition of CTLA-4
enhanced the antitumor activity of effector T cells mainly by
inhibiting Treg. Anti-CTLA-4 antibody enhances IL-36
stimulated anti-tumor activity by consuming Tregs, leading to
increased CD4+ and CD8+T cells proliferation and IFN-g levels
(115). Anti-CTLA-4 antibody reduces Treg cells in the TIME but
do not affect the status of peripheral lymphoid organs, reducing
immune-related adverse events (irAEs) (116). Compared with
glycoprotein 100 (gp100) peptide vaccine, melanoma patients
treated with ipilimumab had improved survival (OS of 10
months/ipilimumab and 6.4 months/GP100, P<0.001) (117). A
pooled analysis of 10 prospective studies and 2 retrospective
studies, including 1,861 patients with advanced melanoma,
found a 22% 3-year survival rate in patients treated with
ipilimumab (118).

PD-1 is a transmembrane protein mainly expressed on the
surface of activated T cells, B cells and macrophages. PD-L1 and
PD-L2 are dual ligands of PD-1, and both have been shown to
inhibit T cell activity upon PD-1 engagement (119). PD-L1 over-
expressed on cancer cells can interact with PD-1 on activated T
FIGURE 2 | Crosstalk of various treatments in TIME (By Figdraw).
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cells, inducing T cell inhibition and CTL dysfunction.
Correspondingly, blockade of PD-1/PD-L1 promotes pro-
inflammatory factors release, T cells proliferation, CTL
activation (120). PD-1/PD-L1 is an ideal immunotherapeutic
target to restore the effector function of anti-tumor specific T cell.
Patients with metastatic melanoma who respond to anti-PD-1
therapy (pembrolizumab) exhibit active CD8+T cell proliferation
in the TIME, which is associated with reduced tumor size (121).
In addition, it has been observed in melanoma patients that CD4
+ T cells expand after PD-1 blockade and that activated CD4 + T
cells secrete IFN- g and chemokines, which contribute to
antitumor immunity (86). A trial that enrolled 655 patients
with advanced or metastatic melanoma showed long-term
antitumor activity and tolerability of pembrolizumab in
advanced melanoma, with a mean follow up of 55 mouths.
The estimated 5-year overall survival rate was 34% for all
patients, 41% for patients receiving initial treatment (122).
Pembrolizumab also provided a long-term response and
prolonged OS in non-small cell lung cancer, with the
combination of pembrolizumab and chemotherapy achieving
objective response in 55% of patients compared to 29% of who
those treated with chemotherapy alone, with a significantly
longer median PFS than chemotherapy (13.0 months vs 8.9
months) (123). Blockade of PD-1/PD-L1 can restore the killing
ability of T cells and induce tumor regression, resulting in better
clinical outcomes (119).

LAG-3 is expressed on tumor-infiltrating T cells with
defective cytokine production and on Tregs (124, 125). Treg
c e l l s w i t h h i g h e x p r e s s i o n o f LAG - 3 p r o du c e
immunosuppressive cytokines IL-10 and TGF-b and inhibit
effector T cell activity (126). LAG-3 expression levels correlate
with tumor progression and poor prognosis (126). Anti-LAG-3
antibodies slow tumor growth in mouse model of fibrosarcoma
Frontiers in Immunology | www.frontiersin.org 5
(127). The combination therapy of anti-LAG-3 antibody and
tumor-associated antigen inoculation increases CD8+T cells in
the TIME and destroyed tumor parenchyma in prostate cancer
tumor models (128). LAG-3 and PD-1 were highly co-expressed
in CD4+T cells and CD8+T cells, and the inhibitory effect of the
blocking of LAG-3 and PD-1 on tumor progression (129, 130).
Moreover, dual blockade of LAG-3 and PD-1 can also increase
the number of tumor-infiltrating CD8+ T cells and reduce Treg,
thereby synergically enhancing anti-tumor immunity (131). In a
Phase I/II study (NCT0198609) evaluating the safety and efficacy
of anti-LAG-3 antibody in combination with anti-PD-1
antibody, 61 melanoma patients in a Phase I/II study well
tolerated with an ORR of 11.5%. Patients with high LAG-3
expression had a significantly higher objective response rate
than those with low expression (132, 133). PD-L1/LAG-3
bispecific antibody induced stronger anti-tumor effect than
each parental antibody (134, 135). In addition, PD-1 and LAG-
3 blockade improve anti-tumor vaccine efficacy (136). As
mentioned above, there is a synergistic effect between anti-
LAG-3 and certain immunotherapies, and the combination of
anti-LAG3 with more therapies is worth investigating. According
to the present findings, LAG-3 is a promising cancer therapeutic
target secondary to PD-1/PD-L1 and CTLA-4.

T cell immunoglobulin and mucin-domain containing-3
(TIM-3), T cell immunoglobulin and ITIM domain (TIGIT),
V-domain immunoglobulin suppressor of T cell activation
(VISTA) and Siglec-15 are also attractive targets (Table 2).
Cancer immune checkpoint therapies are increasingly being
developed to restore immune activity against tumor cells. In
addit ion to monotherapy, rat ional combinat ion of
immunotherapy and multi-target combination such as
bispecific antibodies, trispecific antibodies have also been
considered to achieve synergistic effects to inhibit tumor
TABLE 1 | Immunotherapy targets within TIME and the treatment effect.

Targets Treatment Effects on TIME Reference

CTLA-4 Promote the reduction of Treg cells, enhance the activity of effector T cells (29, 81–84)
PD-1/PD-L1 1. Promote the expansion and migration of CD8+ T cells and inhibit their apoptosis.

2. Amplification of CD4 + T cell subsets. 3. Proliferation, survival and activation of macrophages (co-stimulating molecular expression,
cytokine production), and enhancement of phagocytosis of macrophages.
4. Activation of NK cell response, especially in the NK cell subpopulations (CD69 and SCA-1).

(85–89)

LAG-3 Increased populations of APC, NK and CD8 + T cells, (90, 91)
TIM-3 1. Promote antibody-dependent phagocytosis of bone marrow cells/macrophages expressing FcgR and promote the M1 phenotype.

2. Enhance DC antigen presentation ability and promote DC maturation. 3.CD8+T cell proliferation ↑, IFN-g production ↑.
4.Treg proliferation ↓, cell apoptosis ↑

(92–97)

TIGIT 1. Proliferation, cytokine production and cytotoxicity of CD8 + T cells.
2. Depletion of Tregs and proliferation of CD4 + T cells.
3. Inhibits the depletion of tumor-infiltrating NK cells.

(98–100)

VISTA Improve the infiltration, proliferation and effector function of tumor-infiltrating T cells in TME. (101)
Siglec-15 Reverse TAM-related inhibition of T cell activity. (102)
CSF-1/CSF-
1R

1.Reduce TAM and induced residual TAM to polarize M2 phenotype, increase the level of tumor-infiltrating lymphocytes.
2.Increased PD-1/PD-L1 expression on TAM and CTLA-4 expression on CD8+ T cells.

(103, 104)

FAK Decrease immunosuppressive MDSC, TAM and Treg, increase CD8+ T cells and enhance CD8+ T cell-mediated antitumor activity in
tumors.

(105–107)

TGF-b and
isoform

Increase the number of CD8+ T cells, establish immunological memory in TIME and decrease immunosuppressive myeloid cells. (108, 109)

VEGF-A Decrease PD-1 expression of CD8+ T cells. (110, 111)
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growth. We anticipate that translating candidate targets into the
clinical area may yield better clinical benefits than CTLA-4 or
PD-1 inhibitors.

Small molecule drugs, which are more suitable for oral
administration than polymeric antibody drugs, could reduce
severe immune-related adverse events (irAEs) resulting from
prolonged target occupancy by modulating the half-life of the
drug (161, 162). They can cross the cell membrane, penetrate
more easily into the tumor tissue and aggregate in a sufficient
concentration (161, 162). In addition, they are lower production
costs and higher stability (163, 164). We focus here on the role of
colony stimulating factor-1 receptor (CSF-1R) in reshaping
TIME. CSF-1/CSF-1R signaling is a key activator of the
mononuclear phagocyte system, and blockade of CSF-1/CSF-
1R creates an environment of reduced immunosuppression and
enhanced interferon response that can impede tumor growth
(103). Pexidartinib (CSF-1R inhibitor) was demonstrated to alter
the distribution of TAMs in TIME and reduce tumor volume in a
mouse model of lung adenocarcinoma (165). In a mouse model
of BRAF V600E mutant melanoma, Pexidartinib combined with
adoptive cell transplantation decreased TAM and increased
tumor-infiltrating lymphocyte levels (166). The combination of
Pexidartinib and BRAF inhibitors resulted in a significant
inhibition of tumor growth by reducing the recruitment of M2
macrophage (104). Moreover, in a pancreatic cancer mouse
model, blocking of CSF-1/CSF-1R reduced M2 macrophages
within the TIME and polarized the remaining TAMs into an
anti-tumor phenotype (103). This study also found that PD-1/
PD-L1 expression on TAMs and CTLA-4 expression on CD8+ T
cells was increased in the presence of CSF-1/CSF-1R blockade,
and the combination of PD-1 or CTLA-4 antagonists resulted in
more significant tumor regression (103). A recent clinical study
of advanced tenosynovial giant cell tumor found that
Pexidartinib significantly reduced tumor size with an overall
response rate of 39% (167). To enhance the response of CSF-1/
CSF-1R blockade, researchers tend to combine CSF-1/CSF-1R
Frontiers in Immunology | www.frontiersin.org 6
blockade with immunotherapy. The combination of oncolytic
virus, CSF-1R inhibition and anti-PD-1 immunotherapy was
found to enhances anti-tumor immune response by increasing T
cell infiltration and augmenting anti-tumor CD8+ T cell function
(168). In addition, the combination of targeted TIME and anti-
angiogenesis has been suggested to enhance the antitumor
activity of the drug (169). For example, the combination of the
tyrosinase inhibitor sorafenib and the immunomodulator
lenalidomide has long been found to be more effective than
drugs alone (170). Surufatinib is a drug that targets tumor
angiogenesis (VEGFR and FGFR1) and tumor immune evasion
(CSF-1R). Surufatinib was effective against neuroendocrine
tumors in two phase III trials. Whereby it may become a
mainstream treatment for neuroendocrine tumors (171). These
results suggest that in addition to developing drugs for novel
targets, multitarget fusion drugs or combinations of antibodies
and small molecule immune modulators also play important
roles in reshaping TIME.

Despite the success of anti-PD1/PD-L1 and anti-CTLA4
therapies in advanced cancer. There are a considerable number
of patients who remain unresponsive or relapses after initial
response. Combination strategy of immunotherapy are used to
address these challenges. Furthermore, targeting hypoxic
adenosine pathway represents another idea to improve
immunotherapy (172, 173). This treatment can be broadly
divided into two types.

1. Reduced adenosine production. As mentioned above,
hypoxia induces upregulation of CD39 and CD73 and
downregulation of adenosine transporters to promote the
accumulation of extracellular adenosine. Hyperoxic respiration
(60% O2) significantly reduced adenosine levels and gained
tumor control and prolong survival. Hyperoxic breathing
upregulates antigen-presenting MHC class I molecules on
tumor cells, tumor infiltration of CD8 T cells and attenuate
immunosuppressive effects of Tregs (69, 174). CD73 can convert
AMP produced by catabolism to adenosine. Antagonism of
TABLE 2 | Functions of new immune targets.

Targets Cells expressing Ligands Mechanism References

TIM-3 Th1, Th17,
CD8T, Treg,
NK, DC

Galectin-9,
HMGB1,
CEACAM-1,
PtdSer

1.Binds Gal-9 to induce apoptosis in Th1 and CD8 TIL.
2. TIM-3 blockade enhance tumor antigen-specific T-cell proliferation and activity.
3.TIM-3 interacted with HMGB1 to suppress antitumor immunity mediated by nucleic acids

(137–145)

TIGIT CD8 T, CD4 T, NK, Treg CD155,
CD112,
CD113

1.TIGIT indirectly impedes T cell function by binding to CD155 on DCs, promoting tolerogenic DCs
with decreased production of IL-12 and increased production of IL-10.
2.TIGIT exhibits direct immune cell-intrinsic inhibitory effects.
3. TIGIT inhibits NK cell degranulation, cytokine production, and NK cell-mediated cytotoxicity of
CD155-expressing tumor cells.
4.TIGIT is highly expressed on Tregs and TIGIT+Tregs demonstrated to be superior in suppressing T
cells.

(146–153)

VISTA T cell, Treg,
macrophage, myeloid
cell subset

PSGL-1,
VSIG3

1.over-expression of VISTA suppressing T cell immunity
2. Anti-VISTA reduces the number of MDSCs and tumor specific Tregs, increases the proliferation of
TIL and promotes T cell effector function.
3.VSIG3 interaction with VISTA on T cells suppresses T cell activation and proliferation.

(154–158)

Siglec-
15

macrophage, Sialyl-Tn 1.Siglec-15 ablation slowed down tumor growth and prolonged survival.
2. A expansion of tumor-infiltrating CD8+ T and NK cells as well as several inflammatory myeloid
populations, whereas a decrease of TAMs and MDSCs.

(159, 160)
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CD73 increases the activity of CD8 + T cells, B cells and related
cytokine, and tumor growth and metastatic spread are retarded
in CD73 blocked mice (175–177). Compared with anti-PDL1
alone, ORR close to 40% in the dual CD73/PDL1 blockade arm
with statistically improved 10-month PFS (64.8 vs 39.2)
(NCT03822351). Similar to studies with CD73, tumor growth
and metastasis were reduced in CD39-blocked mice (178, 179).
CD39 blockade enhance the function of T, NK cells, as well as
decreased Treg-mediated immunosuppression (178, 180, 181).
Finally, although studies have demonstrated the effectiveness of
this approach within tumor-bearing mice. Clinical studies
exploring CD39 blockade/inhibition have not yet yielded results.

2. Block the binding of adenosine receptor. A2AR antagonists
are a more direct approach to inhibit adenosine induced signal
transduction. A2AR-deletion leads to delayed tumor progression
and prolonged survival (68, 182). TIME of A2AR antagonist
treated mice showed similar changes in immune level as
blockade of CD39/73, which was more infiltrated by CD8 T
cells and NK cells and contained fewer Tregs (183, 184). Besides,
A2AR blockade reduced PD-1 and LAG-3 expression on Tregs
and T cells (182). For renal cell cancer, A2AR antagonism (CPI-
444) induces durable responses when used as monotherapy as
well as in combination with anti-PD-L1. Patients who
experienced a positive response included individuals who were
resistant or refractory to anti-PD-1/PD-L1 antibodies.
Adenosinergic blockade resulted in higher cytotoxic T cell
tumor infiltration (172). Besides, A2AR antagonists have
shown similar activity in other types of cancer (NCT02403193,
NCT03720678, NCT03720678).

Adoptive Cell Therapy
Adoptive cell therapy (ACT) uses autologous immune cells that
are isolated, engineered, amplified and injected into a patient to
generate durable anti-tumor immune response. T cells
genetically modified to express chimeric antigen receptor
(CAR), or CAR T, are the most effective cell therapies. CAR T
cells specifically recognize tumor-associated antigens (TAA) and
kill tumor cells (185). Adoptive transfer of tumor-reactive T cells
resulted in persistent clonal repopulation of T cells in patients,
with the transferred cells proliferating, displaying functional
activity, trafficking to the tumor sites and promoting tumor
control (186). Anti-CD19 CAR T cell can produce cytokines that
respond specifically to CD19+ target cells and effectively
eradicate lymphoma cells (187). In a clinical trial, 82% (89/
108) of patients with refractory large B-cell lymphoma (ZUMA-
1) achieved an overall response and 58% (63/108) achieved a
complete response (188). CAR T cells have achieved remarkable
success in treating hematologic malignancies but face unique
challenges in solid tumors, such as lack of suitable targets,
inefficiency of CAR T cells to infiltrate into tumor sites, and
TIME limitations on CAR T efficacy (189). CAR-T holds
promise in addressing these issues through diversifying edits
and in combination with other therapy approaches. Her-2, a
receptor tyrosine kinase overexpressed in many human cancers,
is used as a TAA for targeted CAR T in glioblastoma. Although
Frontiers in Immunology | www.frontiersin.org 7
such CAR T cells only expand for a short term, they maintain
long-term antitumor activity (190). CAR T cells expressing high
levels of the CCR2 receptor can migrate more efficiently to
CCL2-secreting tumor sites and exhibit greater antitumor
activity (191). In addition, overexpression of heparanase
(HPSE), an enzyme that can degrade major components of the
extracellular matrix, on CAR T cells effectively promotes tumor
T-cell infiltration and antitumor activity (192). CAR-T editing is
diverse, for example, PD-1 knockdown can inhibit immune
checkpoint signaling (193), LAG-3 knockdown can disrupt
negative regulators of T cell activity (194), IL-12-secreting
CAR T cells polarized TAMs to M1 phenotype and reduce the
levels of MDSCs and Tregs in mouse models (193), IL-18-
secreting CAR T cells can increase M1 macrophages, activated
DC and activated NK cells while decreasing M2 macrophages
and Treg in the TIME (195). CAR T cells co-expressing CCL19
and IL-7 can recruit large numbers of endogenous T cells and
DCs to enhance and sustain tumor clearance (196). In addition
to the specific operation of CAR T cells, the therapy of reshaping
the TIME can theoretically enhance the therapeutic effects of
CAR T cells (197).

Cancer Vaccines
Cancer vaccines generate antitumor immune responses against
TAAs or tumor-specific antigens (TSAs). DCs are specialized
antigen-presenting cells that are key targets for cancer vaccines
because of their unique ability to link innate and adaptive
immunity (198). The main route of this strategy is to modulate
the antigen presenting function of DCs to enhance the antitumor
immune response in the TIME. Sipuleucel-T, composed of
cultured peripheral blood mononuclear cells containing
activated APCs, induces sustained responses of T and B cells to
the target antigens prostatic acid phosphatase (PAP) and GM-
CSF (199). Patients with localized prostate cancer, when
Sipuleucel-T was administered preoperatively, exhibited
increased T-cell proliferation and IFN-g levels. In addition,
infiltrating T cells were increased more than threefold in
resected tissue specimens after surgery compared with controls
(P 0.001) (200). In the early stages of prostate cancer, Sipuleucel-
T significantly promotes the activation of APCs and increases the
level of antigen presentation (201). In a clinical trial for
metastatic prostate cancer (NCT00065442), Sipuleucel-T
significantly improved OS compared with placebo (median
25.8 months vs 21.7 months, [HR] 0.78, P =0.03) (202). This
suggests that cancer vaccines have considerable potential in
tumor immunotherapy. In phase I clinical trial of nine men
with metastatic castrate-resistant prostate cancer treated with
Sipuleucel-T and escalating doses of ipilimumab showed that
IgG and IgM levels against PA2024 and PAP increased
significantly after ipilipumab (203). Combination therapy with
vaccines and checkpoint inhibitors is effective, although few
vaccines are now available for clinical use and multiple clinical
studies have been negative (204–207). Vaccines can trigger long-
term immunological memory, thus contributing to long-lasting
anti-tumor immune response. Antigen and vaccine vectors were
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developed to achieve optimal antigen presentation by APCs,
combined with multiple approaches to overcome immune
evasion and immunosuppression by cancer cells. Development
of antigens and vaccine vectors to achieve optimal antigen
presentation by APCs, as well as combination therapy
approaches, hold promise to overcome immune evasion and
immunosuppression by cancer cells.

COMBINATION THERAPY

Different treatments reshape TIME in different ways. Therefore,
we can combine complementary or augmentation strategies to
achieve better clinical outcomes. Herein, we discuss the
principles and clinical application of combination therapy.

CAR T cells can provide an infiltrate for the TIME, and ICI
can reverse CAR T-cell inhibition and restore functional
persistence. CAR-T may escalate the expression of PD-1
inhibitory signaling, and interference of PD-1 pathway may
restore the effector function of CAR-T cells (208).
Combination therapy of oxaliplatin and anti-PD-L1
synergistically improves CAR-T cell-mediated lung tumor
control and survival (193, 209, 210). Patients with Malignant
Pleural Disease in a Phase I Trial of CAR T-cell combination
with Pembrolizumab, have a median overall survival of 23.9
months (211). In another multi-center phase II trial, the
combination of anti-PD-1 antibody enhanced CAR-T therapy
in lymphoma patients with minimal toxicities (212).

Blocking CSF-1/CSF-1R alone increased PD-1/PD-L1
expression on TAM cells and CTLA-4 expression on CD8+ T
cells, whereas combination with PD-1 or CTLA-4 antagonists led
to more significant T cell infiltration and tumor regression (213–
216). CSF-1R inhibitor overcome the resistance to PD-1/PD-L1
axis blockade in an esophageal adenocarcinoma model, resulting
in enhanced T cells infiltration and reduced M2 macrophage
polarization in the TIME. It confirms that the direct translation
of TAM suppression into clinical benefit (217). Emactuzumab,
an anti-CSF-1R antibody, has a manageable safety profile in
combinat ion with atezol izumab over atezol izumab
monotherapy. The increase in CD8 +TILs after therapy
appeared to be associated with persistence of TAM subsets
(218). Similarly, combined blockade of different targets is
worth exploring its clinical effect. Sabatolimab, an Anti-TIM-3
Antibody, in combination with spartalizumab, an Anti-PD-1
Antibody, shows preliminary signs of antitumor activity (219).
The combination of relatlimab, a LAG-3-blocking antibody, and
nivolumab has been shown to be safe and to have antitumor
activity in patients with previously treated melanoma. The ORR
was 33% in some pembrolizumab-refractory patients and 50% in
PD-1 naïve patients (220). Afterwards, in patients with
previously untreated metastatic or unresectable melanoma, this
combination did not show a new safety signal but it provided a
greater benefit in progression-free survival than inhibition of
PD-1 alone (221).

Vaccines will increase tumor-specific T cells due to intensified
immunogenicity. Tumor-specific T cells will still be subject to the
Frontiers in Immunology | www.frontiersin.org 8
immunosuppressive microenvironment, which can be altered by
checkpoint inhibitors. Effective vaccines combined with
therapies targeting the TIME, such as checkpoint inhibitors,
are likely to yield optimal results (222). The personalized
neoantigen-based vaccine, NEO-PV-01, combined with
nivolumab stimulate durable neoantigen-specific T cell
responses in patients with advanced melanoma, non-small cell
lung cancer, or bladder cancer (207). GX-188E in combination
with pembrolizumab showed preliminary anti-tumor activity in
patients with recurrent or advanced cervical cancer (223).

Multiple non-redundant immunosuppressive mechanisms
coexist within the tumour microenvironment. A major
immunosuppressive mechanism is the hypoxia adenosinergic
immunosuppressive pathway, which now represents an
attractive new target for cancer therapy. Several strategies
described above can inhibit this mechanism. The ultimate goal
of these strategies is to attenuate hypoxia driven and CD39/
CD73 mediated accumulation of extracellular adenosine and
immunosuppressive signals (174, 224, 225). This liberates the
anti-tumor immunity of T and NK cells. In addition to the
combination of A2AR inhibitor and anti-PD-1/PD-L1, A2AR
inhibitor was also combined with nanovaccine to activate CD8 T
and NK cells and inhibit the proliferation of regulatory T cells.
Thus, this strategy could trigger a robust systemic antitumor
immune response (173, 226). Furthermore, deletion of A2AR
enhances the efficacy of CAR T cells (226, 227). Another way to
implement this strategy is hyperoxygenation to improve cancer
immunotherapies (69, 224).

In addition to the combination of immunotherapy above, the
combination of immunotherapy with antiangiogenics,
chemotherapy and radiation is under clinical consideration.
Nearly every targeted therapy proven to modulate the immune
response is currently being tried in combination with
immunotherapy (228, 229).
CONCLUSION

The development of immunotherapy has achieved great clinical
results, but the heterogeneity of the TIME makes it difficult to
determine the best immunotherapy for individuals. There are
still many obstacles in the potential development of
immunotherapy. The formation of immunosuppressive
microenvironment promotes tumor immune escape and
restricts the clinical effect of immunotherapy. The further
understanding of the TIME mechanism is conducive to the
development of immunotherapy. Combined therapy is more
conducive to the remodeling of microenvironment and can
bring better clinical benefits. However, this raises the question
whether improving anti-tumor immunity will lead to more
serious irAEs (More detailed explanations in review (66, 230,
231). On the one hand, the further understanding of
microenvironment mechanism is expected to balance the
internal environment balance between anti-tumor immunity
and Irae. On the other hand, the interpretation of a large
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number of clinical results, including the detection and summary
of adverse immune events, helps to determine the best
treatment combination.
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