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The role of RhoG in T cell development is redundant with other Racs subfamily members,
and this redundancy may be attributed to redundant signal transduction pathways.
However, the absence of RhoG increases TCR signalling and proliferation, implying that
RhoG activity is critical during late T cell activation following antigen–receptor interaction.
Moreover, RhoG is required to halt signal transduction and prevent hyper-activated T
cells. Despite increase in TCR signalling, cell proliferation is inhibited, implying that RhoG
induces T cell anergy by promoting the activities of transcription factors, including nuclear
factor of activated T cell (NFAT)/AP-1. The role of NFAT plays in T cell anergy is inducing
the transcription of anergy-associated genes, such as IL-2, IL-5, and IFN-g. Although
information about RhoG in T cell-related diseases is limited, mutant forms of RhoG,
Ala151Ser and Glu171Lys have been observed in thymoma and hemophagocytic
lymphohistiocytosis (HLH), respectively. Current information only focuses on these two
diseases, and thus the role of RhoG in normal and pathological circumstances should be
further investigated. This approach is necessary because RhoG and its associated
proteins represent prospective targets for attack particularly in the therapy of cancer
and immune-mediated illnesses.
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1 INTRODUCTION

RhoG belongs to the Rho family of small GTPases, specifically the Rac subfamily. The Rho family is
involved in actin–cytoskeletal rearrangements, intracellular membrane trafficking, cell cycle
progression, and transcriptional activation (1, 2). According to their sequence similarity and
biological roles, the Rho family can be divided into the Rho-, Rac-, Cdc42-, RhoU/RhoV-, Rnd-,
RhoD/RhoF-, RhoBTB-, and RhoH subfamilies (3). Classical or typical small Rho GTPases are from
the Rho-, Rac-, and Cdc42 subfamilies. The other small Rho GTPases are called non-classical or
atypical small Rho GTPases because they cannot hydrolyze GTP in contrast to typical small Rho
GTPases (4, 5).
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Three Rac1, Rac2, Rac3 share 89% sequence similarity, except
the C-terminal region (3, 6), whereas RhoG shares only 70%–
72% sequence similarity with the other three Racs and may thus
act differently within the subfamily. Typically, Rac-subfamily
proteins stimulate the formation of membrane ruffles and
lamellipodia by interacting with a panel of effector proteins,
such as Wiskott–Aldrich syndrome protein (WASP) and p21-
activated kinases (PAK) (7, 8). These interactions activate the
Arp2/3 complex and subsequently induce actin polymerization
(9–12).

The “on” and “off” states of RhoG are constrained to two
flexible loop regions: switch 1 and switch 2, which acquire
conformations in the GTP-bound state that enable
downstream effector proteins to recognize and interact with
small Rho GTPases (13). Additionally, the intrinsic GDP/GTP
switching of RhoG is slow and requires three distinct types of
regulatory proteins to function, namely, guanine nucleotide
exchange factors (GEFs), GTPase-activating proteins (GAPs),
and guanine nucleotide dissociation inhibitors (GDIs). GEFs
enhance GDP dissociation and the binding of the more
abundant GTP in the cytoplasm, allowing RhoG to become
active and bind to its specific effectors and hence activating
signalling pathways (14). By contrast, GAPs are responsible for
terminating RhoG signalling by increasing the intrinsic GTPase
activity of RhoG, thereby inducing GTP to GDP hydrolysis (15).
Finally, GDIs are bifunctional negative regulators required to
keep RhoG GDP-bound and physically sequester it from
membranes by interacting with its geranyl–geranyl group (16).
2 FUNCTIONS OF RHOG IN T CELL
HOMEOSTASIS

2.1 Role of RhoG in the Growth and
Maturation of Thymocytes
The thymus is the site of T cell growth and maturation, which is
critical to the sustenance of the peripheral immune system. The
abnormal activities of small Rho GTPases, including RhoA (17),
Rac1, Rac2 (18, 19), Cdc42 (20), and RhoH (3) are linked to
thymocyte defects in vitro and in vivo. These deficiencies can be
caused by defective RhoGEFs, such as Vav1, or missense
mutations occurring within small Rho GTPases. For instance,
loss of Vav1 in mice inhibits T cell positive and negative
selection, and this process is affected by the activation status of
its interacting proteins (21). Additionally, point mutations
within the GEF interaction region of Rac2, such as Asp57Asn
and Pro24His mutations, impair T cell development (22, 23).
This finding supports the notion that proper small Rho GTPase
activation is required for T cell development and maturation.

Either Rac1 or Rac2 deletion has no effect on thymocyte
development, but simultaneous Rac1 and Rac2 deletions have a
significant impact (18). Meanwhile, lack of RhoG has no effect on
T cell formation, but it marginally increases T cell proliferation
during antigen–receptor cross-linking. This finding suggests that
the involvement of RhoG in T cell development is redundant
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compared with that of other Rac subfamily members (18), and
this redundancy may be attributed to redundant signal
transduction pathways (24). Both Racs and RhoG induce
membrane ruffling despite their different subcellular
localizations, indicating that they regulate similar signalling
cascades. Nonetheless, enhanced T cell proliferation implies
that RhoG has a negative impact on immune responses and its
activity is crucial to the later phases of T cell activation upon
antigen–receptor contact (25).

2.2 RhoG in Peripheral T Cell Activation
2.2.1 RhoG’s Function in Proximal TCR Signalling
RhoG is involved in TCR internalization from the
immunological synapse (IS) and is necessary to major
histocompatibility complex (MHC) uptake in antigen-
presenting cells (APCs). IS is a structured interface between a
T cell and an APC, and TCR internalization at IS is required for
successful T cell activation and long-term TCR engagement and
signalling. However, the significance of IS in TCR activation
regulation is controversial because TCR can be triggered prior to
or in the absence of IS formation (26). Martıńez-Martıń et al.
(2011) discovered that TCR endocytosis and signal extinction
can occur at IS, indicating that not only IS is required to enhance
TCR signalling in response to a small amount of peptide antigen-
major histocompatibility complex (pMHC) ligand but also
suppresses signalling by downregulating TCR in response to a
high concentration of pMHC (27). The reason is that non-
engaged TCRs continue to be internalized and recycled to the
membrane through dynamin-dependent clathrin-mediated
endocytosis (CME) in the absence of pMHC or stimulation.
However, when TCRs are coupled with pMHC, their membrane
expression is reduced because of enhanced TCR endocytosis,
which can be regulated by CME and clathrin-independent
endocytosis (28).

Martıńez-Martıń et al. found that RhoG enables TC21
(Rras2), a small GTPase-related to the R-RAS subfamily, to
regulate TCR internalization through clathrin-independent
endocytosis (26). This process may require both small G
proteins to cycle between an active GTP-bound state and an
inactive GDP-bound state because dominant inactive
(Thr17Asn) and constitutively active (Gln61Leu) mutants
cannot block TCR endocytosis. RhoG involvement in
endocytosis is observed not only in T cells but also in
macrophage (29) and caveolar endocytosis (30). Notably,
RhoG and TC21 are associated with TCR-mediated peptide:
MHC trogocytic absorption, which is needed for intercellular
communication and immunological control (28). Trogocytosis is
the exchange of intact membrane fragments across cells and is
critical to T cell and APC activation modulation (31).
Interestingly, Boccasavia et al. reported that when an antigen is
introduced to naive CD4+ T cells by pMHC-II-dressed CD4+ T
cells, the naive CD4+ T cells transform into pathogenic Th17
cells, and the process can be mediated by RhoG trogocytosis (32).
This is because the loss of RhoG limits Th17 proinflammatory
cell differentiation and promotes resistance to experimental
autoimmune encephalitis development (32).
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2.2.2 RhoG’s Function in Distal TCR Signalling
Interestingly, immunoglobulin (Ig)G1 and IgG2b levels increase
in RhoG–deficient mice, indicating an increase in humoral
immune response to antigens (24). This finding suggests that
RhoG is required for signal transduction to terminate and for the
prevention of T- or B cell hyperactivation and control of
autoimmunity. However, given that its subfamily member
Rac2 regulates Ca2+ influx in response to antigen stimulation
(33), RhoG may regulate Ca2+ influx as well, which is required
for T cell-dependent immune responses and rapid cytoskeleton
remodelling (34). Nonetheless, only a slight drop in Ca2+ influx
was observed in RhoG-deficient mice upon TCR stimulation,
hinting that RhoG plays a role in Ca2+ influx regulation (24).
Notably, nuclear factor of activated T cell (NFAT) activation is
dependent on Ca2+ mobilization, specifically through calcium–
calcineurin signalling. In this signalling pathway, Ca2+ influx via
Ca2+ release-activated Ca2+ (CRAC) channels is required to
activate calmodulin (CaM) and the serine/threonine
phosphatase calcineurin. Calcineurin then dephosphorylates
serine/threonine residues in the regulatory domain of NFAT,
exposing nuclear localization signals and thus promoting NFAT
nuclear localization. Surprisingly, the elevation of intracellular
Ca2+ promotes T cell anergy, a state in which a TCR becomes
uncoupled from its downstream signalling pathways. This result
suggests that RhoG and NFAT play critical roles in T cell
tolerance induction (27).

Vigorito et al. discovered that RhoG can enhance NFAT/AP-
1-induced interleukin (IL)-2 or interferon-gamma (IFN-g)
transcription (35), and both cytokines are related to T cell
anergy (36). Numerous studies have established a link between
NFAT signalling and T cell unresponsiveness or reduced
responsiveness to subsequent physiological outputs, such as T
cell proliferation or differentiation. This T cell unresponsiveness
can be induced by inducing the transcription of anergy-
associated genes, such as IL-2, IL-5, and IFN-g or disrupting
the interaction between NFAT and AP-1 (36, 37) (Figure 1). The
latter part is predicted because RhoG contains an NLS motif at
Pro179 and Ile182 residues, implying that it might regulates the
activities or interactions of transcription factors (35, 38). Apart
from regulating NFAT activity, RhoG may also promote T cells
in a quiescent state by regulating the activities of other
transcription factors, including Stat3, as RhoG promotes the
transcriptional activation of Stat3 in murine fibroblasts (38).
Increased Stat3 activity limits T cell proliferation by up-
regulating Class-O Forkhead transcription factors (FOXO)
(39). The role of RhoG in T cell anergy is supported by
Martıńez-Martıń et al., who discovered that T cell proliferation
decreases as TCR proximal signalling increases in RhoG-
deficient mice (26). However, Vigorito et al. demonstrated that
RhoG deficiency enhances T cell proliferation (24). Difference in
T cell proliferation rate is unexpected given that TCR signalling
increases. Nevertheless, these data show that RhoG is required
for successful TCR signalling activation. The contradictory
results observed in both studies can be explained by the fact
that the doses or affinity of peptide antigens used in each research
varies (40).
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Additionally, RhoG may impact TCR signalling and the
NFAT nuclear translocation in a calcium–calcineurin-
independent manner. This process can be induced by Jak3
kinase as NFAT2 nuclear translocation is dependent on Jak3
phosphorylation upon IL-7 activation. The process then leads to
the nuclear translocation and activation of NFAT2 (27).
Incidentally, JAK3 is necessary for optimal Rac1 activation
(41), and given that RhoG and Rac1 are 70% identical (3), Jak3
may influence RhoG activation through Vav1 (42) and affect
NFAT nuclear translocation (Figure 1). This finding is
supported by Martıńez-Martıń et al., who found that RhoG
must be capable of cycling between active and inactive states to
regulate TCR internalization and activation (26). However, Puga
et al. discovered that caspase 3 cleavage inactivates Vav1 in
anergic T cells (43), indicating that the RhoG activation cycle is
disrupted and it may exist primarily in an inactive GDP-
bound state.

2.3 RhoG’s Role in Controlling the Actin–
Cytoskeleton and Migration of T Cells
Similar to other small Rho GTPases that are strongly associated
with leukocyte transendothelial migration, RhoG is involved in
the regulation of T cell migration, which requires a series of
coordinated stages, complex modulation of integrin activation by
chemokines, and cooperative action of adhesion molecules on
endothelial cells and leukocytes (44). However, the involvement
of RhoG in the control of actin–cytoskeleton complex is
redundant. Nevertheless, it enhances NFAT-induced
production of IFN-g and promotes T cell recruitment to
inflammatory sites (35). Additionally, the T cell production of
IFN-g is necessary for neutrophil chemotaxis to damage sites
(45). Interestingly, the role of IFN-g in the control of T cell or
lymphocyte migration necessitates the modification of the
expression of numerous integrins, including a4 (ITGA4), b7
(ITGb7), and avb3 (35, 46, 47). For instance, upon IFN-g
stimulation, a4 and b7 expression increase, whereas avb3
expression decreases, and thus lymphocyte migration is
promoted. These results show that RhoG has an indirect role
in the control of integrin expression, as evidenced by its capacity
to stimulate NFAT.

Upstream involvement of RhoG is necessary to the regulation
of the activities of Cdc42 and Rac1, which are required for the
production of membrane ruffles and filopodia (48). These
characteristics are critical during cell migration and necessitate
the participation of filamentous actin (F-actin). Reduced F-actin
levels then influence the shapes of cells and the creation of force
during cell migration and division. Interestingly, GTP-bound
Rac1 regulates F-actin polymerization in lamellipodia (49),
which may need the RhoG effector, ELMO, and the ELMO-
binding protein Dock180 and Dock4, both of which are Rac1-
specific GEFs (50). When RhoG is activated, the Dock-ELMO
complex translocates to the plasma membrane, activating Rac1
and resulting in cell migration. This finding indicates that RhoG
acts upstream to Rac1 and its activation is required for Rac1
activity, particularly cell motility. Interestingly, the absence of
RhoG also inhibits RhoA activation, thereby decreasing the
February 2022 | Volume 13 | Article 845064
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overall F-actin level (51). Altogether, these findings suggest the
role of RhoG in T cell migration is regulating the activation of
other small Rho GTPases.
3 RHOG ACTIVITY IS DYSREGULATED IN
T CELL-RELATED DISORDERS

3.1 Thymoma
According to the cBioPortal and TCGA datasets (accessed
December 2021), RhoG is frequently altered by amplification,
Frontiers in Immunology | www.frontiersin.org 4
deletion, or mutation, and aberrant RhoG gene expression has
been observed in various malignancies, including thymoma.
Thymoma is a relatively uncommon tumour of thymic
epithelial cells. Various abnormalities have been described in
thymomas and affect normal T cell development by distorting
tumour architecture and inhibiting MHC class II expression,
autoimmune regulator gene expression, and formation of
regulatory T cells (52). RhoG has been implicated in thymoma
in type AB thymoma (cBioPortal) caused by a RhoG mutation
at Ala151Ser.

Interestingly, RhoH Ala151Val mutation produces a loss-of-
function effect, implying that a RhoG mutation at the same
FIGURE 1 | Potential role of RhoG in the regulation of NFAT transcription activity in anergic T cell in canonical and alternative pathways. (A) In the classical pathway,
antigen receptor stimulation causes the synthesis of inositol-1,4,5-triphosphate (IP3), which opens IP3 receptor channels in the ER. The drop in ER Ca2+ concentration
activates STIM1 and STIM2, which are needed to bind to and open CRAC channels generated by ORAI1 and ORAI2 proteins in the plasma membrane. CaM and the serine/
threonine phosphatase calcineurin are then activated by Ca2+ inflow via CRAC channels. Calcineurin dephosphorylates numerous serine/threonine residues in the regulatory
domain of NFAT, causing a conformational shift, nuclear localization signal exposure, and NFAT nuclear import. Increased nuclear localization of NFAT may thereby
potentiate the NFAT-induced-anergy-associated gene. (B)Meanwhile, in an alternate pathway, Jak3 phosphorylates a single tyrosine residue within the regulatory domain of
NFAT, downstream of the IL-7 receptor, causing nuclear translocation and activation of NFAT in thymocytes independent of Ca2+ signals and calcineurin. Jak3 may activate
RhoG via Vav, causing NFAT to be localized in the nucleus. ER, endoplasmic reticulum; NFAT, nuclear factor of activated T cells; STIM, stromal interaction molecule; CRAC,
Ca2+ release-activated Ca 2+; CaM, calmodulin; Jak3, Janus kinase 3; IL-7, interleukin-7. Created with BioRender.com.
February 2022 | Volume 13 | Article 845064
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location may have the same effect. However, both RhoH and
RhoG only share 40% sequence similarities (3), indicating that it
may give a different effect. Most of the literature indicates that
RhoG plays an active role in cancer progression by promoting
cell migration, proliferation, and angiogenesis, and its absence is
related to the reduction of cancer characteristics. Nonetheless,
given the evidence of RhoG’s involvement in thymoma and lack
of its function in the regulation of thymocyte development,
RhoG Ala151Ser mutation may affect the activities of other
small Rho GTPases, such as Rac1 and Cdc42, leading to
impaired thymocytes development.

3.2 Hemophagocytic Lymphohistiocytosis
Hemophagocytic lymphohistiocytosis (HLH) is a potentially
fatal disease characterized by a generalized inflammatory
response caused by abnormal immune activation. The
estimated prevalence of HLH cases in different regions
worldwide varies from 1 to 10 in 1,000,000 of people.
However, the reported data might have been underestimated
because of scarce documentation (53–56). In general, HLH can
be distinguished into primary (or familial) that is inheritable,
whereas secondary HLH (predominantly endured by adult
individuals) are mostly triggered by three main factors:
infections, autoimmune diseases, and neoplasms (56, 57).
Secondary HLH particularly induced by infection is almost
similar to sepsis according to abnormal inflammatory
syndrome as a consequence of infection and leads to organ
dysfunction resulting from a “cytokine storm.” Given that HLH
syndrome can be nearly identical to sepsis, it may
unintentionally lead to the death of individuals who were
misdiagnosed with sepsis (58). Mechanistically, this
immunological disorder is characterized by systemic
inflammation produced by the defective exocytosis of cytotoxic
granules (CG), required for lymphocytes to eliminate infected or
malignant cells (51).

Recently, a missense mutation, Glu171Lys in RhoG has been
found to impair cytotoxic T lymphocyte (CTL) and natural killer
(NK) cell exocytosis, resulting in the development of a severe
HLH (51). RhoG knockout promotes deleterious effects on
human NK and CD8+ T cell exocytosis as manifested by
impaired cytoskeletal and cell morphology and abnormal
Frontiers in Immunology | www.frontiersin.org 5
migratory capacity (51). The data hence suggest the critical
role of RhoG in CG docking to the membrane of
cytotoxic lymphocytes.
4 CONCLUSIONS AND FUTURE
PERSPECTIVES

RhoG is a critical component of T cell signalling and may be used
or targeted therapeutically in cancer and immune-related
diseases. However, existing understanding is insufficient and
requires additional comprehensive experimental validation.
Besides, inquiry into various illnesses and biological functions
is also needed to enhance the knowledge of the therapeutic utility
of targeting RhoG signalling axes.

The role of RhoG in thymocyte development is redundant
compared with the roles of other members in the subfamily.
Nonetheless, RhoG may be crucial to the control of T cell anergy
through NFAT transcriptional activity or TCR endocytosis from
the IS. Thus, further research into the role of RhoG in the control
of T cell anergy may aid the development of therapeutic targets
for the rescue of anergic T cells in human diseases, such as
cancer, autoimmune disease, and viral infection. However,
targeting a signalling node protein required for normal
physiology is difficult, justifying the need for substantial
research before identifying and designing the most effective
attack points for treating RhoG-associated diseases.
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