
Frontiers in Immunology | www.frontiersin.

Edited by:
Khashayarsha Khazaie,

Mayo Clinic, United States

Reviewed by:
Nelson Chao,

Duke University, United States

*Correspondence:
Matteo Bellone

bellone.matteo@hsr.it

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Immunology

Received: 29 December 2021
Accepted: 25 February 2022
Published: 17 March 2022

Citation:
Brevi A, Cogrossi LL, Lorenzoni M,

Mattorre B and Bellone M (2022) The
Insider: Impact of the Gut Microbiota

on Cancer Immunity and Response to
Therapies in Multiple Myeloma.

Front. Immunol. 13:845422.
doi: 10.3389/fimmu.2022.845422

MINI REVIEW
published: 17 March 2022

doi: 10.3389/fimmu.2022.845422
The Insider: Impact of the Gut
Microbiota on Cancer Immunity
and Response to Therapies in
Multiple Myeloma
Arianna Brevi1, Laura Lucia Cogrossi 1,2, Marco Lorenzoni1, Benedetta Mattorre1

and Matteo Bellone1*

1 Cellular Immunology Unit, Department of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a
Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy, 2 Università Vita-Salute San Raffaele, Milan, Italy

The human microbiota is a unique set of microorganisms colonizing the human body and
evolving within it from the very beginning. Acting as an insider, the microbiota provides
nutrients, and mutualistically interacts with the host’s immune system, thus contributing to
the generation of barriers against pathogens. While a strong link has been documented
between intestinal dysbiosis (i.e., disruption to the microbiota homeostasis) and diseases,
the mechanisms by which commensal bacteria impact a wide spectrum of mucosal and
extramucosal human disorders have only partially been deciphered. This is particularly
puzzling for multiple myeloma (MM), a treatable but incurable neoplasia of plasma cells
that accumulate in the bone marrow and lead to end-organ damage. Here we revise the
most recent literature on data from both the bench and the bedside that show how the gut
microbiota modulates cancer immunity, potentially impacting the progression of
asymptomatic monoclonal gammopathy of undetermined significance (MGUS) and
smoldering MM (SMM) to full blown MM. We also explore the effect of the gut
microbiome on hematopoiet ic stem cel l transplantat ion, chemotherapy,
immunomodulating therapy and cancer immunotherapy in MM patients. Additionally,
we identify the most cogent area of investigation that have the highest chance to delineate
microbiota-related and pathobiology-based parameters for patient risk stratification.
Lastly, we highlight microbiota-modulating strategies (i.e., diet, prebiotics, probiotics,
fecal microbiota transplantation and postbiotics) that may reduce treatment-related
toxicity in patients affected by MM as well as the rates of undertreatment of SMM patients.

Keywords: microbiota, multiple myeloma, monoclonal gammopathy of undetermined significance, smoldering
multiple myeloma, prevotella, T helper 17, interleukin 17, gut micobiome
INTRODUCTION

The very moment we open our eyes to the world, our body has already been colonized by symbiotic
microorganisms that will increase in number and species and become established through the first
years of life into our own microbiota (1). This also is the time in which the immune system gets
forged to recognize and eliminate pathogens (2) while acquiring tolerance to the self (3) and the host
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microbiota that becomes an extended self (4). Of note, children
share a stereotypic immune system development that is
microbiota-driven (5). A strong link between gut microbiota
and immune dynamics is also found in adults undergoing
immune reconstitution after hematopoietic stem cell
transplantation (HSCT) (6). The mechanisms by which the
microbiota interacts with the host immune system, and
eventually modulates and/or gets modulated by the immune
system is under investigation (7–30). The modulatory effects of
the microbiota on the immune system are not only local, but also
systemic and affect distant organs (31). Therefore, disruption to
the microbiota homeostasis (i.e., dysbiosis) associates with
diseases that span from allergy (32) and other immune-
mediated diseases (33) to obesity (34), psychiatric disorders
(35) and cancer (36). The microbiota also directly impacts
human pathologies. As few examples, selected species of
Escherichia coli alkylate DNA on adenosine residues and
induce double strand breaks, eventually favoring mutations in
colorectal cancer (37); intestinal commensal bacteria lead to
androgen biosynthesis, thus promoting endocrine resistance in
prostate cancer (38). Additionally, the gut microbiota influences
susceptibility of cancer patients to surgery (39), chemotherapy
(40), radiotherapy (41) and immunotherapy (42). Indeed, fecal
microbiota transplant (FMT) from donors who achieved
complete response to anti-PD-1 monotherapy into anti-PD-1-
refractory melanoma patients resulted safe, feasible and
associated with clinical responses and improved cancer control
by the immune system (43). Modulation of the gut microbiome
has also been attempted in patients affected by hematologic
malignancies because the microbiota is highly susceptible to
most of the treatments proposed to these patients (44), and
microbiota translocation into the bloodstream of patients with
therapy-induced immunosuppression contributes to morbidity
and mortality (45). In turn, treatment-induced dysbiosis can be
corrected by probiotics, prebiotics and FMT (46).

We focused here on multiple myeloma (MM), a treatable but
incurable neoplasia of plasma cells that mainly accumulate in the
bone marrow (BM) causing anemia, hypercalcemia, renal
insufficiency, and bone lesions (47). Full blown MM is often
preceded by two potentially curable asymptomatic diseases:
monoclonal gammopathy of undetermined significance
(MGUS) and smoldering MM (SMM) (48). Thus, identifying
mechanisms by which MGUS and SMM patients progress to full-
blown MM would represent a substantial clinical advancement.
Microbiota-modulated immunity has been proposed as a
mechanism of progression from SMM to MM (49).
Additionally, several clinical and preclinical studies have
highlighted the role of the gut microbiota in MM patients’
response to therapies (50, 51). Therefore, MM and its
asymptomatic phases are examples of diseases in which
alteration of the gut flora impacts disease progression, response
to therapy and treatment-related toxicities. Information gathered
in MM can be translated to other human diseases.

While we refer all interested readers to a more comprehensive
review on this topic (52), in our short and more clinically-
oriented paper we will start reporting data from both the bench
Frontiers in Immunology | www.frontiersin.org 2
and the bedside that show how the gut microbiota modulates
MM. We will define the role of IL-17 in the crosstalk between
MM and the intestinal microbiota. We will highlight how the gut
microbiota is modified and can modify patients’ susceptibility to
treatments. We will conclude with experimental and clinically
strategies that can modulate the gut microbiota in patients
affected by MGUS, SMM or MM.
GUTMICROBIOTA ANDMULTIPLE MYELOMA

Diet can profoundly affect the gut microbiota. While a link
between diet an MM has been investigated for decades (53), only
recently a correlation between microbiome and progression of
MM has been searched for. As for other human diseases (4), the
gut microbiota from MM patients has a reduced richness in
bacterial species (54). Bacteroides, Clostriudium leptum and
Rothia are enriched in MM patients when compared to family
members, who usually share the microbiome (55). Interestingly,
the level of Clostridium leptum positively correlates with ISS
stage in MM patients. Because Clostridium leptum and Rothia are
butyric acid-producing bacteria, the authors hypothesized
dysregulation of the sugar metabolism in the intestine of MM
patients (54). Whether short-chain fatty acids (SCFAs) have
direct effects on neoplastic plasma cells or anti-MM immunity
(56) needs to be investigated.

Opportunistic nitrogen-recycling bacteria such as Klebsiella
and Streptococcus are enriched in the gut microbiota of MM
patients (57). Accordingly, MM patients showed increased
urease and glutamine synthetase activity in their feces and
more urea and less ammonia in their blood than healthy
subjects. Mice treated with FMT from MM patients and
challenged with 5TGM1 MM cells experienced accelerated
tumor burden that associated with elevated L-glutamine levels
in their blood (57). Thus, gut colonization by nitrogen-recycling
bacteria accelerates MM by making available L-glutamine.
Building on this knowledge, fluoroglutamine might work as
PET tracer in MM (58).

Altogether, these findings suggest that metabolites produced
by a dysbiotic microbiota impact MM progression. Indeed,
genetic diversity in the microbiome provides a wide variety of
enzymes that convert polysaccharides and oligosaccharides into
SCFAs like acetate, propionate, and butyrate (59). In mice,
acetate, butyrate and pentanoate exert partially overlapping
effects on T cells, B cells and dendritic cells (60, 61). By
activating receptors expressed on intestinal epithelial cells and
hematopoietic cells, SCFAs reduce inflammation (62, 63). In the
context of autologous HSCT, the presence of the butyrate-
producing bacteria Eubacterium hallae or Faecalibacterium
prausnitzii in the gut microbiota of MM patients positively
correlates with increased rates of minimal residual disease
negativity (64). In rats, butyrate administration ameliorates
colitis by increasing numbers of regulatory T cell (Treg) and
suppressing levels of the pro-inflammatory cytokine IL-17A in
both plasma and colonic mucosa (65). Conversely, commensals
favoring the expansion of intestinal T helper-17 (Th17) cells may
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accelerate MM progression in mice (66). Thus, a strong link
exists among commensal bacteria, Treg/Th17 cell balance
and MM.
IL-17 SWINGS THE BALANCE
BETWEEN GUT MICROBIOTA
AND MULTIPLE MYELOMA

A different composition of the gut microbiota induces different
immune responses locally and systemically (67). By producing IL-
17, Th17 lymphocytes maintain a healthy intestinal mucosa and
limit bacteria over-growth (68). Conversely, Treg cells allow
tolerance to the extended self and limit excessive inflammation
(69). Imbalance in the crosstalk between the host and the
microbiota leads to excessive immune activation and expansion
of Th17 cells.

Th17 cells are pathogenic in MM (70–72). Alexandrakis et al.
(73) originally observed higher IL-17A levels in the peripheral
blood of MM patients of stage II and III compared to stage I and
a positive correlation with VEGF and microvessel density in the
BM, thus hypothesizing a proangiogenic role for IL-17A in MM.
Th17 cells are enriched in the BM of MM patients (70), where
they support local inflammation and favor bone disease by
promoting osteoclast differentiation (71). IL-17A, whose levels
are increased in the BM of MM patients, contributes to
neoplastic plasma cell survival and proliferation through the
autocrine release of IL-6 (74). Also mouse neoplastic plasma cells
express functional 17RA/RC (66), and in vivo, MM plasma cells
upregulate cell proliferation and cell-cycle progression pathways
if stimulated with IL-17A (75); while genes related to antigen
processing and presentation and leukocyte trafficking and
activation are downregulated in response to IL-17A (75).
Neoplastic plasma cells can produce IL-17A, and treatment
with antibodies specific for human IL-17A delayed growth of
human MM in immunodeficient mice (76). These findings
spurred a clinical trial with anti-IL-17A antibodies in MM
patients (NCT03111992). IL-17A also resulted detrimental in
the context of allogeneic-HSCT (77, 78). These works also
identified IL-17A as the main path linking microbiota to Graft-
Versus-Host Disease (GVHD). Indeed, in the absence of donor
IL-17A, HSCT was more effective in controlling mouse MM (75).

While IL-17A is also elevated in some MGUS patients (79), a
direct link has been reported between gut microbiota, IL-17A
and progression of asymptomatic MM to full-blownMM (66). In
Vk*MYC mice developing de novo MM that invariably evolves
from asymptomatic to symptomatic MM (80), Prevotella
heparinolytica, a human commensal (81), induces expansion of
Th17 cells in the intestinal mucosa. Gut-born Th17 cells migrate
to the BM, where they promote neoplastic plasma cell
proliferation and progression from asymptomatic to
symptomatic MM. At odds, P. melaninogenica restrain MM
progression by limiting expansion of Th17 cells. Similarly, in
SMM patients, high levels of BM IL-17 predicted faster
progression to active MM (66). Lack of IL-17A in MM mice,
or treatment with antibiotics or antibodies blocking IL-17/IL-
Frontiers in Immunology | www.frontiersin.org 3
17R interactions delayed disease progression (66). Thus,
targeting the microbiota-IL17A axis in SMM patients might
block disease progression.
ROLE OF THE GUT MICROBIOTA IN
HEMATOPOIETIC STEM CELL
TRANSPLANTATION

HSCT is a primary treatment for hematological malignancies
and can be subdivided into autologous or allogeneic based on the
use of self or donor-compatible HSCs, respectively (82). While
the standard of care for MM patients is to receive high-dose
chemotherapy followed by autologous-HSCT, allogeneic-HSCT
can be proposed as part of a clinical trial and often associates
with drawbacks like GVHD, a clinical condition in which the
grafted immune system attacks tissues of the transplant recipient
(83–85). The gut microbiota appears directly linked to
allogeneic-HSCT success (86) and risk of GVHD (87). A large
study including 111 MM patients across multiple clinical centers
reported that lower diversity of intestinal microbiota associates
with higher risk of transplant- and GHVD-related deaths (88).

Khan and colleagues highlighted interesting similarities in gut
microbiota dysbiosis after both autologous- and allogeneic-
HSCT in MM patients (89). Changes in the bacteriome and
mycobiome also modulate early toxicity and the rate of
neutrophil engraftment after autologous-HSCT (90). Generally,
changes in bacterial abundances and species were linked to
conditioning regimen or patient’s treatments (91, 92). Reduced
bacterial diversity associates with increased immune activation,
probability of relapse, GVHD and overall mortality (88, 91, 93–
98). Enterobacteria and Proteobacteria abundance correlates with
increasing probability of GVHD, pulmonary or gastro-intestinal
complications and infection (92, 96, 98, 99). More in depth,
enrichment in Clostridium difficile and Rothia associated with
both autologous- and allogeneic-HSCT-related adverse events in
MM patients (100), while colonization of species like
Akkermansia muciniphila or Enterococcus faecium predispose
to the dominance of other bacteria and further detrimental
systemic consequences for patients (101). On the other hand,
enrichment in Ruminococcaceae, Lachnospiraceae and
Clostridiales correlates with higher transplantation efficiency
and reduced GVHD (93, 102). Others identified Blautia,
Actinomyces , Prevotella and Eubacterium limosum as
commensals with protective effects (91, 98, 101).

Interestingly, a genus of bacteria may harbor species with
opposing effects on the immune system (4). One example is
Clostridium difficile that may increase risk of GVHD, disease
relapse or mortality, contrary to other family members (6, 93, 99,
100). Different effects by different strains belonging to the same
genus correlate to different metabolic activities. Butyrate and
propionate can reduce GVHD, improve HSCT outcomes but
also protect mice against radiation-induced injuries of the
hematopoietic compartment (103). The microbiome also
regulates energy uptake to improve allogeneic-HSCT outcomes
in mice (97, 104), or lactose metabolism whose reduction,
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through diet or variation in microbial composition, limits
pathological bacteria expansion and adverse effects in
patients (105).
IMPACT OF THE GUT MICROBIOTA IN
THERAPIES FOR MM PATIENTS

Because the gut microbiota can influence response to therapy
and toxicity across different treatments (40), also in MM patients
a link between gut microbiota and response to therapies has
been investigated.

Proteasome Inhibitors and
Immunomodulating Drugs
MM patients benefit from combinations of proteasome inhibitors
(PIs; bortezomib, carfilzomib, ixazomib) and immunomodulating
drugs (IMiDs; thalidomide, lenalidomide, pomalidomide,
dexamethasone) (106). PI treatment is burdened with
gastrointestinal toxicity (107) that may also depend on gut
microbiota (51). While the work by Pianko and colleagues did
not investigate gastrointestinal toxicity in MM patients treated
with PIs and/or IMiDs followed by autologous-HSCT, it showed
an association between deep treatment response and enrichment
in Eubacterium hallii and Faecalibacterium prausnitzii (64). F.
prausnitzii usually associates with gut health, and both bacteria are
SCFA producers (108), thus suggesting a potential link between
SCFA producing bacteria a reduced gastrointestinal toxicity.

A higher prevalence of beneficial bacteria belonging to
Bifidobacterium and Lactobacillus genus has been found in
mice exposed to dexamethasone (109). Significantly decreased
IL-17 levels in the intestinal mucosa and reduced colitis
susceptibility were observed in mice receiving FMT from
dexamethasone-conditioned donor mice (109). Thus, the
immunosuppressive effect of dexamethasone may in part be
supported by the induction of an anti-inflammatory
microbiota (110).

Chemotherapies
Cyclophosphamide (CTX) is an alkylating agent that stimulates
type I interferon response and Th1/Th17 lymphocyte
polarization (111). Because of the dual role of Th17 cells in
MM pathogenesis and gut homeostasis, the effect of CTX on
intestinal microbiota is relevant to understand the therapeutic
outcomes in MM patients. Bacteroidetes and Verrucomicrobia
are significantly reduced in mice treated with CTX (112). CTX
treatment also increases intestinal barrier permeability and
translocation of Gram-positive commensals, which favor Th1
and Th17 cell differentiation and anti-tumor immunity
(113, 114).

Similarly, melphalan administration in rats causes severe
injury to the small intestine, weight loss and infections (115).
These effects recapitulate the toxicity observed in patients and
limit melphalan administration to elderly subjects (116). Indeed,
melphalan induces dysbiosis, reduction of SCFA production and
bacterial translocation (115). Thus, replenishing SCFA or
Frontiers in Immunology | www.frontiersin.org 4
normalization of microbiota composition might re-establish
intestinal homeostasis and improve drug tolerability.

Cancer Immunotherapies
A strong correlation exists between gut microbiome and
response to immune checkpoint inhibitors (ICIs) (43, 117–
123). Interestingly, PD-L1 is expressed on malignant plasma
cells, and PD-L1 predicts progression of SMM patients to MM
(124). However, early-phase clinical trials with ICI as single
agent showed modest activity in MM patients, whereas the
combination with PIs ignited toxic events (125, 126). The latter
might be linked to PI gastrointestinal toxicity (107). Andrews et
al. associated defined microbiota signatures and abundance of
Bacteroides intestinalis with upregulation of mucosal IL-1b and
IL-17 in patients with ICI-related gastrointestinal adverse events
(127). Administration of Bifidobacterium was sufficient to
ameliorate ICI-related immunopathology in mice without
dampening antitumor immunity (128). This strategy might
also be adopted in MM patients.

The gut microbiota can promote the expansion and
persistence of adoptively transferred cytotoxic T cells (CTLs)
both in humans and mice (129). In mice, pentanoate and
butyrate enhance anti-tumor activity of CTLs and chimeric
antigen receptor (CAR)-T cells through metabolic and
epigenetic reprogramming (130). A preliminary study on
hematological patients receiving CAR-T cell therapy showed
enrichment in Ruminococcacaeae, and Lachnospiraceae, which
produce SCFA, in patients achieving complete remission (131).
Because CAR-T cells are proposed to MM patients (132), it will
be interesting to investigate how modulation of the gut
microbiota can impact this treatment (133, 134).
CONCLUSIONS

The information gathered so far strongly suggest that interfering
with the insider (i.e., modifying the intestinal microbiota) may
limit MM progression and increase susceptibility to therapies.
These strategies include dietary intervention, administration of
prebiotics, probiotics and postbiotics, but also FMT (Figure 1).
While the concept of nutritional support is well established in the
clinical practice (135), a more precise modulation of the gut
microbiota has been attempted only recently, thanks to the
acquisition of technologies for microbiome identification (36).
Interestingly, unique microbial signatures can also be found in
the peripheral blood within and between several cancer
types (136).

Clinical trials aimed at modulating the gut microbiome to
improve therapeutic response in hematopoietic malignancies are
ongoing (Table 1) (137). Many of these trials propose
administration of 1-6 different commensals with or without
dietary intervention, and several of them focus on FMT. Major
outcomes for patients undergoing HSCT are safety and GVHD
control. Recently, a randomized trial has been launched to assess
FMT efficacy in preventing allogeneic-HSCT complications in
MM patients (NCT04935684). In other ongoing clinical trials,
March 2022 | Volume 13 | Article 845422
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the microbiota is investigated in correlation to taste function
(NCT03276481); to the supplementation of probiotic fermented
milk product (NCT04530812); and to combined therapies (i.e.,
Selinixor, carfizomib and daratumumab or pomalidomide;
NCT04661137). Many more studies deal with dietary
intervention. As few examples, NCT04920084 will investigate
whether a plant-rich diet is feasible and prevent MM in
overweight individuals with MGUS or SMM. Another trial will
determine if a specific mycobiome supporting diet can reduce gut
inflammation in patients undergoing autologous-HSCT
(NCT04685525). Resistant starch versus maltodextrin will be
compared in a randomized trial involving candidates to
autologous-HSCT (NCT05135351).

The natural tropism of bacteria for tumors have been exploited
to design bacterial therapy for cancer (138). Commensals can be
engineered to deliver drugs into tumors (36), and strategies have
been devised to implement bacterial lysis with release of genetically
encoded cargo within tumors only when a predefined population
density of bacteria is reached (139–141).

Microbiota-derived metabolites (142) and microorganism-
associated molecular patterns (143) can protect the BM from
ionizing radiation toxicity. Additionally, recovery of
lymphocytes and neutrophils after irradiation largely depends
Frontiers in Immunology | www.frontiersin.org 5
on gut microbiota, which also supports nutrients and caloric
uptake (97). Because disruption of the intestinal microbiota
occurs frequently in HSCT recipients as consequence of the
conditioning regimens and wide-spectrum antibiotic use, peri-
transplant treatment with simple nutrients, commensal-derived
metabolites, selected bacterial species, or even FMT (144) should
support optimal immune reconstitution and protection from
GVHD and transplant-associated nutritional alterations (135).
Of note, FMT in allogeneic-HCT recipients induced protection
from intestinal GVHD that associated with increased abundance
of butyrate-producing bacteria (144). Butyrate and propionate
levels also associate with protection from chronic GVHD in
patients affected by MM (145). Administration of resistant starch
and prebiotics to allogeneic-HSCT recipients reduced the
incidence of acute GVHD that associated with preservation of
butyrate-producing commensals (146).

Modulation of the gut microbiota and its derivatives should be
time and context dependent. While propionate can provide
radioprotection (142), butyrate might limit the immunostimulatory
activity of radiotherapy by decreasing dendritic cell antigen
presentation (147). In the same vein, melanoma patients resistant
to anti-CTLA-4 blockade showed high blood propionate and butyrate
levels and higher proportion of Tregs (56). Thus, an excess of SCFAs,
FIGURE 1 | Strategies to impact MGUS, SMM and MM by targeting microbiota and IL-17/Th17. Progression from asymptomatic MGUS and SMM to symptomatic
MM partially depends on the microbiota-Th17 axis. Peculiar composition of the gut microbiota locally induces the differentation of Th17 cells, which migrates in the
BM and supports disease progression. Strategies to impact the disease by targeting the microbiota include diets enriched of specific nutrients(e.g.SCFA, vitamins,
plant-specific foods etc.) autologous or heterologous FMT, prebiotics probiotic bacteria and postibiotics. All these strategies indirectly also reduce IL-17/Th17
accumulating in the gut and in the BM. Other than through the microbiota, monoclonal antibodies againstIL-17 and Il-17R interfere with its pathway and prevent the
progression from SMM to MM in mice.
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TABLE 1 | Clinical trials in MM patients.

Trial ID Patient population Patients
(n)

Intervention Outcome Result Status
(location)

Prebiotics
NCT05135351 MM and Lymphoma

patients undergoing
autologous HSCT

30 Randomized, double-blind,
placebo-controlled trial of
resistant starch versus
placebo

Primary: feasibility; secondary: hospital
duration, rate of neutropenic fever, rate of
broad-spectrum antibiotic exposure and rate
of gastrointestinal symptoms

– Not yet recruiting
(University of
Nebraska, USA)

NCT04629430 Patients affected by
hematologic cancer
and undergoing
HSCT

29 Single group assignment,
open label trial of prebiotics
and HSCT

Primary: frequency of participants ingesting
the required diet; secondary: incidence and
severity of acute GVHD and acute GI GVHD,
C. difficile infection, patient weight and days
to neutrophil engraftment

– Recruiting
(University of
Virginia, USA)

Probiotics
NCT00946283 Patients undergoing

donor allogenic HSCT
for hematologic
cancer or
myelodysplastic
syndrome

30 Single group assignment,
open label trial of
Lactobacillus rhamosus GG
and HSCT

Primary: safety; secondary: none Terminated due
to slow accrual

Terminated
(Rutgers Cancer
Institute of New
Jersey, USA)

NCT03057054 Patients undergoing
alternative donor
allogeneic HCT

500 Randomized, parallel
assignment, placebo-
controlled trial of
Lactobacillus plantarum and
HCT

Primary: Incidence of GI acute GVHD;
secondary: none

– Recruiting
(Children’s
Oncology Group,
CA; National
Cancer Institute,
USA)

NCT04530812 Asymptomatic MM
patients

13 Randomized, parallel
assignment, open label
trial of Kefir and best
practice

Primary: changes in biomarkers of metabolism,
patient-reported pain, fatigue, gut health, and
quality of life; Secondary: gut microbial
community structure

– Completed
(Roswell Park
Cancer Institute,
USA)

Diet
NCT00003077 Advanced cancer

patients who have
significant weight loss
and not amenable to
curative therapy

63 Randomized, single
group assignment,
open label trial of high
dose omega-3 fatty
acids

Primary: survival; secondary: patient weight,
maximum tolerated dose and antitumor response

Only 16% of
patients has
weight
stabilization
or weight
gain

Completed (Holden
Comprehensive
Cancer Center,
USA)

NCT00469209 Primary refractory,
relapsing after prior
therapy MM patients

60 Randomized, parallel
assignment, open label
trial of vitamin c,
arsenic trioxide,
bortezomib and
melphalan

Primary: toxicity and safety, efficacy and
pharmacokinetics; secondary: time to toxicity

– Completed (MD
Anderson Cancer
Center, USA)

NCT00171925 MM and
asymptomatic Stage I
MM patients

143 Randomized, parallel
assignment, open label
trial of zolendronic acid,
calcium and vitamin D

Primary: progression free survival; secondary:
number of patients with skeletal-related events
and complications

Reduced
overall
disease
progression
and skeletal
events

Terminated
(Novartis
Investigative
Site, DE)

NCT00317811 MM and plasma cell
neoplasm patients

35 Single arm, open label
trial of ascorbic acid,
bortezomib and
melphalan

Primary: overall response, safety and tolerability,
time to disease progression; secondary: time to
response, PFS, OS

Disease
controlled in
94% of
patients

Completed
(Oncotherapeutics,
USA)

NCT00661999 Anemic patients
undergoing
chemotherapy for
nonmyeloid
malignancies

502 Randomized, parallel
assignment trial of
ferrous sulfate,
darbepoetin alfa and
sodium ferric gluconate

Primary: hematopoietic response; secondary:
hemoglobin levels, time to RBC transfusion,
overall quality of life

No significant
improvement

Completed (Mayo
Clinic, USA)

NCT00951626 Patients affected by
hematologic cancer
and undergoing
allogenic HSCT

282 Randomized, parallel
assignment trial of diet
intervention

Primary: quality of life; secondary: time-to-
complication, number of complications, mortality

– Completed (City of
Hope
Comprehensive
Cancer
Center, USA)

(Continued)
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while protective in some contexts (60–63, 65, 93, 108), may be
detrimental for the induction of efficient anti-cancer CTL responses
(56, 147, 148). The situation is evenmore complex inMMpatients, in
which modulation of the gut microbiota and its metabolic derivatives
should aim at restraining Th17 cell numbers in favor of optimal CTL
responses (4). It will be interesting to investigate in animal models of
MM if resistant fiber or SCFA supplementation in combination with
immune checkpoint blockade limit the expansion of Th17 cells in
favor of a potent anti-tumor immunity.

Manipulation of the gut microbiota is not without risks (149).
Probiotic strains (e.g., Lactobacilli) can cause bacteriemia
although the mechanism of transmission from probiotic to
blood is unclear (150). Probiotics may also impair microbiota
reconstitution after antibiotic-induced dysbiosis (151). Thus,
further investigation is warranted to better understand the
mechanistic links between prokaryotic and eukaryotic cells
sharing our body space.
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