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Metastasis to the pleural and peritoneal cavities is a common terminal pathway for a wide
variety of cancers. This article explores how these unique environments both promote
aggressive tumor behavior and suppresses anti-tumor immunity, and ways in which local
delivery of protein therapeutics can leverage the contained nature of these spaces to a
therapeutic advantage, achieving high intra-cavital concentrations while minimizing
systemic toxicity.
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INTRODUCTION

Malignant pleural effusions (MPE) have a US incidence of more than 150,000 cases per year (1, 2)
and a life expectancy measured in months (3). Likewise, patients with malignant peritoneal ascites
(MPA) and peritoneal carcinomatosis also have abysmal survival (4) and poor quality of life (QOL
(5),) with patients experiencing multiple hospitalizations for bowel obstruction and pain (6). Both
MPE and MPA are common, painful, difficult to treat, and most importantly are uniformly fatal.
Despite significant clinical progress in immuno-oncology, there has been almost no change in
survival or quality of life for patients with MPE or MPA, which become the proximate cause of
death in many cases of advanced cancer
SUBSECTIONS

An Incomplete Understanding of the Pleural and Peritoneal
Cavity Environments
In states of normal health, the pleural and peritoneal cavities contain physiologic fluid with a
dynamic array of immune cells and unique secretomes. In non-neoplastic pathologic states, fluid
can accumulate in these cavities due either to transudative mechanisms (vascular pressure and
decreased resorption), or exudative mechanisms (tissue inflammation and immune cell infiltration).
These processes result in dramatic changes to the cavitary secretome and immune environment.
Malignant effusions and ascites also exhibit similar shifts in the secretome and cellular infiltrate,
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but several additional cytokines and chemokines distinguish
them from benign effusions (Figure 1A). The presence of
additional malignancy-specific components notwithstanding,
the combination of cytokines seen across the spectrum of
benign and malignant conditions is predicted to drive both
aggressive tumor behavior and polarize pleural immune cells
away from tumor-specific immunity and instead, toward a
maladaptive repair-and-regenerate mode. Understanding the
interplay between the secretome and the resident cell
populations will provide much needed foundation for the
development of innovative immunotherapeutics targetable to
the cavitary spaces and specific to the mechanisms relevant to
malignant effusions and ascites.

The Secretomic Signatures of Malignant
Peritoneal Ascites and Pleural Effusions
Are Indistinguishable
One of the most striking features of Figure 1A, which contrasts
the secretomes of ovarian cancer ascites and pleural effusions
with that of benign pleural effusions, is the similarity between the
cytokine and chemokine profiles in pleural and peritoneal
malignancies. In the healthy cavitary spaces, a physiologic
secretome and a complement of immune cells are dedicated to
maintenance and repair of the mesothelial lining through a
process involving the epithelial to mesenchymal transition
(EMT, detachment, migration) and the mesenchymal to
epithelial transition (MET, reattachment, re-epithelialization)
(9). In malignant fluid, the environment is transformed into an
inflammatory milieu that promotes wound healing and
suppresses adaptive immune effector responses. As mentioned
above, this tumor-related cavitary fluid environment has all the
inflammatory components of benign effusions (IL-6, sIL-6Ra,
CCL2, CXCL10, TGFb, CCL22, IL-8, IL-5 Figure 1), but includes
additional tumor and endothelial growth factors, as well as a
blunted effector cytokine response (IFNa2) that is not seen in
physiologic cavitary fluid or benign effusions.

Effects of the Malignant Secretome on
Mesothelial Maintenance, Intra-Cavitary
Tumor and Anti-Tumor Responses
Because the pleural and peritoneal spaces are lined by
mesothelial cells, and because effusions and ascites result from
a net inflow from the peripheral circulation, these cavities
develop a unique cytokine environment. In the context of
malignancy, the milieu of cytokines is predicted to play a
maladaptive, tumor-supporting role, with negative effects not
only in the cavitary environment, but systemically as well,
promoting motility and solid organ metastasis. Figure 1B
illustrates mechanisms by which the inflammatory cavitary
secretome, initiated by tumor metastasis and supplemented by
tumor-secreted cytokines, is predicted to establish an
environment that promotes aggressive tumor behavior. These
mechanisms include EMT, suppression of adaptive T-cell
effector responses, and polarization of macrophages to support
rather than oppose tumor growth. Although ovarian cancer is
presented here as an example, the malignant cavitary secretome,
Frontiers in Immunology | www.frontiersin.org 2
and the resulting tumor pathobiology is common to a wide range
of cancers (7, 8).

A Rationale for Intra-Cavitary Therapy
Using Immune-Oncology Drugs
The physiologically isolated pleural and peritoneal environments
provide ideal anatomical spaces for the localized administration
of large protein drugs. The pleura as well as the peritoneum are
lined with mesothelial cells joined by tight junctions (10)
creating a unique and isolated cavitary environment. Unlike
chemotherapeutics, high molecular weight immuno-oncology
drugs remain concentrated when administered directly to these
cavities, reaching a high target occupancy even with protein
drugs with a narrow therapeutic index when administered
systemically (11–14).

Local administration of therapeutics may be used to directly
target the tumor, support local immune cells, and condition cancer
associated stromal cells (15). Despite the net inflow of serous fluid,
IgG levels are lower in pleural effusions (16) and peritoneal ascites
than in the peripheral circulation. Thus, intravenous administration
of protein therapeutics may not be the most effective way to achieve
the necessary therapeutic levels within the cavitary spaces.
Conversely, localized intra-cavitary administration of these
therapeutics has been shown to result in low systemic exposure,
and negligible on-target off-tumor effects, while reducing adverse
events associated with systemic toxicity (13, 14). The same principle
applies to intra-cavitary injection of RNA-based therapeutics (17,
18). This mode of administration is greatly facilitated by the use of
minimally invasive surgical techniques and placement of indwelling
catheters. While these catheters are traditionally used for palliative
decompression of the cavitary spaces, they have been repurposed as
drug delivery devices, for example the instillation of pleurodesis
agents or cytotoxic chemotherapy. Video assisted thoracoscopic
surgery [VATS (19)] or laparoscopic peritoneal catheter placement
(20) can likewise be used to guide intracavital-intratumoral drug
delivery for agents such as oncovaccines and mRNA therapeutics,
which are injected directly into tumor foci. Further, indwelling
catheters allow for iterative sampling of cavitary fluid to monitor the
response to therapy, the impact on the cavitary immune
environment, the pharmacokinetics and pharmacodynamics (PK/
PD) of personalized drug dosing, and the real time determination of
minimal anticipated biological effect levels [MABEL (21)]. Finally,
anti-tumor effector responses initiated in the confines of the cavitary
spaces would be expected to propagate systemically through the
draining lymphatics, where they could combat solid organ
metastases. Although most studies of single-agent intracavital
immunotherapies have not measured effects on systemic
immunity directly, the intrapleural (14) and intraperitoneal (13)
experience with the bispecific anti-CD3/anti-EpCAM antibody
catumaxomab is informative. Even though the systemic
catumaxomab concentration was <1% of the intracavitary
concentration, both studies observed transient increases in serum
transaminases, which were attributed to systemic cytokine release.
Similarly, intracavitary IL-2 administration resulted in an increase
in peripheral CD8 T cells expressing granzyme B (22) and in
peripheral NK cell activity (12), and intracavitary administration of
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an adenovirus/interferon b construct resulted in increased
peripheral NK activity and anti-tumor antibodies (23).

In this manner, the cavitary spaces can be conceived of as
‘bioreactors’ into which novel immunotherapeutic agents could
be instilled or injected intratumorally with the aim of selecting
and stimulating effector cytotoxic T cells for cavitary and
abscopal activity. We argue for local rather than systemic
administration of protein-based therapies, since systemic
administration may not achieve the necessary intracavitary
therapeutic levels (11).

Intra-cavitary therapy can be considered as a special case of
intra-tumoral therapy (reviewed in (24). Intra-tumoral
immunotherapies have been explored extensively with the
intention of altering the immune microenvironment of solid
tumors to promote adaptive immunity. The peritoneal and
pleural cavities are fluid-phase environments that may be more
amenable to targeted manipulation. Although clusters of tumor
cells are usually demonstrable in the fluid phase, the bulk of the
lesions cake the mesothelium and adhere to internal organs,
where they are bathed in the fluid phase.

Effusions and Ascites as a Source for
Adoptive Cellular Therapy
Adoptive T-cell therapy using autologous tumor infiltrating
lymphocytes (TIL) has been reported to induce salvage
responses in a variety of refractory solid tumors (25).
Conventionally, TIL therapy requires large-scale expansion of a
small number of T-cells grown out from tumor tissue fragments
stimulated with high dose IL-2 and anti-CD3 antibody. Since the
expanded TIL depend on the continued presence of IL-2 for their
survival, TIL infusion must be accompanied by repeated systemic
administration of high dose IL-2, stopping only when dose-
limiting toxicity is reached. TIL infusion is often preceded by
treatment with immunosuppressive chemotherapeutic agents
such as cyclophosphamide and fludarabine to make space for
the therapeutic cells. Therapeutic drainage of MPE frequently
yields on the order of 0.25 to 0.5 x 106 pleural T cells/mL. In our
experience, it is not unusual to drain a liter offluid, yielding up to
5 x 108 T cells. Macrophages are also prevalent, constituting up
to 50% of total nucleated MPE cells. Thus, in a single drainage
it is often possible to obtain potentially therapeutic doses of
pleural T cells following short-term activation or expansion.
The ex vivo activated cells can be positively selected for CD45+ T
cells and macrophages and then re-instilled into the pleural
or peritoneal cavity. Potential advantages over conventionally
expanded TIL include greatly simplified and rapid manufacture,
potentially eliminating the requirement for systemic
administration of toxic high dose IL-2 to ensure cell survival
after reintroduction.

Potential Drawbacks to Intra-Cavitary
Therapeutics
The principal problems facing intra-cavitary therapies are
determining the most efficacious combination of therapeutics
and the logistics associated with intra-cavitary and intratumoral
administration. Additionally, the high cost of biologics, and
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particularly patient-specific cellular therapeutics must also be
considered. There are a broad range of potential modalities that
can be locally delivered, and within these modalities a variety of
agents with similar targets or mechanisms of action, with many
more in pre-clinical or early phase clinical trials (24, 26, 27). The
varied formulations and compatibilities of potentially useful
therapeutics must be considered if they are to be co-
administered through indwelling catheters. Some therapeutics
will be administered into the cavities, but others will require
precise intratumoral delivery, which is limited to accessible
tumor. Drug retention at intratumoral injection sites poses an
additional potential difficulty and must be addressed by choosing
appropriate agents and vehicles. For example, intratumoral
injection of liposomal IL-12 mRNA (28) is more likely to
remain localized than injection of the cytokine itself.
Unexpected toxicities resulting from localized immune
hyperresponsiveness, or interference with normal tissue
maintenance may also pose problems, especially if they are
delayed. Quantification of responses will likely require
objective criteria similar to the RECIST score for solid
tumors (29).

Technical challenges to implementation of intra-cavitary
therapy include the need for dedicated personnel and facilities,
including those required for image guided drug delivery. For
drug delivery protocols requiring general anesthesia, the ability
to administer repeated doses will be limited. Toxicities specific to
intraperitoneal immunotherapy may be anticipated based on the
experience with intra-peritoneal IL-2 (30) and monoclonal
antibody (31) therapy (pyrexia, abdominal pain, nausea/
vomiting). These toxicities may be cavity specific as they were
far milder with intrapleural administration of the same cytokine
(12, 32) or antibody (14).

Finally, maximizing benefit with respect to cost is a challenge
that must be met if intracavitary therapy is to gain acceptance.
Given the dire prognosis and current palliative approaches to
cavitary malignancies, any therapeutic combination that can
provide an objective increase in response rates and survival
with improved quality of life may justify the current high cost
of immunotherapeutics. However, once Phase I/II trials have
been completed, it will be important to initiate therapy while
patients still have acceptable performance status and limited
disease burden (33).
DISCUSSION

Since tumors that metastasize to the pleura and peritoneum exist
in an environment tailored to EMT and immune suppression,
combination therapy directed toward conditioning the local
environment as well as activating anti-tumor immunity is
warranted. Figure 2A divides these goals into four categories
that can be addressed with intra-cavitary and intratumoral
therapies: 1) Turning cold tumors hot; 2) Increasing tumor-
associated antigen presentation; 3) Supporting effector T cell
responses; and 4) Conditioning the local environment to
block EMT.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Donnenberg et al. Intracavitary Immunotherapy
Tumors can be made more immunogenic by inducing damage
associated molecular patterns (DAMPS) with therapies such as
radiation, or pathogen associated molecular patterns (PAMPS) via
oncolytic virus therapy (35). Tumors may also constitutively express
receptors for PAMPS and DAMPs (toll-like receptors, TLR), but
their prognostic significance varies with disease and receptor type
(36). Introduction of TLR ligands through natural infection of the
pleura (empyema) has been associated with prolonged survival in
patients with cancer metastatic to the pleura or lung cancer (37, 38).
This response may be due to PAMP-associated repolarization of the
local immune environment, with concomitant alternation of the
cytokine profile and augmentation of tumor antigen presentation by
resident macrophages and dendritic cells. Numerous attempts have
been made to exploit TLR receptor agonists as single agent
therapeutics with limited success. This does not rule out the
Frontiers in Immunology | www.frontiersin.org 4
possibility that they will be a highly effective adjuvant to other
immune oncology interventions.

IL-12 plays a central role in inducing and maintaining Th1 T-
cell polarization (39). The low levels of IL-12p70 in pleural and
ascites fluid (Figure 1A) suggest that IL-12 can be a key
therapeutic for conditioning the intra-cavital environment.
Multiple clinical trials of IL-12 protein and IL-12 mRNA
support its potential use in intra-cavitary therapy, where
systemic adverse effects can be limited. IFNg promotes T-cell
and NK effector cells both directly and indirectly. Like IL-12,
local administration may be advantageous to achieve functional
concentrations while limiting systemic toxicity. Finally,
therapeutic T cells may be activated or expanded ex vivo for
intra-cavitary administration, provided that they are not
reintroduced into an immunosuppressive environment.
A

B

FIGURE 1 | Pleural and peritoneal secretomes in ovarian cancer and benign pleural effusions. Panel (A) Pleural and peritoneal secretomes are dominated by
immunosuppressive and EMT tumor promoting cytokines and chemokines (IL-6/IL-6Ra, VEGF, IL-8, CXCL10, and IL-10). Data were log-transformed for analysis.
There were no significant differences between analytes in ovarian ascites and malignant pleural effusions (MPE). Data for ovarian ascites and MPE were pooled and
compared to Benign PE (Student’s 2-tailed t test). Results were Bonferroni corrected for 40 comparisons. Statistically significant comparisons are indicated in bold
typeface. Effusions and ascites were collected as anonymized medical waste under a University of Pittsburgh IRB exemptions (Nos. 0503126 and 0403111). Thirteen
pleural effusions were collected from patients without pleural malignancy (11 with heart failure, 2 with asbestosis). The benign effusion data have been published
previously (7, 8). Cytokines were quantified on the Luminex platform, using the Curiox LT-MX plate washer, Curiox DA-96 plates, the Luminex 200 System analyzer
and xPonent data acquisition and analysis software. Cytokines were measured in 5 µL of neat, clarified effusion using the MILLIPLEX MAP Human Cytokine/
Chemokine Magnetic Bead Panel - Premixed 38 Plex (Cat. No. HCYTMAG-60K-PX38), MILLIPLEX MAP Human TGFb (Cat. No. TGFBMAG-64K-01) and IL-6Ra
from the Human Angiogenesis/Growth Factor Panel 2 (Cat. No. HANG2MAG-12K-01) kits, as previously published (Donnenberg et al., https://doi.org/10.18632/
oncotarget.27290). Panel (B) Effects of the malignant secretome on cavitary cell types and mesothelial maintenance. The 10 most prominent cytokines and
chemokines (geometric mean ≥ 100 pg/mL) in intracavitary ovarian cancer are shown, plus PDL1 which is expressed on intracavitary macrophages and must be
addressed for successful intra-cavitary therapy. The variety of cell types, cytokines and chemokines involved, and the potential to amplify effects through autocrine
and juxtacrine feedback loops justifies the need for multimodal intra-cavitary therapy. Potential therapeutic targets for which on- or off-label FDA approved agents are
currently available are shown in bold typeface.
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Our secretomic data supports the role of IL-6/sIL-6Ra receptor
trans-signaling as the key driver of tumor EMT and associated
therapy resistance and increased metastatic potential. IL-6 and its
secreted receptor sIL-6Ra are increasingly recognized as master
Frontiers in Immunology | www.frontiersin.org 5
cytokines (40, 41), upstream of a wide array of inflammatory
processes, including pathologies as diverse as cytokine release
syndrome (42), acute allograft rejection (43), rheumatoid arthritis
(44), asbestosis (45) and cachexia (46). Complexes of soluble
A

B

FIGURE 2 | Intra-cavitary therapeutics to drive systemic immunity and reverse EMT. Panel (A) Since tumors that metastasize to the pleural and peritoneum exist in
an environment tailored to EMT and immune suppression, combination therapy directed toward conditioning the local environment as well as activating anti-tumor
immunity is required. Panel (B) A list of potential therapeutics directed toward reversing tumor EMT, repolarizing the cavitary maladaptive milieu, and driving local and
systemic anti-tumor immunity. *Summarized in Addeo et al. (21) **Targeting histamine and related cytokines. Discussed in Li et al. (34).
February 2022 | Volume 13 | Article 846235
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IL-6/IL-6Ra elicit responses from gp130-expressing cells that lack
the complete IL-6 receptor by a process known as trans-signaling
(40, 47). Figure 1A and our findings in NSCLC-associated MPE (7)
reveal a profound degree of cytokine-chemokine polarization
dominated by ng/mL concentrations of IL-6/sIL6Ra. Neutralizing
pleural IL-6 or IL-6Ra activity with therapeutic antibodies may not
only diminish IL-6-driven aggressive tumor behavior associated
with EMT (48) (Figure 1B), but may also reverse downstream
negative regulation of tumor-specific immune effector responses,
thereby enhancing the efficacy of other immune oncology therapies.
Although long-term antagonism of IL-6Ra is immunosuppressive
(49), single dose exposure has been shown to break the cytokine
storm associated with CAR-T therapy without compromising
effector responses (50) or incurring serious adverse events (51).
Intra-cavitary administration of anti-IL-6 or anti-IL-6Ra may
likewise be expected to exert profound effects on the pleural or
peritoneal environments.

Histamine has been shown to play a role in conferring resistance
to immunotherapy. H1 antihistamine therapy counteracts
histamine-mediated immunosuppression by counteracting M2
macrophage polarization and promoting CD8+ effector T cell
responses (34). In the intracavitary space, cytokines such as IL-4
and IL-5 that are elevated in MPE (Figure 1) and are central to the
allergy cascade (52) and may provide additional targets of therapy.

The pleura and peritoneum are common sites of metastasis
for a wide variety of cancers. Their unique physiology makes
them ideal tumor sanctuaries that promote aggressive behavior
while inhibiting immune effector responses. The contained
nature of these spaces also presents an opportunity to
therapeutically manipulate the tumor environment in ways
that are not possible for other metastatic lesions. There is a
wealth of agents available for combination intra-cavitary therapy
(Figure 2B), many of which have already shown some activity as
single agents. We argue that combination therapies designed to
condition the maladaptive cavitary environment, reverse EMT
and stimulate immune priming locally and systemically will
succeed where single agents have ultimately failed. However,
Frontiers in Immunology | www.frontiersin.org 6
the devil is in the details, and the challenge will be to design and
implement the most agile adaptive therapeutic trials (53)
designed to determine the safest and most effective therapeutic
combinations and dosing schedules.
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