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Leishmaniasis is a major health problem with 600k - 1M new cases worldwide and 1 billion
at risk. It involves a wide range of clinical forms ranging from self-healing cutaneous lesions
to systemic diseases that are fatal if not treated, depending on the species of Leishmania.
Leishmania sp. are digenetic parasites that have two different morphological stages.
Leishmania parasites possess a number of invasive/evasive and pathoantigenic
determinants that seem to have critical roles in Leishmania infection of macrophages
which leads to successful intracellular parasitism in the parasitophorous vacuoles. These
determinants are traditionally known as “virulence factors”, and are considered to be good
targets for developing specific inhibitors to attenuate virulence of Leishmania by gene
deletions or modifications, thus causing infective, but non-pathogenic mutants for
vaccination. Pathway of biosynthesis is critical for keeping the parasite viable and is
important for drug designing against these parasites. These drugs are aimed to target
enzymes that control these pathways. Accordingly, maintaining low level of parasitic
infection and in some cases as a weapon to eradicate infection completely. The current
paper focuses on several virulence factors as determinants of Leishmania pathogenicity,
as well as the metabolites produced by Leishmania to secure its survival in the host.
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INTRODUCTION

Clinical Forms of Leishmaniasis
Leishmaniasis is a serious infectious disease that infects a wide-ranging vertebrates throughout the
developing world. It involves a widespread clinical forms ranging from self-healing cutaneous
lesions to systemic diseases that are fatal if not treated, depending on the species of Leishmania. It is
a major health problem as World Health Organization (WHO) estimated 600k - 1M new
leishmaniasis cases worldwide and 1 billion at risk. There are three main types of the disease; the
cutaneous leishmaniasis which is the utmost popular form. It begins with a small skin lesion of
around 1 cm that increases in size. In most of the cases, when healing occurs, there is 100%
immunity against re-infection. In some individuals, failure in cell-mediated immunity causes
leishmaniasis diffusa that covers most of the skin surface, just like lepromatous leprosy (1, 2). The
second major form of the disease is the mucocutaneous leishmaniasis where there is permanent
destruction of the mucous membrane in the mouth, nose and throat cavities. The third main form is
the visceral leishmaniasis that is considered to be the most severe form. It is caused by L. donovani,
L. infantum, and L. infantum chagasi. This form is fatal if not treated and usually infects the spleen,
the liver and the bone marrow. In 20% of the treated patients, a hypo- pigmented skin rash develops
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Al-Khalaifah Leishmania pathogenicity
after 6 months or more, usually in the face and the upper parts of
the body. This condition is called post Kala-azar dermal
leishmaniasis (3–6).

Molecular Determinants of
Leishmania Virulence
Interestingly, Leishmania parasites are able to initiate
intracellular parasitism in the parasitophorous vacuoles of the
macrophages (7). The key elements that determine parasitism
and degree of pathogenicity are mainly molecular determinants
of the parasite. These molecules are traditionally called virulence
factors. Interactions of these factors determine the degree of
pathogenicity (virulence) that is measured as the parasitemia
level and/or lesion size (1, 8, 9). These factors enable the parasite
to pre-adapt to the mammalian host increased temperature and
decreased pH inside the macrophages, required for the initial
establishment at the bite site, required for macrophage invasion
and for proliferation within the extreme conditions in the
phagolysosomal compartments, and are used to avoid the
cellular and humoral immune attack of the host (10). It is
important to note that these determinants are not direct
causative agents of the clinical symptoms of leishmaniasis; this
is supported by the fact that direct injection of some virulence
factors (e.g. LPG, lipophosphoglycan) into susceptible animals
does not cause typical leishmaniasis (5). Since the drugs currently
used for leishmaniasis treatment are limited by price, and safety,
it is critical to know how the parasite is defending its self in the
host cell in order to approach suitable therapeutic treatment.

Elmahallawy and Alkhaldi (11) concluded that Leishmania can
persist in host cells through influencing the host’s immune system
Frontiers in Immunology | www.frontiersin.org 2
in a variety of ways, including causing immunosuppression and
changing the host’s chemokine patterns. Leishmaniasis
pathogenesis varies widely depending on a variety of factors,
including the infecting species and its virulence factors, as well
as the host, all of which influence the disease’s outcome (Figure 1).

Superoxide Dismutase
Superoxide dismutase is considered the first line of defence by
the parasite by combining superoxide radicals to form molecular
oxygen and hydrogen peroxide. This is followed by degradation
of the peroxide by catalases or peroxidases to oxygen and water.
Inactivation of the toxic peroxidases is catalyzed by catalase
enzyme (12).

Trypanothione Reductase
Studies have revealed that trypanothione reductase, the enzyme
that maintain trypanothione in its reduced form, is important for
the parasite to stay alive against the oxidative stress inside the
macrophages (13). Knock-out mutants by gene disruption in
L.donovani and L.major strains by means of the selectable
markers neomycin and hygromycin phosphotransferases show
weakened infectivity and a reduced survival capacity in the
macrophages (14). Tunes, Morato (15) revealed that using gold
complexes can act against L. infantum and L. braziliensis
intracellular amastigotes by causing mitochondrial damage and
oxidative stress due to creation of reactive oxygen species. The
author used BALB/c mice infected with luciferase-expressing L.
braziliensis or L. amazonensis. These mice were treated with oral
administration of 12.5 mg/kg/day of AdT Et or AdO Et. Bio-
imaging revealed decreased lesion size and parasite burden.
FIGURE 1 | Virulence factors of Leishmania.
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Glycoconjugates
The parasite surface is mainly occupied by glycoconjugates. The
major sugar component of these molecules is mannose. Their
abundance and the uniqueness of their chemistry suggest
important roles in the parasites virulence and pathogenesis (16,
17). Leishmania possess a variety of glycoconjugates that are
essential for parasite virulence and pathogenesis. Of these:
lipophosphoglycan or LPG, proteins with GPI anchors such as
gp63, a smaller group of glycoinositol phospholipids or GIPLs,
and proteophosphoglycans or PPG. In Leishmania, Mana1-
4GlcN-PI is mainly shared between these glycoconjugates, but
glycan parts, lipid moieties, and phospholipid precursors are
different in the glycoconjugates (18, 19).

Lipophosphoglycan
These are one of the most important glycoconjugates at the exterior
of Leishmania species. It is highly expressed in the promastigotes
and very little if any is expressed in the intracellular amastigote
form. It consists of 15–30 repeating units of phosphorylated
oligosaccharides that are linearly connected by phosphodiester
bounds. It can be substituted with other sugars depending on the
species and is terminated by a capping oligosaccharide. The
terminal part of the LPG is coated with a neutral oligosaccharide
(19). Although LPG fragments are well-maintained, there are
species-specific alterations in the repeated subdivisions. Studies
have shown that LPG construction is altered throughout
metacyclogenesis and differentiation of L. major promastigotes
from a less contagious form in the logarithmic growth phase to a
greatly contagious form throughout the stationary growth phase
(19). During metacyclogenesis, the normal numeral of the repeated
fragments is folded from 14 to 30. Also, the repeated fragments with
side chains of beta Gal or Gal beta 1-3Gal beta 1- are decreased in
number while the repeat units with side chains of Arap alpha 1-2
Gal beta 1- are increased (19).

LPG mediates the binding of promastigotes to the epithelial
cells of the sandfly’s midgut, protects Leishmania during the
blood meal digestion in the midgut of the sandfly, acts as
acceptor of C3 complement component, inhibits cell signaling
for resisting oxidative burst, interferes with the signaling
pathway of protein kinase, and inhibits cytokine production in
the macrophages (19–21).

In order for a gene to be a virulence gene, it should fulfill the
principles of Koch’s postulates on the molecular level. It must be
associated with infectivity and pathogenesis. Also, inactivation of
the gene must cause loss of virulence. Finally, re-expression of the
gene must restore pathogenesis (22). In the case of Leishmania,
homozygous null mutants are created by knocking out both of the
alleles to observe the resulting phenotype. This is considered to be a
limitation if this gene is required for viability. According to these
principles, LPG gene is a virulence gene because lpg1_ mutants (i.e.
do not have LPG gene) produced by homozygous disruption of
genes in the instance of L. major were not able to bind to the sand-
fly midgut and they didn’t survive after a blood meal digestion while
lpg+ types do (i.e. do have LPG gene). Colonies of Phlebotomus
papatasi were infected with lpg1- L. major mutants. The mutant
parasites persisted and propagated customarily in the fly midgut but
Frontiers in Immunology | www.frontiersin.org 3
they were vanished from the gut more speedily than the wild type
parasites after blood meals. According, LPG is not vital for existence
of L. major in the early stage of blood-feeding but it is vital to
facilitate midgut anchoring and to sustain contagion in the midgut
throughout the process of blood digestion. The promastigotes that
already invade the macrophages were eliminated in 2 days.
Restoration of the LPG gene restored virulence and the
amastigotes were able to proliferate in the macrophages. Studies
have also revealed that inoculation of 106 promastigotes into the
footpad of BALB/c mice (experimental mice) created a wound by
day 15 and caused death in due time. On the other hand,
inoculation of 106 lpg- parasites revealed delayed wound
development and again, restoration of the LPG gene restored
virulence (21). A similar study also revealed the same results
where Leishmania major lpg1- mutants showed reduced virulence
and were greatly vulnerable to human complement lysis system (16,
19, 23, 24).

Surprisingly, there was no loss of virulence in the case of L.
mexicana. LPG deficient parasites continue to be contagious to
macrophages and BALB/c mice. So, LPG is not a virulence factor
in case of L. Mexicana (21, 25).

In addition to LPG as a virulence factor, another major surface
glycoprotein is a GPI-anchored (glycosyl phosphatidylinositol
anchors) zinc metalloprotease of 63 kD. This molecule is usually
called GP63 and alternatively called leishmanolysin or major surface
protein (MSP). It is the utmost present glycoprotein in Leishmania
species. In L. mexicana, there are approximately 5X105 MSP
molecules. All Leishmania sp. inspected have numerous tandem
genes encoding gp63 (26, 27). Gp63 in ten Leishmania sp. occurs in
both amphiphilic and hydrophilic forms, encoding the same amino
acid sequences. It consists of a predicted protein sequence
containing the N-terminal hydrophobic sequence and a pro-
peptide that is detached upon development (28), the later
sequence involves a conserved cysteine residue that is shown in L.
major to be critical in protecting the parasite from self-destruction
due to active protease activity. Differences in gp63 structure among
Leishmania sp. include differences in the C-terminal sequence, the 3’
untranslated sequence, and the differential expression in different
life stages (27, 29). It is present on surfaces of both promastigotes
and amastigotes and has a great role in degrading a range of protein
substances and in facilitating attachment to macrophages by acting
as opsonin (29). In addition, it inhibits complement-mediated lysis
by binding to the complement component C3. It then converts the
active C3b molecules into the inactive C3bi (29, 30). Also, GP63
protects the amastigotes from the adverse conditions in the
macrophage phagolysosomes; this is evidenced by the point that it
was able to protect bovine serum albumin in the same environment.
It is suggested that gp63 interferes with immune response of the
mammalian host via inhibiting antigen presentation on Class I
molecules (31). Additionally, it was revealed that gp63 in L.
amazonensis enhanced degradation of the extracellular matrix and
basement membrane proteins; this suggests its importance in
establishing the infection and migration of the parasite via
macrophages circulation to deeper tissues like the spleen and the
liver to establish visceral leishmaniasis (32). In vitro degradation of
extra-cellular matrix constituents such as collagen, fibronectin, and
June 2022 | Volume 13 | Article 847797
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laminin by gp63 supports its responsibility in parasite movement
and infection creation.

Inhibition of the parasite activity can be achieved by using
anti-gp63 monoclonal antibodies. Knock-out parasites for the
genes encoding for the gp63 family in L. mexicana showed less
virulence than the wild type parasites and were very sensitive to
complement mediated lysis. Accordingly, this protein is
necessary to support parasite existence. Interestingly, L. major
gp63- mutants survived and proliferated normally in the
macrophages (31, 33). It is interesting to know that expressions
of LPG and GP63 are not related. A study has revealed that LPG1
does not affect the expression of gp63 where crude cell extracts
(2.5 X 106 cells) from logarithmic cultures were exposed Western
blotting with anti-gp63 antibody. Flow cytometry has also been
used for this purpose where the fixed permeabilized parasites are
labeled with anti-gp63 antibody. Control parasites were similarly
treated except that anti-gp63 antibodies were not used (34).

Interestingly, agglutination experiments using CA7AE
antibodies and a lectin were used to select knockout parasites
(RCA 120). Five clones were obtained and molecularly analyzed,
all of which revealed the expected altered genome as well as the
total lack of expression of LPG and PG-containing molecules.
Finally, it was discovered that deletion of LPG2 impairs the result
of infection in human neutrophils, as evidenced by an 83 percent
reduction in intracellular load compared to wild-type parasite
infection. The findings support the role of LPG and other PGs in
host-parasite interactions as virulence factors (35).

Cysteine Proteinase
In addition, cysteine proteinase (CP) is considered to be a
virulence factor in Leishmania sp. It is more expressed in the
amastigotes form than the promastigote form. In general, these
proteins are believed to have a great role in degrading lysosomal
proteases. The cathepsin L-like cysteine proteinases (CPs) of
parasitic protozoa are known to influence other vital parasite
activities such as nutrition 52 and neutralization of the host
immune system (36).

Studies have shown that L.mexicana has cathepsin L-like
cysteine proteinase genes that are a multicopy of 19 genes
(lmcpb) and two single copy CP genes (lmcpa and lmcpc).
Lmcpb null mutants were able to proliferate and differentiate in
vitro, however, infectivity to macrophages was decreased by 80%.
The mutants created subcutaneous lesions in mice in a rate less
than the wild type parasites. Re-expression of a single copy of
lmcpb restored infectivity (37). The lesions resulting from
infection with Dcpb appeared slowly at wk 31 and were very
minor (mean lesion volume at wk 37 was 3.5 mm3), while
injection of Dcpa/cpb did not produce lesions (38). In addition,
L.mexicana was shown to be sensitive to cysteine proteinase
inhibitors in vitro, indicating the importance of CP for
Leishmania survival (37).

Studies have also revealed that the main cysteine protease of
T. cruzi, cruzain, has been connected to plasma leakage in post-
capillary venules and may recruit macrophages for invasion (39).

It was observed that apoptosis (i.e. programmed cell death) in
L. donovani involves caspase like activity that can be inhibited
using cysteine protease inhibitors. Apoptosis in this intracellular
Frontiers in Immunology | www.frontiersin.org 4
parasite regulate population growth during infection and
prolong parasite survival in macrophages. In L. major,
however, cathepsin B-like inhibitors reduced DNA
fragmentation but did not influence apoptosis. A recent study
has identified a gene coding for a protein with high degree of
homology to a mitogen-activated protein (MAP) kinase in L.
mexicana. A deletion mutant for the gene locus encoding for
Secreted Acid Phosphatase (SAP) and containing the intergenic
region of ~ 11.5 kb has been prepared. This mutant parasite was
not able to produce leishmaniasis in Balb/c mice. However, the
infectivity was restored when a 6 kb region of the SAP locus was
introduced. This region was shown to contain two Open Reading
Frames encoding single copy genes. One of them (ORF1) codes
for a protein of 358 amino acids of a molecular weight of 41 kDa,
this is called LMPK and is considered to be a homologue of the
MAP kinase that is essential for Leishmania differentiation in the
macrophages. It is up-regulated in amastigotes as compared to its
expression mRNA levels in promastigotes. Polyclonal anti-serum
against the C-terminal peptide of LMPK was raised in rabbits
and affinity chromatography was used for purification.
Immunoblotting of LMPK from cell lysates of both amastigotes
and promastigotes has been done (40, 41).

Free Glycoinositol Phospholipids
Free glycoinositol phospholipids (GIPLs) molecules have been
also found on the surface of the genus Leishmania; these are not
linked to protein or phosphoglycan anchors and are thought to
be virulence factors in Leishmania (42, 43). In vitro and in vivo
studies have revealed that GIPLs (and LPG) can modify the
action of membrane-associated protein tyrosine kinases and
protein kinase C in host cells (43, 44). A study has shown that
L. mexicana promastigotes synthesize two distinct GIPL lineages,
including at least 10 glycolipid species (45). Dolichol-phosphate-
mannose synthase (DPMS) is an important enzyme in
Leishmania sp., because it stimulates the formation of DPM
through the transfer of mannose from GDP-Man to dolichol-
phosphate. DPM is the only mannose donor for three mannose
residues that structure the trimannose backbone in the GPI
protein anchor precursors. A study has shown that creation of
L.mexicana null mutants by directed distraction of both alleles of
the gene that encodes DPMS, namely lmdpms, caused a
augmentation of the chromosomal lmdpms locus indicating
that this enzyme is critical for growing due to its role in GIPLs
biosynthesis and that GIPLs are essential membrane components
in L.mexicana promastigotes (46, 47). The main role of the
GIPLs in Leishmania is not very clear. Intracellular partitions
containing GIPLs include the megasomes in L.mexicana
amastigotes. By similarity with the responsibility of
glycosphingolipids in animals, these GIPLs may have a role in
establishing a defensive layer of glycocalyx to protect lysosomal
membranes from luminal enzymes. Also, the GIPLs may have a
role as intermediaries in endogenous signal transduction
pathways (48, 49).

In addition, protein phosphorylation is very important
in order for Leishmania to proliferate and differentiate in
the macrophages. Recently, it was found that Leishmania
parasites discharge a range of proteins that are altered by
June 2022 | Volume 13 | Article 847797
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phosphoglycan fragments analogous to those of the surface
glycolipid lipophosphoglycans. These proteins are known
as proteophosphoglycans or PPG. These elements contains
acid phosphatase manufactured by promastigotes of
all Leishmania sp. except Leishmania major, non-filamentous
proteophosphoglycan of Leishmania mexicana amastigotes, and
a filamentous proteophosphoglycan (fPPG) produced by
promastigotes of all Leishmania sp. Capped phosphoglycan
chains are linked to the polypeptide backbone of these proteins
via phosphodiester linkages to serine (50–52).

This mechanism of phosphorylation involves regulation of
protein kinases and phosphatases. Secretory acid phosphatase
(SAP) is believed to be an important virulence factor in
Leishmania species. This protein is secreted from the
endoplasmic reticulum then it is transferred to the surface or is
secreted via the flagellar reservoir (18, 53, 54). Protein Disulfide
Isomerase (PDI) of the endoplasmic reticulum plays a critical
action in controlling the secretion of acid phosphates. It catalyzes
the oxidation and isomerization of protein disulfide linkages in
the endoplasmic reticulum. Studies have revealed the presence of
a 12 kDa single thioredoxin-like domain containing PDI in L.
donovani. Over expression of PDI mutants in L. donovani
considerably reduced the production of acid phosphatase. In L.
major, it was observed that highly virulent strains of the parasite
contain increased expression of PDI, suggesting a role of PDI and
secreted acid phosphatase in supporting the parasite survival in
the mammalian host (40).

Investigations by immunofluorescence and immunoelectron
microscopes on two Leishmania/sandfly vector combinations
(Leishmania mexicana/Lutzomyia longipalpis and L. major/
Phlebotomus papatasi) has revealed the presence of a dense three-
dimensional network of filaments that surrounds the promastigote
cell bodies in a gel-like mass formed mainly by a parasite-derived
mucin-like filamentous proteophosphoglycan (fPPG). Accordingly,
it was proposed that the constant discharge of fPPG by
promastigotes in the sandfly gut is an important factor in an
efficient transmission of the parasite to the mammalian host (55).
The fPPG gene has been cloned by antibody screening of a L. major
genomic expression library, leading to the documentation of
repetitive DNA fragments that encode for Ser, Ala, and Pro in
ratios in line with the known configuration of fPPG (56).

The non-filamentous proteophosphoglycan were shown to be
secreted from the intracellular amastigote form of the parasitic
protozoon Leishmania mexicana. This high-molecular weight
phosphoglycan was purified from a cell-free homogenate of
infected mouse tissue and from amastigotes and was shown to
consist of serine-rich polypeptide chains and mild acid-labile
phosphooligosaccharides capped by mannooligosaccharides.
Immunofluorescence and immune-electron microscopy studies
suggest that the proteophosphoglycan is secreted in large
amounts by amastigotes via their flagellar pockets into the
parasitophorous vacuoles of host cells. It is thought that these
molecules protect the amastigotes inside these vacuoles (51).

Moreover, N-linked glycans are also thought to be involved in
Leishmania virulence. One of the most significant purposes of
Asn-linked glycans is that they are required for the right folding
Frontiers in Immunology | www.frontiersin.org 5
of polypeptides in the endoplasmic reticulum, this folding is
important to transport manufactured proteins to their final
destination. A study has used tunicamycin to reveal the
importance of these molecules in Leishmnai parasite (57).
Tunicamycin is a specific inhibitor of N-glycan biosynthesis. It
was observed that tunicamycin-resistant Leishmania lose their
virulence in culture more slowly than their non-resistant
companions and they showed a high degree of virulence in
experimental mice. They also infected macrophages in vitro
more efficiently. The ability of the tunicamycin-resistant cells
to overcome the inhibitory effect of tunicamycin was resulted
from a high level of the glycosyltransferase enzyme that regulates
N glycosylation of leishmanial proteins essential for Leishmania
to establish intracellular parasitism (58).

An amastigote stage-specific protein termed A2 was first
discovered in L. donovani and designated as a virulence
determinant is Leishmania sp (59). It is isolated from subtractive
cDNA hybridization libraries as a family of amastigotes specific
transcripts of 45-100 kDa proteins encoded by at least 7 genes.
These proteins are repetitive sequences (40 to >90 repeats), each
contains a secretory leader sequence and 10 amino acids sequence.
A2 proteins present mainly in the cytoplasm of the amastigotes
and almost absent in the promastigote because more than 90% of
serum from visceral leishmaniasis objects contain anti-A2
antibodies. A2 deficient L. donovani amastigotes were created by
antisense RNA.The resulting mutants were viable in culture but
showed a reduced ability to multiply in cultured macrophages.
Their virulence in mice was considerably affected and the
amastigotes that survived in mice has restored their A2
expression (60). Interestingly, A2 is absent in the genome of L.
major and L. tropica but present in all other Leishmania species
involving L. donovani, L.chagasi, and L. infantum. More
interestingly, L. major has non-expressed A2 pseudogenes due
to absence of the various repeats in the protein multiple sections of
the genome. In depth genetic examination of DNA sequence and
gene regulation in L. major and L. donovani have revealed that
phenotypically distinct species have genotypic differences (61).

Studies have revealed that restoring amastigote –specific A2
expression in L. major has changed the resulting phenotype of
this cutaneous parasite. The L. major parasite was not able to
cause cutaneous infection in susceptible BALB/c or resistant
C57BL6 mice. Also, it had unexpected capability to travel out of
the ear dermis, relative to control L. major. This phenotype is
similar to L. donovani. Migration of the parasite to the liver was
also observed. Another study has revealed that restoring the A2
expression in L. major and infecting BALB/c mice through tail
vein injection resulted in splenomegaly, a phenotype typical to L.
donovani (60, 61). Surprisingly, karyotype analyses in L.
mexicana complex (L. mexicana and L. amazonensis) have
shown the presence of the A2 coding sequences. This was also
supported byWestern blot analysis that indicated the presence of
three large proteins of > 200 kDa in L. Mexicana (62). Although
A2 is present in L. mexicana complex, these parasites are related
to diffuse cutaneous leishmaniasis, but not visceral leishmaniasis.
Moreover, there are some visceral leishmaniasis cases reported
due to L. tropica, a causative agent of cutaneous infection, in
June 2022 | Volume 13 | Article 847797
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some soldiers of Operation Desert Storm during the gulf war in
1990. This systemic illness was given the name “viscerotropic”
leishmaniasis to discriminate it from “visceral” leishmaniasis.
Accordingly, A2 is not the only responsible factor of visceral
leishmaniasis. But in the case of L. donovani, it is very critical as a
virulence factor causing the visceral infection. Studies have
revealed that that immunization with A2, as protein or DNA,
protects against L. donovani infection, this has been used widely
in the field of vaccine development against visceral leishmaniasis
(63). In addition, another study has examined the significant
defensive outcome of immunization with the recombinant A2
(rA2) proteins against L. amazonensis contagion. Protection was
linked with the favored and constant induction of a Th1 immune
reaction (64–66).

Metabolic Changes of Host With
Leishmania and Its Survival
Leishmania’s manipulation of host metabolic fluxes is a strategy
for circumventing the host immune response, resulting in long-
term parasite survival and playing a key role in infection
pathology. Specific Leishmania-induced metabolic changes in
infected macrophages have been linked to infection resistance or
susceptibility. As a result, understanding the multilayer
relationships between metabolism and function on innate
immune cells during infection has a lot of therapeutic or
preventive potential.

In recent years, methods and technology for detecting,
identifying, and measuring metabolites within a cell and its
surroundings with high sensitivity have vastly improved,
spawning the flourishing subject of metabolomics. They may
now be used in research on disease agents such as parasites,
which helps to better understand their biology while also
allowing for better drug discovery, illness diagnostics, and
therapy (67, 68). Too far, several research on Leishmania
metabolites have been published, offering both precise methods
that may be used and insights into the biochemistry and
mechanisms of drug resistance in each species (69). It is widely
known that one way by which some infections reduce the
immune response of their mammalian hosts is by the depletion
of amino acids essential to immunological processes (70).

Macrophages probably play a critical role in the Leishmania
parasite, both historically and clinically, diagnostically, and
immunologically. The first histological account of the
pathophysiology of cutaneous leishmaniasis (CL; called “sart
sore” in his country) was published in 1898 by Russian-born
military doctor Peter Borovsky (1863–1932) from Taschkent,
who described the intimate alliance between macrophages and
Leishmania. He not only correctly identified the underlying
infectious agent as a protozoan parasite, but he also recognized
and graphically illustrated its size (on average 1.5 to 2 m) and
localization within host cells, which he referred to as “lymphoid
and epithelioid cells” because he was presumably unaware of
Metschniko’s characterization of macrophages (71). The
microscopical detection of oval-shaped Leishmania amastigotes
within tissue macrophages (i.e. histiocytes) of cutaneous, splenic,
hepatic, or bone marrow biopsies (with the typical disc formed
Frontiers in Immunology | www.frontiersin.org 6
kinetoplast adjacent to the flagellar basal body) is still a central
pillar of the microbiological diagnosis of both cutaneous and
visceral leishmaniasis.

Activation of macrophages from permissive host cells to
leishmanicidal effector cells during Leishmania infection is
dependent on cytokines, particularly IFN-, which is produced
by a variety of cell types (e.g., natural killer [NK] cells, CD4+ or
CD8+ T cells, and certain types of NKT cells) and is already
released during the early stages of infection (72, 73).

The immunological concept for controlling intracellular
Leishmania amastigotes includes a number of components
such as reactive oxygen and nitrogen species (ROS and RNS),
the impact of microenvironmental and metabolic parameters,
and other antileishmanial effectors. Because of their expression
of MHC class II and costimulatory molecules, presentation of
antigens, secretion of cytokines, and release of RNS and ROS
during the innate and acute phases of Leishmania infections,
macrophages not only serve as host cells and antileishmanial
effector cells, but also as immunoregulatory cells. Infection with
Leishmania can alter these processes in either a good or negative
way, depending on the parasite species, developmental stage, and
experimental setup (74).

Leishmania amastigotes are highly reliant on external supplies
of amino acids, which are controlled by the nutrient-sensing
pathways previously reported (75, 76). While the defensive
response to viruses is heavily reliant on amino acid
metabolism, diseases can manipulate this metabolism as a
means of spreading throughout the host. The key amino acids
arginine, tryptophan, and glutamine are important in
immunological control and nutritional competition between
the host and pathogens (77). A metabolomic investigation of L.
amazonensis-infected macrophages revealed an increase in L-
arginine metabolism toward polyamine synthesis, enhancing the
intracellular redox balance of infected cells and protecting the
parasites from NO and ROS from the host (78). Increased IL-10
production by infected macrophages corresponds with increased
Arg-1 activity during Leishmania infection, forming a positive
feedback loop that enhances Arg-1 activity (79). The regulation
of visceral leishmaniasis relies heavily on glutamine metabolism,
and Leishmania amastigotes rely heavily on mitochondrial
metabolism for de novo glutamate and glutamine synthesis
(80). Glutamine synthetase (GS) is a protein that produces
glutamine from glutamate and ammonia, and it has been
found in both promastigote and amastigote Leishmania
parasites (81). The availability of tryptophan was also
discovered to be critical for Leish mania development inside
macrophages. Tryptophan depletion caused by idoleamine-2,3-
dioxygenase (IDO) activation, a kynurenine pathway enzyme,
represents a key antibacterial mechanism during Leishmania
infection by lowering tryptophan availability to intracellular
amastigotes (82). During infection, tryptophan 2,3-deoxygenase
(TDO) was found to compensate for IDO. TDO is identified as a
limitation factor in human skin lesions during CL, indicating
that its expression may govern parasite growth in lesions, and
pharmacological suppression of TDO enhanced parasite load in
ex vivo Leishmania major-infected macrophages (82). The
June 2022 | Volume 13 | Article 847797
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research demonstrates the importance of IDO and TDO as
pathogen growth regulators, either by dampening host
immunity or by influencing infection progression by reducing
pathogen growth.

Intracellular Leishmania survival is further influenced by the
host’s glycolytic and lipid metabolism. Early after in vitro
infection, Leishmania-infected macrophages upregulate the
transcription of numerous glycolytic genes (e.g. hexokin
pyruvate kinase isozymes M2, lactate dehydrogenase A), which
correlates with intracellular parasite survival (83–86). Infected
macrophages were reported to have less intracellular amastigotes
when glycolysis was inhibited with 2-deoxyglucose (2-DG) (86). In
addition, Leishmania infection reduces the sensitivity of
mitochondrial membrane permeabilization to apoptotic stimuli,
implying a relationship between mitochondria and parasite
persistence (82). Overall, glycolysis was found to be crucial in
the early stages of Leishmania spp. infection in macrophages and
neutrophils, whereas enhanced mitochondrial metabolism was
revealed to be important in the late stages of infection (87, 88).

We can deduce from these data that metabolic reprogramming
of Leishmania-infected macrophages is a driving factor for
Leishmania parasite infection and immune evasion by reducing
the ability of infected cells to elicit robust immunological
responses. Thus, regulating the host nutrient-sensing pathways
(AMPK, mTOR, and HIF-1a), which affects amino acid,
cholesterol, and fatty acid metabolism, appears to be a crucial
regulator of Leishmania infection, while the molecular mechanism
behind such alterations is unknown. Overall, the evidence
presented here suggests that modulating host metabolism during
infection could be a promising treatment approach for
leishmaniasis (74).
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CONCLUSION

To conclude, Leishmania parasites have a variety of invasive/
evasive and pathoantigenic factors that appear to be relevant for
Leishmania infection of macrophages and intracellular
parasitism. These determinants are known as “virulence
factors” and are thought to be ideal targets for designing
particular inhibitors to decrease Leishmania sp (64). virulence
through gene mutations, resulting in infectious but non-
pathogenic mutants for vaccine immunization. Hence,
biosynthetic pathways are essential for the survival of any
parasite and for the production of anti-parasitic drugs that
target enzymes involved in parasite establishment. As a result,
parasite infection is kept at a low level, and in some situations, it
is used as a weapon to totally eradicate infection. Future research
on the virulence factors of distinct Leishmania species could aid
in the development of a novel vaccine to treat the disease by
providing a better understanding of the disease’s etiology.
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