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Accumulating evidence indicates that patients with inflammatory bowel disease (IBD) have
a significantly higher risk of developing different cancers, while the exact mechanism
involved is not yet fully understood. Malassezia is a lipid-dependent opportunistic yeast,
which colonizes on mammalian skin and internal organs. Also, dysbiosis in fungal
communities accompanied by high level of Malassezia are fairly common in
inflammatory diseases such as IBD and various cancers. In cancer patients, higher
levels of Malassezia are associated with worse prognosis. Once it is ablated in tumor-
bearing mice, their prognostic conditions will be improved. Moreover, Malassezia
manifests multiple proinflammatory biological properties, such as destruction of
epithelial barrier, enrichment of inflammatory factors, and degradation of extracellular
matrix (ECM), all of which have been reported to contribute to tumor initiation and
malignant progression. Based on these facts, we hypothesize that high levels of
Malassezia together with mycobiome dysbiosis in patients with IBD, would aggravate
the microecological imbalance, worsen the inflammatory response, and further promote
tumorigenesis and deterioration. Herein, we will discuss the detrimental properties of
Malassezia and explore the key role of this fungus in the correlation between IBD and
cancer, in order to take early surveillance and intervention to minimize the cancer risk in
individuals with IBD.

Keywords: Malassezia, fungus, inflammation, inflammatory bowel disease, cancer
INTRODUCTION

Inflammatory bowel disease (IBD) belongs to chronic idiopathic gastrointestinal (GI) inflammatory
diseases, characterized by imbalance of the intestinal microbiome (1). Typically, IBD contains
Crohn’s disease (CD) and ulcerative colitis (UC), of which the common characteristic is the
inflammation in the GI wall. Their main distinction is the site and depth of lesions. UC is generally
limited to the colon, while CD may include the whole intestine ranging from the mouth to the
rectum (2). The rapid pace of IBD expansion over only several decades is disturbing, which has led
to serious socioeconomic burden (3).
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Emerging evidence suggests that the damaged intestine barrier
and gut microbiome dysbiosis are closely linked with the genesis of
IBD (4–6). Generally, the batches of bacteria, viruses, archaea, fungi,
and eukaryotic microbes inhabiting in the GI tract are referred as
gut microbiota, which have already formed a mutually beneficial
correlation with the host (7, 8). Among the collection of bacteria,
persistent enteric pathogens including adhesion-invasive
Escherichia coli (AIEC) and Clostridium difficile, may act as a
trigger for IBD (6). Besides bacterial contribution, there is
increasing awareness regarding the impact of mycobiome as
immunologically reactive components. On the whole, IBD and
ordinary population differ in mycobiome. Alterations in gut
mycobiome as well as their communications with other intestine
microbiota are essential to maintain the intestinal barrier, such as in
IBD (9–14). Reports showed that higher abundance of Candida
albicans was observed in the intestinal tract of UC patients, when
compared to controls, conversely, the decreased amount of C.
albicans indicated the improvement and recovery of UC (12).
Studies also confirmed that when compared with healthy people,
one specific commensal fungi Malassezia yeast has been identified
particularly abundant in people with IBD, which may scale up
inflammatory cytokine production and aggravate inflammation in
IBD (10, 11, 13, 14). In addition, when the microflora balance is
disturbed or the host immune defense is impaired, fungi may spread
or transfer from the original symbiotic habitat to other important
organs such as the gut, thus becoming a susceptible factor for life-
threatening infection (15). The mouse model of psoriasis showed
that pre-exposure of symbiotic fungus may significantly worsen
tissue inflammation through enhancing T helper type 17 (Th17)-
dependent immune responses and phagocytosis of neutrophils (16).

Recently, it has been noticed that malignancies are prevalent
in people with IBD (17–20). Reports showed that standardized
incidence ratios (SIRs) for pancreatic cancer (PC) in IBD cases
were 7.6-fold higher than the ordinary persons (21). For
colorectal cancer (CRC), when compared with the reference
individuals, the cancer risk in patients with IBD increased
considerably, up to around 10 times (22, 23). Studies indicated
a strong association between IBD and bile duct cancer, and the
SIR could rise remarkably in patients with UC for intrahepatic
cholangiocarcinoma (24, 25). Extraintestinal analyses also
revealed that the IBD group had a significantly elevated risk
for skin cancer (e.g., melanoma), particularly among CD patients
or elder population (26–28). Furthermore, evidence has
demonstrated that inflammation acts a substantial role in
oncogenesis (29, 30).

However, the underlying mechanism linking IBD to cancer
remains to be further clarified. Malassezia, as representative
fungal commensals, may be the key to push aside this dense
fog. Based on this, this work is intended to discuss and elaborate
the interplay between Malassezia, IBD, and cancer.
HYPOTHESIS

Considering current evidence, we hypothesize that the particular
enrichment of Malassezia genius in the gut microbiome could
Frontiers in Immunology | www.frontiersin.org 2
promote inflammatory responses in IBD patients through the
following microbiological characteristics: disrupting the integrity
of epithelial barrier; increasing the release of proinflammatory
molecules; and degrading the extracellular matrix (ECM). In this
manner, Malassezia can further induce neoplasia and raise
cancer incidence in the IBD population under inflammatory
conditions (Figure 1).
LIFE AND PROPERTIES OF MALASSEZIA

General Properties of Malassezia
Malassezia pertains to the category of lipid-dependent yeast and
is an essential symbiotic organism resident on the mammalian
skin, hair, and GI tract (31). Under certain scenario, Malassezia
spp. may switch to opportunistic pathogens.

When referring to microbial variability in different body sites,
the skin microbiome is known for its relatively high fungal
presence (32). Malassezia is the dominated eukaryotic
component of microbial communities identified in human and
is most abundant in craniofacial sebaceous glands and relatively
low in arms or trunk, due to the enrichment of the lipid
nutritional sources (33, 34). So far, as many as 20 species of
Malassezia strains have been identified (35, 36). Malassezia
restricta and Malassezia globosa are the top 2 most abundant
in human skin (37). However, the distribution of Malassezia is
not confined to the skin, high-throughput sequencing revealed
that they are also detected at a relatively high frequency in the GI
and respiratory tract sample sets, with positive rates of 88% and
86%, respectively (38, 39).

Shaping on fungal community is changing with age. The skin
microbiota of neonates delivered vaginally resembled their
mother’s vaginal mycobiome, while that of neonates born
through cesarean section was similar to the skin surface of
mothers (40, 41). Malassezia colonized once after birth and
was more resembling adult microbiome assemblage, as driven
by maternal hormones (42, 43). The relative abundance of
Malassezia in infant skin was only 2%, while cesarean-born
infants owned lower (44). The sebaceous gland entered a
dormant state within 6 months after birth, thus Malassezia
returned to low enrichment. M. globosa predominately
colonized on prepubertal skin. During adolescence, the
increase of lipid levels in the sebaceous glands can lead to a
simultaneously increased percentage with Malassezia (45). Skin
fungal community analysis showed that Malassezia fungus was
absolutely dominant in adults, with predominance up to over
90%. In contrast, Malassezia was relatively lower in children
under 14, but the fungal community was more diverse (46).

Pathogenic Properties of Malassezia
Studies showed that Malassezia spp. were associated with
numerous inflammatory diseases, such as dermal inflammation
(16, 47), IBD (13, 14), CRC (48), pancreatic carcinoma (31), and
severe infections (49). In general,Malassezia is mainly colonized
in the skin (50). However, the availability of lipid nutrition
within the GI tract may facilitate the localization and survival
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of Malassezia in the gut, and its nutrition can be accessed from
host diet or intestinal fungal synthesis (51, 52). It is speculated
that Malassezia might immigrate to the GI tract along with the
diet; however, solid evidence is lacking. Manifold factors can
influence the pathogenicity of Malassezia, which involves the
virulence and quantity of Malassezia, environmental conditions
including humidity, temperature, oxygen, and fatty acid
nutrients, as well as the susceptibility of the host (53). So far,
several viewpoints have been proposed to reveal the pathogenic
behaviors of Malassezia, which may bring more dawn for
understanding the inflammatory or infectious pathogenesis.

Epithelial Barrier Defects
The epithelial barrier is organized as a protective and
complicated system that allows nutrient exchange while
preventing the displacement of microorganisms and their
metabolites. This tight barrier is obviously a main hurdle
which must be broken through for microbial antigens to enter
the human body, for example, in the lumen of the gut (54).
Malassezia could produce increased irritating free fatty acids
through metabolism, typified by oleic acid (OA), which may
damage the permeability of the skin barrier and lead to skin
itching or even exfoliation (55, 56). Because of this, when
applying OA to the scalp, it would induce scalp flaking in
patients with seborrheic dermatitis (55). Malassezia species
were kind of lacking synthase genes for fatty acid, which may
be supplemented by enhancing the expression of genes encoding
secretory hydrolases inMalassezia genome to generate fatty acid
(57). Among them, the extracellular lipases and phospholipases
secreted by Malassezia could severally influence its virulence
Frontiers in Immunology | www.frontiersin.org 3
factors on the release of distinct metabolites and the cell wall
characteristics itself, in order to facilitate epithelium targeting,
lesion aggravation, and barrier disruption (57, 58). It is reported
that the lipase activity ofMalassezia is linked to the pathogenesis
of inflammatory skin diseases in vitro (59). Malassezia
phospholipase activity has also been reported to be related to
its virulence in dogs (60). What is more, other environmental
determinants such as increased epidermal water loss, loss of tight
junction proteins, decrease in both cholesterol and free fatty acid,
and high pH value, could exhibit catalytic effects in the
pathogenesis of Malassezia, thus inducing and exacerbating
cutaneous inflammation (61, 62). Defective cutaneous barriers
failed to provide adequate protection against microbes or
allergens, instead they may assist Malassezia to enter the blood
circulation system, resulting in immune activation and
inflammatory process (63).

We own innate immunity in our genomes which provides a
defense against Malassezia infection. As a positive regulator,
mast cells (MC) can detect and control the fungi Malassezia at
the infected site, which may be activated by Toll-like receptor 2
(TLR2) (64, 65). Macrophages can effectively defend the host
against the attack of opportunistic fungal pathogens through
phagocytosis and collection of phagocytic contents, affected by
TLR9 (66, 67). As innate immune receptors, Dectin-2 andMincle
were mainly involved in the immune recognition to Malassezia,
arousing the production of pro- and anti-inflammatory factors
(68). Moreover, Malassezia may induce a reciprocal activation
between natural killer (NK) cells and dendritic cells (DCs), in
which NK cells would promote the maturation and
costimulatory capacity of DCs, as well as accelerate the release
FIGURE 1 | Flowcharts representing the association of Malassezia, IBD, inflammation, and cancer. IBD, inflammatory bowel disease; ECM, extracellular matrix.
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of interleukin-8 (IL-8) in DCs (69, 70). These innate immune
responses will play an important role in the subsequent adaptive
immunity including activation of T cells. Malassezia may also
promote the progression of inflammation directly or indirectly
by mediating host receptor recognition, promoting the release of
proinflammatory cytokines and secreting chemicals or vesicles.
Within the host, C-type lectin receptor (CLR) family could
specifically recognize fungal microorganisms and initiate
adaptive immune responses (68, 71). CLRs were specialized in
sensing the carbohydrates in the cell wall of Malassezia,
mediating the signaling adaptor caspase recruitment domain-
containing protein (CARD)-9 to drive the polarization of CD4+
T lymphocytes into IL-17-producing immune cells, such as gd T
cells or innate lymphoid cells (ILCs) (71, 72). Malassezia could
generate indoles, the ligands for the aryl hydrocarbon receptor
(AhR), which may also promote Th17 differentiation and IL-17
secretion through activation of AhR signaling (73, 74). By
eliciting the production of inflammatory cytokine IL-17
strongly, Malassezia spp. has been reported to stimulate tissue
inflammation, destroy skin integrity, and further contribute to or
augment epicutaneous infections such as atopic dermatitis (AD)
in murine models (72). Other proinflammatory cytokines
including IL-18, IL-8, and IL-6 and Th22 chemokines
including C-C Motif Chemokine Ligand 17 (CCL17) were
significantly increased after exposure to Malassezia as well, so
as to worsen local inflammation (75, 76). It has been confirmed
that, compared with the negative group,Malassezia colonization
can induce CARD9-S12N polymorphism and strongly enhance
the release of cytokines such as IL-10 or tumor necrosis factor
alpha (TNF-a) in either wild-type (WT) or Card9−/− colitis mice
(13). Moreover, Malassezia was able to activate NLRP3
inflammasome through Dectin2/CARD9 signal, accelerating
the generation of IL-1b to aggravate inflammation (77). Zhang
et al. also demonstrated that Malassezia can produce
nanovesicles rich in allergens or proteins, which may initiate
and maintain inflammation by activating the nuclear factor-kB
(NF-kB) pathway and upregulate IL-6 production in the
immune microenvironment (78).

ECM Degradation
ECM is a highly dynamic acellular network composed of
collagen, fibronectin, and several other proteins (79). It is of
great importance in the inflammatory process. Reports showed
that ECM was involved in the signal transmission to recruit
inflammatory cells, stimulate cell migration, and restore inner
homeostasis for coping with external stimulus (80). Variation or
degradation of ECM components has been confirmed to have a
close relationship with the progression of various inflammatory
diseases, such as AD (81, 82). Some virulence factors including
acid sphingomyelinase and aspartate protease, which were
secreted by Malassezia, could mediate ECM degradation and
participate in the pathogenesis (83). MgSAP1, one unique
secreted M. globosa protease, has been implicated in
hydrolyzing host proteins to provide nutrition and destroy
ECM elements, so as to facilitate pathogen adhesion in the
inflamed areas (84). Adhesion is a decisive step in the
pathogenesis of microbial infection (85). One close homolog of
Frontiers in Immunology | www.frontiersin.org 4
secretory MgSAP1 protease produced by Malassezia furfur is
MfSAP1, which owned high catalytic efficiency in extracellular
proteins of human skin, particularly when substrate collagen was
thermally denatured (86, 87). It has been proved that MfSAP1
was likely to modify the epidermal and dermal environment
through degrading key components of skin-correlated ECM,
such as vitronectin, fibronectin, and thrombospondin, even at
low proportions of enzyme to the substratum. Accordingly, high
concentrations of MfSAP1 could rapidly and sensitively cleave
these ECM proteins and inhibit cell migration and attachment to
the fundamental ECM, thus attenuating re-epithelization process
and retarding cutaneous wound healing in an acute traumatic
cell model (86).

Apart from proinflammatory motivation, Malassezia has
manifested some other biological features, including unique
cell-defense characteristics. Malassezia owns quite thick and
unique multilayered cell walls, which could protect themselves
from complex environmental stress and help to escape
phagocytosis (88). In particular, Malassezia was able to form
biofilms on their surface, which was correlated to the emergence
of drug resistance and the maintenance of virulence (89). Beyond
these described circumstances, Malassezia may promote disease
progression by modulating the pathogenicity of other
microorganisms, for instance Staphylococcus aureus through
microbial communications (90).
INCREASED MALASSEZIA AND ITS
RELEVANCE WITH INFLAMMATION IN
IBD AND OTHER INFLAMMATORY
DISEASES

In recent years, the detection of Malassezia in the digestive tract
has attracted public attention. Microbial diversity analysis
showed that Basidiomycota phyla ranked as second major
dominators, following Ascomycota phyla, within gut fungal
microbiota in both healthy controls and IBD patients, although
there were some variations among different disease phenotypes
(14). As contrasted to healthy persons, Malassezia genera were
observed with a high prevalence in people with IBD, which was
one primary reason to the increase of Basidiomycetes in IBD (11,
14). Sokol and his team revealed that the higher abundance of
Malassezia was noticed in the acute stage of IBD population
(14). In one retrospective cohort, when compared with healthy
volunteers, increased abundance of Malassezia was also detected
in patients with IBD (50). Limon and his colleagues reported that
Malassezia species, represented by M. restricta, were more
enriched in the sigmoid colon mucosa of CD patients, where
massive monocyte-derived DCs were involved in the following
pathogenesis (13). Statistic data suggested that M. sympodialis
and its extract were able to initiate MC to secret cysteinyl
leukotrienes and intensify IgE-dependent immunoreactions in
vitro, which might possibly lead to deteriorative inflammation in
IBD as well (91, 92). The polymorphism of CARD-9 in CD
would encourage the colonization of M. restricta yeast in the
intestine, which may worsen or even exacerbate the intestinal
March 2022 | Volume 13 | Article 846469
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inflammation by strongly evoking proinflammatory responses of
macrophages and monocyte-derived DCs in murine models (13).
Beyond this, Liguori et al. also demonstrated that the overall load
of Malassezia in CD patients was significantly increased in
contrast to ordinary ones (p < 0.05), suggesting that Malassezia
may play a role in the pathogenesis of mucositis (11). Similar
results have been obtained from the clinical analysis on UC.
Regarding fecal fungal composition, there was a significant
difference in only several fungal genera between UC patients
and non-IBD controls, among which Malassezia owned a
relatively higher abundance in patients with UC, particularly
when at the active phase (93).

Aside from IBD, evidence suggests that the enrichment of
Malassezia is also obviously increased in other chronic or
inflammatory diseases, such as psoriasis, AD, and cystic
fibrosis (CF). Scholars found out that the average quantity and
species diversity of Malassezia in psoriatic patients were higher
than those in healthy individuals, particularly in skin lesions
(94). Malassezia-positive culture rate of scalp skin samples was
85% and 50% in patients with psoriasis and healthy subjects,
respectively (95). The more serious the lesion, the higher is the
positive rate. Studies also indicated that Malassezia allergens
could induce immunoglobulin E (IgE)-mediated sensitization in
AD subjects (96). There was a significant positive correlation
between Malassezia-specific IgE levels and AD severity (97).
Mittermann and colleagues reported that compared with healthy
controls, Malassezia was more abundantly detected in sputum
specimens of asthmatic patients, particularly in children (98).
High detection rates of Malassezia were observed in respiratory
tract of CF patients as well (99, 100). Beyond this, higher
Malassezia colonization was detected in subjects with
neurodegenerative diseases, such as Alzheimer’s disease,
Parkinson’s disease, and amyotrophic lateral sclerosis (101–
103). In most cases, the severity of the mentioned diseases is
positively correlated with the abundance of Malassezia detected.

It seems ubiquitous that the appearance frequency of
Malassezia yeast differs in distinct human body site. As
Malassezia strains are resident members of cutaneous
mycobiome, it is not so esoteric to understand the relationship
between the high prevalence of Malassezia and psoriasis or AD.
Apart from this, Malassezia may be an overlooked fungal
pathogen that is neglected to participate in inflammatory
splanchnic diseases, particularly in IBD.
ROLES OF MALASSEZIA AND
INFLAMMATION IN THE CONTEXT
OF CANCER

Malassezia Is Associated With Cancer
Host–microflora interactions in the tumor microenvironment
play an important driving role in tumorigenesis and progression.
In various noninfectious diseases such as cancer, the emphasis of
most research is concentrated in bacteriome. Recently, scholars
have recognized the significance of mycobiome and microbial
Frontiers in Immunology | www.frontiersin.org 5
dysbiosis in genesis and development of neoplasms. Since its
powerful potential in cancer development, the role of one
cardinal fungus genus Malassezia has just begun to come
under scrutiny.

Epidemiological data suggested that abundant yeast niches of
Malassezia were overlapping with cancerous regions of basal cell
carcinoma in humans and animals such as dogs or cats (96, 104).
This yeast may promote dermal carcinogenesis through synthesis
and activation of AhR ligands and further inhibition of cell
caducity (104). Moreover, Aykut and his team reported that
Malassezia was remarkably elevated in the pancreas of PC
patients and mice models than that in healthy volunteers.
Furthermore, they have demonstrated that repopulation with
Malassezia could promote PC through mannose-binding lectin
(MBL) signal pathway, thus accordingly its ablation with
amphotericin B in murine models was found to slow
oncogenic progression (31, 105). Malassezia also showed
higher relative abundance in patients with oral squamous cell
carcinoma (OSCC), compared with control volunteers (106). In
addition, Gao and collaborators discovered that although there
was no significant difference in stool mycobiota diversity
between CRC patients and healthy controls, the fungal
subgroup Malassezia genus was more enriched in people with
CRC, which was positively correlated with tumor progression
(48). Similar results were obtained in another analysis performed
by Coker and coworkers. They found that when compared with
control subjects, Malassezia strains were elevated significantly
and the mycobiome diversity was specifically modified in CRC
(107). This may provide a potentially predictive diagnostic
marker for CRC. However, so far, there is no exact hypothesis
about the underlying mechanism of Malassezia involved in
cancer, and the relationship between Malassezia and CRC still
awaits further study.

Inflammation and Cancer
There are many hypotheses about the pathogenesis of tumors,
among which the theory of inflammatory mechanism is the
widely accepted one. Usually, inflammation is fundamental to
fight against harmful or pathogenic stimuli, hasten the wound to
restore and maintain normal function of tissues, which involves
in endothelial cells, immune cells, and inflammatory agents
(108). Self-limited acute inflammation is beneficial in the
healing process (109). However, when it is out of control, it
may develop into chronic inflammation, induce tissue lesions
and predispose to cancer (110), including tumorigenesis,
progression, and metastasis (111). Only a small portion of
cancers are ascribed to germ line mutations, while 90% of
cancers are associated with somatic mutations and
environmental hazards, and the latter is always linked to
chronic inflammation or infections (112). Epidemiological
investigations showed that inflammation was closely related to
the occurrence of about 20% of all cancers (113). Triggers of
chronic inflammation for enhanced risk or progression of cancer
include microbial infections, such asHelicobacter pylori in gastric
adenocarcinoma and chronic hepatitis B virus (HBV) in
March 2022 | Volume 13 | Article 846469
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hepatocellular carcinoma (HCC), and inflammatory diseases
(e.g., UC in CRC), which were closely bound up with
genetic instability (114–116). Accordingly, with H. pylori
being eradicated, the conditions of atrophic gastritis and
intestinal metaplasia would be improved or eliminated, thus
potentially suppressing the generation of gastric cancer (117).
Moreover, existing evidence has shown that hypoxia-associated
inflammatory cytokines or chemokines were significantly
elevated in the tumor microenvironment, for example, IL-6,
IL-1, and TNF (29, 118). Anti-inflammatory drugs may benefit
cancer patients, such as TNF blockade and nonsteroidal anti-
inflammatory drugs (NSAIDs) (119, 120).

Malassezia-Related Inflammation
Contribute to Tumorigenesis
As mentioned above, Malassezia has exhibited profound
proinflammatory effects and been linked to oncogenesis. On
the other hand, inflammation can influence all the stages of
tumorigenesis and drive tumor development and metastasis.
Based on prior e laborat ion, Malassezia-associated
inflammation may promote tumor initiation and malignant
progression through multiple approaches:

(1) Barrier impairment—epithelial barrier deterioration,
including aberrant production of mucin and defective
expression or organization of tight junctional proteins,
induced by oncogene activation, was an early malignant
behavior in intestinal tumorigenesis (121). Correspondingly,
loss of mucus would result in increased penetration of
epithelial barriers and enhanced microbial translocation
through the colon, leading to colorectal neoplasms in
mouse models (122).

(2) Proinflammatory molecules—many inflammatory cytokines
and growth factors have been reported to facilitate tumor
development or antitumor immunity. In mice bearing breast
cancer, IL-1 was upregulated and its related signaling was
enhanced, which could promote angiogenesis, endothelial cell
adhesion, lymphocyte polarization, and recruitment of
myeloid cells, thus contributing to cancer progression and
bone metastasis (123–125). Suppressed action of IL-1
dramatically inhibited tumor growth in ovarian cancer
mouse models (126). IL-17 can promote GI tumorigenesis
by binding to its receptor, and this signaling could induce the
activation of the mitogen-activated protein kinase (MAPK)
and NF-kB pathways and boost colonic epithelial cell
proliferation and further support malignant transformation
in mice (121, 127). TNF-a exhibited its protumorigenic
features through activation of representative c-Jun N-
terminal kinase (JNK) and NF-kB signaling pathways,
resulting in enhanced epithelial to mesenchymal transition
(EMT) and accelerated tumor cell invasion (128, 129).

(3) ECM remodeling—ECM remodeling such as degradation or
stiffening was tumorigenic (130). It could contribute to tumor
invasion and metastasis, in which integrin clustering could
encourage focal adhesions, intensify ERK and PI3K pathways,
and thus promote cell proliferation and invasion (131, 132).
Frontiers in Immunology | www.frontiersin.org 6
Moreover, other mechanismsmay also participate in the process
ofMalassezia-related inflammation-cancer transformation, such as
DNA lesion accumulation and imbalance of oncogenes and
antioncogenes. Inflammatory cells may release cytotoxic
chemicals such as reactive oxygen species (RONS) to induce
DNA damage (133). Continuous inflammatory conditions may
result in aggravation and accumulation of DNA damage in cells,
which may promote genetic mutations, generate genomic
instability, and eventually cause carcinogenesis (134). Another
powerful toxic polycyclic aromatic hydrocarbon, 7,12-
dimethylbenz[a] anthracene (DMBA), has been reported to
induce inflammation-dependent dermal tumorigenesis in
mice through the cGAS-STING signaling pathway (135)
and even distant metastasis in mouse models of breast cancer
(136). Accumulated mutations in oncogenes such as c-Myc,
which may be induced by inflammatory cytokines or DNA
damage, could show synergism with inflammatory stimulus
to enhance oncogenous process including enhanced cell
proliferation, differentiation, and malignant transformation (137,
138). In addition, chronic inflammation may contribute to tumor
protein 53 (TP53) mutations in the epithelium, and this
accumulation could lead to deep loss of tumor suppressor
functionality in cells. As a result, chromosomal instability
increased and eventually cancer occurred (139, 140). In turn, the
tumor microenvironment may exacerbate tumorigenic
inflammation, leading to a persistent vicious circle between
inflammation and cancer.

High-abundance Malassezia has already been detected in
multiple cancers, implying that Malassezia may be a key in
initiating and accelerating cancer development. Furthermore, the
presence of Malassezia was inextricably linked with its induced
inflammation. Based on this, during the process ofMalassezia in
cancer promotion, inflammation may be the biggest contributor.
CONCLUSION

In general, patients with IBD exhibit a high incidence in a series
of cancers. For the IBD population, increased level ofMalassezia
is connected to the imbalance of microflora, fungal translocation,
and inflammatory deterioration. In addition, the abundance of
Malassezia is positively correlated with the pathogenesis and
progression of various cancers, suggesting that Malassezia may
be a key component to relate IBD with cancer. Accordingly,
broad-spectrum antifungal drugs, aimed to reduce the
production of Malassezia strains or their metabolites, can
inhibit tumorigenesis and slow down tumor progression, by
restoring internal fungal homeostasis and reducing
inflammatory responses. This may provide new thoughts for
cancer monitoring and novel therapeutic approaches. However,
more studies are still required to verify the clinical benefits of
Malassezia genus inhibition in IBD or cancer group. Although
Malassezia is considered to be a pathogenic fungus which may
participate in the pathogenesis of IBD and promote this disease
to further develop into cancer, more informative pathogenesis
March 2022 | Volume 13 | Article 846469
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still needs to be addressed. Multidisciplinary cooperation has
become an inevitable trend, so the next arduous task is to deeply
explore and fully utilize Malassezia-relevant mycology, and then
combine it with metabolomics and immunology. This future
research will reveal the potential of Malassezia strains as
therapeutic targets, aiming at relieving inflammatory reaction,
improving patient outcome in IBD, and further reducing the
incidence of cancer.
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