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The development of vaccines against herpes simplex virus type 1 and type 2 (HSV1 and
HSV-2) is an important goal for global health. In this review we reexamined (i) the status of
ocular herpes vaccines in clinical trials; and (ii) discusses the recent scientific advances in
the understanding of differential immune response between HSV infected asymptomatic
and symptomatic individuals that form the basis for the new combinatorial vaccine
strategies targeting HSV; and (iii) shed light on our novel “asymptomatic” herpes
approach based on protective immune mechanisms in seropositive asymptomatic
individuals who are “naturally” protected from recurrent herpetic diseases. We
previously reported that phenotypically and functionally distinct HSV-specific memory
CD8+ T cell subsets in asymptomatic and symptomatic HSV-infected individuals.
Moreover, a better protection induced following a prime/pull vaccine approach that
consists of first priming anti-viral effector memory T cells systemically and then pulling
them to the sites of virus reactivation (e.g., sensory ganglia) and replication (e.g., eyes and
vaginal mucosa), following mucosal administration of vectors expressing T cell-attracting
chemokines. In addition, we reported that a combination of prime/pull vaccine approach
with approaches to reverse T cell exhaustion led to even better protection against herpes
infection and disease. Blocking PD-1, LAG-3, TIGIT and/or TIM-3 immune checkpoint
pathways helped in restoring the function of antiviral HSV-specific CD8+ T cells in latently
infected ganglia and increased efficacy and longevity of the prime/pull herpes vaccine. We
discussed that a prime/pull vaccine strategy that use of asymptomatic epitopes,
combined with immune checkpoint blockade would prove to be a successful herpes
vaccine approach.
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Chentoufi et al. Combinatorial HSV Vaccine Strategies
INTRODUCTION

According to the World Health Organization (WHO), over two-
thirds of the worldwide population in infected with HSV-1
(commonly known to cause oral herpes or cold sores) and
HSV-2 (commonly known to cause genital herpes) (1, 2). The
prevalence of HSV-1 and HSV-2 is 47.8% and 11.9%,
respectively, for individuals aged 14 to 49 years according to a
2018 February data brief published by the US Centers for Disease
Control and Prevention’s National Center for Health Statistics
(1, 2). In the United States alone, every year, there are 500,000
HSV-1 oral herpes cases; 300,000 HSV-1 and HSV-2 genital
herpes cases; 20,000 HSV-1 ocular herpes cases and 1,500 cases
of herpes encephalitis (3, 4). Apart from being the most prevalent
sexually transmitted disease, HSV-1 is the leading cause of
infectious blindness in Western countries (5). HSV-1 and
HSV-2 are neurotropic viruses that infect the anogenital, oral
mucosal lining and the skin and the eyes (6) The immune
response to HSV typically controls the acute mucosal infection;
however, the virus remains latent in the ganglia, and there is a
life-long sporadic low-grade shedding of virus from sensory
neurons into the mucosa (6). Thus, while HSV hides for a
lifetime in the trigeminal, autonomic, or dorsal root ganglia, it
reactivates and sheds asymptomatically making the transmission
high. In addition to causing painful blisters, HSV-2 can cause
encephalitis and death in newborns from vertical transmission
and increases the risk for HIV infection two-three-fold times (7).
Antiviral drugs are the only current treatment approved by the
Food and Drug Administration (FDA) for treatment of herpetic
diseases. Due to the cost, virus resistances and limited
effectiveness of antiviral drugs, preventive or therapeutic
vaccines are highly desirable to control herpes infection and/or
diseases (8). The development of a vaccine that proves effective
against one type of the HSV would be helpful for the other type
due to the genetic similarity between HSV-1 and HSV-2.
However, due to virus latency and HSV immune evasion,
immunotherapy and vaccine development against the virus
have become a real challenge. As of 2018, a number of
different HSV vaccine candidates were at different stages of
clinical trials (9, 10) (Table 1).

One common denominator in these vaccines is the use of the
whole virus or whole virus proteins, which contain both
protective “asymptomatic” epitopes and pathogenic
“symptomatic” epitopes. Our developed “asymptomatic”
herpes vaccine approach which is based on understanding the
immune mechanisms by which seropositive asymptomatic
individuals are “naturally” protected from recurrent herpes
disease throughout their lives. Clinical and pre-clinical studies
have proved that the T cell-based immune system in the mucosa
lining of the genital tract plays a crucial role in the prevention of
HSV acquisition. A better mucosal vaccine approach to boost
effector memory T cell responses will serve instrumental in
developing an effective HSV vaccine (45). Our latest approach
of using adenoviral vectors delivering chemokines and
asymptomatic dominant epitopes to induce and pull antiviral
CD4+ and CD8+ T cells to the site of reactivation (i.e., ganglia)
and replication (i.e., epithelia) would be an effective
Frontiers in Immunology | www.frontiersin.org 2
combinatorial herpes simplex vaccine strategy. Moreover,
another combinatorial herpes simplex vaccine strategy that
consists of reversing T cell exhaustion by immune checkpoint
blockade would be a successful strategy to clear herpes infection
(46). In this review, we highlight the current clinical trials in
herpes vaccine development and emphasize the significance of
using the asymptomatic epitope approach in a combinatorial
vaccine strategy.
HSV VACCINES: FROM PAST TO
PRESENT

The success of vaccines against other alpha herpes, like the
chicken-pox and shingles vaccine, has given hope for the
development of a vaccine against HSV (47) (Table 1). Four
main vaccine approaches have been designed and tested in the
past four decades to fight off herpes simplex virus type 1 (HSV-1)
and type 2 (HSV-2) infections and diseases (48): (1) Inactivated
“killed” HSV vaccines; (2) Live-attenuated HSV vaccines; (3)
Replication-defective HSV vaccines; and (4) Subunit HSV
vaccines (9, 49–54). Each of these types of vaccine approaches
has its pros and cons when it comes to safety, immunogenicity,
and protective efficacy.

Inactivated “Killed” HSV Vaccines
HSV is a highly successful neurotropic virus that resides in the
nervous system and therefore presents the risk of developing
neuro-pathogenesis and life-threatening Herpes Simplex
Encephalitis (HSE). Thus, back in the 70s and 80s, the first
whole inactivated HSV vaccine approach used “kill” the whole
virus after exposure to heat, UV-light (55) or chemicals (56, 57).
These whole inactivated HSV vaccines induced antibodies, but
not T cells, and as such have not been successful in the protection
against recurrent HSV-1 or HSV-2 infections and diseases (58–
60). Therefore, the live-attenuated HSV vaccines (61–66) and
replication-defective HSV vaccines were introduced (51, 58–60,
67–71).
Live-Attenuated HSV Vaccines
Live-attenuated HSV vaccines contrast inactivated HSV vaccines
produced by “killing” the virus and reducing the neurovirulence
of HSV-1 or HSV-2, while keeping them viable. In the past 24
years, many live-attenuated HSV vaccines have been introduced
and tested in both the mouse and guinea pig models mainly in a
prophylactic setting (instead of a therapeutic setting). However,
due mostly to safety concerns, only a few of these live vaccines
have progressed into clinical trials (63). Live-attenuated HSV
vaccines include: (1) The HSV-2 TK(-) mutant reported back in
1995 by Milligan and Bernstein and then by Kiyono in 2014 (72);
(2) the RAV 9395 live attenuated recombinant virus; evaluated in
guinea pigs and reported by Spaete back in 1998 (70); (3) AD472,
a live attenuated recombinant HSV-2 vaccine evaluated in guinea
pigs was reported back in 2005 (51); (4) The most studied HSV-1
and HSV-2 ICP0 (-) live-attenuated mutant vaccines, lacking the
April 2022 | Volume 13 | Article 849515
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TABLE 1 | Herpes Vaccine Strategies.

Limitations Ref.

accine did not achieve clinical
sefulness
lternative approaches could be
roposed

(11) Akhrameyeva NV, Zhang P, Sugiyama N,
Behar SM, Yao F. Development of a
glycoprotein D- expressing dominant- negative
and replication- defective herpes simplex virus
2 (HSV-2) recombinant viral vaccine against
HSV-2 infection in mice. J Virol, 85(10), 5036-
5047 (2011).

issing reproducibility on correlation
etween antibody titers and recurrent
nfection pattern

he immune mechanisms involved in
he control of recurrent infection need
o be elucidated

(12) Reszka NJ, Dudek T, Knipe DM.
Construction, and properties of a herpes
simplex virus 2 dl5-29 vaccine candidate strain
encoding an HSV-1 virion host shutoff protein.
Vaccine, 28(15), 2754-2762 (2010)

igh risk of genetic recombination

nable to block the virus reactivation to
revent disease recurrences

his study needs more animal
xperiment for statistical significance

(13) Belshe PB, Leone PA, Bernstein DI et al.
Efficacy Results of a Trial of a Herpes Simplex
Vaccine. The New England journal of
medicine, 366, 34-43 (2012).

ay reactivate latent HSV

iral latency and reactivation should be
tudied in more suitable animal model

(14) Bernard MC, Barban V, Pradezynski F et
al. Immunogenicity, protective efficacy, and
non-replicative status of the HSV-2 vaccine
candidate HSV529 in mice and guinea pigs.
PLoS One, 10(4), e0121518 (2015).

he protective immunity mediated by
ntibody and T- cells

(15, 16) Ohashi M, Bertke AS, Patel A,
Krause PR. Spread of herpes simplex virus to
the spinal cord is independent of spread to
dorsal root ganglia. J Virol, 85(6), 3030-3032
(2011). Dasgupta G, Chentoufi AA, Kalantari M
et al. Immunodominant "asymptomatic"
herpes simplex virus 1 and 2 protein antigens
identified by probing whole-ORFome
microarrays with serum antibodies from
seropositive asymptomatic versus
symptomatic individuals. J Virol, 86(8), 4358-
4369 (2012).

he genetic basis underlying the
atency defect should be elucidated

(17) Dasgupta G, Nesburn AB, Wechsler SL,
BenMohamed L. Developing an asymptomatic
mucosal herpes vaccine: the present and the
future. Future Microbiol, 5(1), 1-4 (2010).

oes not readily begin latency

ust show the frequency and duration
f
emory T-cells

ssess the ability to activate p38MAPK
n
- cells

(18) Chentoufi AA, BenMohamed L. Future
viral vectors for the delivery of asymptomatic
herpes epitope-based immunotherapeutic
vaccines. Future virology, 5(5), 525-528
(2010).

ore reactions than placebo on the
njection site

(19) Schiffer JT, Abu-Raddad L, Mark KE et
al. Mucosal host immune response predicts
the severity and duration of herpes simplex
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Type of
Vaccine

Vaccine Construct Administration
Route

Phase ofTrial Virus Subtype Results

Inactivated
vaccine

HSV-1 gH deletion
(SC16ΔgH)

Subcutaneous in
human

Clinical trial HSV-2 • Unable to show protection against acute
or recurrent genital herpes infection

• Does not show improvement in
recurrences and disease severity.

• Does not affect on viral shedding

•

•

Subcutaneous and
intravaginal in
guinea pig

Preclinical trial HSV-2 • Provides complete protection against
primary and recurrent HSV infection

• Induces high neutralizing antibody titers

• Induces long- lasting immune responses
i.e., over 6 months

• Develops high potency for complete HSV
protection

•

•

Intraepithelial and
intravaginal in
guinea pig

Preclinical trial HSV-2 • Reduces HSV symptoms

• Gives quicker symptomatic episodes

• Prevents local HSV-2 replication

• offers Improved protection against HSV
severity via Intravaginal route

•

•

•

Scarification via ear
pinna route in mice

Preclinical trial HSV-1 • Establishes self-limiting HSV infection

• Induces DTH response

• Provides protection against acute HSV
infection

•

•

HSV-2 ICP8 replication
defective + B7 co-
stimulation

Subcutaneous in
mice

Preclinical trial HSV-2 • Increases IFN-g-producing T- cells

• Decreases HSV replication in genital
mucosa

• Lowers HSV related genital and
neurological disease

• Reduces mortality

•

Multiple genes Deletion
of HSV-2

Subcutaneous in
mice

Preclinical trial HSV-2 • Reduces viral titer and viral shedding

• Suppreses viral replication and latency

• Theorotically provides protection against
double- mutant virus even in
immunocompro mised individuals

•

HSV-2 ICP10ΔPK
deletion

Subcutaneous in
mice

Preclinical trial HSV-2 • Induces memory T-cells and establish
strong T-helper type 1 (Th1) immune
response

• Increases IL-12 secretion by DCs

•

•

•

HSV-2 UL5 & UL29
genes deletion

Intramuscular in
humans

Clinical trial Multiple mutated
HSV-1 and HSV-2
combina tions

• Safe and well tolerated •
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TABLE 1 | Continued

Ref.

e by increasing

iral proteins

ression of viral
, or adding an

virus-2 genital tract shedding episodes. Proc
Natl Acad Sci U. S. A., 107(44), 18973-18978
(2010).

nd type of DC
unity against
ine

(20) Chentoufi AA, Binder NR, Berka N et al.
Asymptomatic human CD4+ cytotoxic T-cell
epitopes identified from herpes simplex virus
glycoprotein B. J Virol, 82(23), 11792-11802
(2008).

as an animal
nt diseases

ate murine
preclinical
cine candidates

(21) Dervillez X, Qureshi H, Chentoufi AA et al.
“Asymptomatic” HLA- A*02:01-Restricted
Epitopes from Herpes Simplex Virus
Glycoprotein B Preferentially Recall
Polyfunctional CD8+ T Cells from Seropositive
Asymptomatic Individuals and Protect HLA
Transgenic Mice Against Ocular Herpes. J
Immunol, (2013).

ency of latent
7020)

t infection in

(22) Dervillez X, Gottimukkala C, Kabbara KW
et al. Future of an "Asymptomatic" T-cell
Epitope-Based Therapeutic Herpes Simplex
Vaccine. Future virology, 7(4), 371-378 (2012).

(23) Pope C, Kim SK, Marzo A et al. Organ-
specific regulation of the CD8 T cell response
to Listeria monocytogenes infection. Journal of
immunology, 166(5), 3402-3409 (2001).

(24) Gebhardt T, Whitney PG, Zaid A et al.
Different patterns of peripheral migration by
memory CD4+ and CD8+ T cells. Nature, 477
(7363), 216-219 (2011).

used for human (25) Nelson MH, Bird MD, Chu CF et al.
Rapid clearance of herpes simplex virus type 2
by CD8+ T cells requires high level expression
of effector T cell functions. J Reprod Immunol,
89(1), 10-17 (2011).

(26) Bertke AS, Patel A, Imai Y, Apakupakul
K, Margolis TP, Krause PR. Latency-
associated transcript (LAT) exon 1 controls
herpes simplex virus species-specific
phenotypes: reactivation in the guinea pig
genital model and neuron subtype-specific
latent expression of LAT. J Virol, 83(19),
10007-10015 (2009).

otection (27) Schiffer JT, Corey L. Rapid host immune
response and viral dynamics in herpes simplex
virus-2 infection. Nat Med, 19(3), 280-290
(2013).
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Type of
Vaccine

Vaccine Construct Administration
Route

Phase ofTrial Virus Subtype Results Limitation

• Produces neutralizing antibody along
with CD4+ and CD8+ T-cell responses in
HSV seronegative individuals

• Produces only CD4+ T-cell responses in
HSV seropositive individuals

• Should modify vacci
the
expression of certain v

• Should inhibits the exp
immune evasion gene
adjuvant

Subcutaneous,
and intramuscular
in mice

Preclinical trial HSV-2 • Decreases genital infection and viral
shedding

• Produces strong immune response

• Gives protection against many HSV-2
viral strains

• Shows better protection via
intramuscular route

• Should study the role
involved in priming imm
the intramuscular vacc

HSV-2 gD (ΔgD-2)
deletion

Intramuscular in
mice

Preclinical trial HSV-2 and superin-
fection (HSV-1+)

• Induces IgG2 response

• Fully protects HSV-2 spreading to the
sacral ganglia and mortality

• Shows almost no signs of disease

• voir in the

• Should use guinea pig
model to study recurre

• Should incorpo
superinfection model i
evaluation of HSV- vac

Live
attenuated
vaccine

R7017 Deletion of HSV-1
thymidine kinase

Intracerebral in
mice, vaginal,
intradermal, and
intramuscular in
guinea pigs and
scarification of
cornea in rabbits

Preclinical trial HSV-1 and HSV-2 • Protects against severe HSV infections

• HSV lesions are localized, superficial and
heals more rapidly

• It establishes low freq
infections in all hosts (

• It also establishes late
rabbits (R7017)

RAV9395 (Deletion of
HSV-2 g134.5 gene,
UL55 and UL56 ORF)

Intramuscular Preclinical trial HSV-2 • Decreases lesion development and HSV
infection severity

• Decreases frequency of HSV reactivation
from explanted DRG

N/A

VC2 (mutations in gK
and UL20)

Intramuscular Preclinical trial HSV-1 and HSV-2 • Fully protects against lethal intravaginal
HSV challenge

• Presents cross-protective humoral and
cellular immunity

• Absence of viral DNA in ganglionic
tissues

N/A

Intramuscular Preclinical trial HSV-2 • Decreases acute viral replication in
vagina, amount of virus in neural tissue,
subsequent recurrent disease, and viral
shedding

• Delivers protection after 6 months

• Applying the criteria
trials

HSV-2 ICP0-ΔNLS) Footpad injection Preclinical trial HSV-2 • Significantly reduces viral shedding in
vagina

• No detectable infection

N/A

HSV-2 gE deletion Intramuscular,
intravaginal, and
intravenous

Preclinical trial HSV-2 • No disease mortality

• Absence of infectious virus in DRG and
recurrent HSV shedding in vagina

• Decreases recurrent genital HSV lesions

• Gives better efficacy through
intramuscular route than subcutaneous
route

• Provides incomplete p
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TABLE 1 | Continued

Ref.

utic vaccine (28) Tang VA, Rosenthal KL. Intravaginal
infection with herpes simplex virus type-2
(HSV-2) generates a functional effector
memory T cell population that persists in the
murine genital tract. J Reprod Immunol, 87(1-
2), 39-44 (2010).

(29) van Lint A, Ayers M, Brooks AG, Coles
RM, Heath WR, Carbone FR. Herpes simplex
virus specific CD8+ T cells can clear
established lytic infections from skin and
nerves and can partially limit the early spread
of virus after cutaneous inoculation. J
Immunol, 172(1), 392-397 (2004).

(30) Rott LS, Briskin MJ, Andrew DP, Berg
EL, Butcher EC. A fundamental subdivision of
circulating lymphocytes defined by adhesion
to mucosal addressin cell adhesion molecule
1. Comparison with vascular cell adhesion
molecule-1 and correlation with beta 7
integrins and memory differentiation. J
Immunol, 156(10), 3727-3736 (1996).

served at a (31) Mebius RE, Streeter PR, Michie S,
Butcher EC, Weissman IL. A developmental
switch in lymphocyte homing receptor and
endothelial vascular addressin expression
regulates lymphocyte homing and permits
CD4+ CD3- cells to colonize lymph nodes.
Proc Natl Acad Sci U S A, 93(20), 11019-
11024 (1996).

gainst HSV-1

f a gD subunit

(32) Mackay CR, Andrew DP, Briskin M,
Ringler DJ, Butcher EC. Phenotype, and
migration properties of three major subsets of
tissue homing T cells in sheep. Eur J Immunol,
26(10), 2433-2439 (1996).

nts that are
s

(33) Abitorabi MA, Mackay CR, Jerome EH,
Osorio O, Butcher EC, Erle DJ. Differential
expression of homing molecules on
recirculating lymphocytes from sheep gut,
peripheral, and lung lymph. J Immunol, 156(9),
3111-3117 (1996).

reater number (34) von Andrian UH, Mackay CR. T-cell
function and migration. Two sides of the same
coin. N Engl J Med, 343(14), 1020-1034
(2000).

assay (35) Mackay LK, Wakim L, van Vliet CJ et al.
Maintenance of T cell function in the face of
chronic antigen stimulation and repeated
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Type of
Vaccine

Vaccine Construct Administration
Route

Phase ofTrial Virus Subtype Results Limitations

VC2 (gKD31-68 deletion
of HSV-1)

Intramuscular Preclinical trial HSV-2 • Shows poor HSV replication at the
immunization site

• Rarely infects neural tissue

• Lack of any genital disease

• Reduces severity of acute and recurrent
HSV-2 shedding in vagina and quantity
of virus in DRG

• Better selection as a prophylactic vaccine

• Not effective as a therap

Intramuscular Preclinical trial HSV-1 • Gives protection against HSV-1- induced
ocular pathogenesis

• Provides complete recovery from initial
conjunctivitis

• Increases neutralizing antibody titers
along with CD3+, CD4+ and CD8+ T-
cells

• Decreases infiltration of Iba1+
macrophages

N/A

R2 (HSV-1 mutation in
region 2 of pUL37)

Intramuscular,
intradermal, and
intravaginal

Preclinical trial HSV-2 • Increases neutralizing antibodies

• Decreases acute and recurrent HSV
latent virus detection in DRG and
recurrent shedding

• Rarely infects neural tissue

• Shows more effectivity via intradermal
route

N/A

HSV-1 ICP0ΔNLS Subcutaneous and
intramuscular

Preclinical trial HSV-1 • Shows less infectious virus during acute
infection in TG and brainstem

• Stimulates an immune response by
increasing the gB-elicited interferon (IFN)-
g, granzyme B and CD107a; and
decreasing LAG-3, PD-1, and TIM-3

• Gives protection against ocular HSV-1
challenge by reducing ocular
neovascularization and suppressing
peripheral nerve virus replication

• T-cell response is only o
single time point

Naked DNA
vaccine

pSVL- HSV-1 gD, pRc/
CMV- HSV-1 gD

Intramuscular Preclinical trial HSV-1 • Reduces serum anti-gD antibody,
anti-HSV1 neutralizing antibody and anti-
gD ELISA responses

• Gives non- specific changes in ELISA
and neutralization antibody titers

• Provides low protection

• Not a useful alternative o
vaccine

pDNA encoding HSV-2
gD2

Intramuscular Clinicaltrial HSV-1-/HSV-2-,
HSV-1+/HSV-2-

• Provides safe and well tolerated with no
dose-limiting toxicities

• Increases D2-specific cytotoxic T- cell
and lymphoproliferati on immune
responses

• Produces adverse ev
mostly local site reaction

pDNAs encoding HSV-2
gD2

Subcutaneous Preclinical trial HSV-2 • Provides fully protection against lethal
intravaginal HSV-2 infection

• Produces strong HSV-2 virion- specific
IgG and neutralizing antibody responses

• Reduces all levels of recurrent HSV-2
significantly

• Reduces acute and recurrent disease,
recurrent lesion days and latent HSV-2
load

• Should be studied in a
of
guinea pigs

pDNA encoding HSV-2
gD2 coupled with
Vaxfectin ®

Intramuscular Preclinical trial HSV-2 • Increases IgG antibody titers • Limited sensitivity for IgG
e
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TABLE 1 | Continued

tions Ref.

reactivation for a latent virus infection. J
Immunol, 188(5), 2173-2178 (2012).

l controls including
coupled with

(35) Mackay LK, Wakim L, van Vliet CJ et al.
Maintenance of T Cell Function in the Face of
Chronic Antigen Stimulation and Repeated
Reactivation for a Latent Virus Infection. J
Immunol, (2012).

increase with overall
cance

r of subjects to
cant placebo effect

(36) Mackay LK, Stock AT, Ma JZ et al. Long-
lived epithelial immunity by tissue-resident
memory T (TRM) cells in the absence of
persisting local antigen presentation. Proc Natl
Acad Sci U S A, 109(18), 7037-7042 (2012)

w any significant
unoglobulin IgA, IgM,
els

(37) Masopust D, Picker LJ. Hidden
memories: frontline memory T cells and early
pathogen interception. J Immunol, 188(12),
5811-5817 (2012).

replication- defective (38) Suni MA, Ghanekar SA, Houck DW et al.
CD4(+) CD8(dim) T lymphocytes exhibit
enhanced cytokine expression, proliferation,
and cytotoxic activity in response to HCMV
and HIV-1 antigens. Eur J Immunol, 31(8),
2512-2520 (2001).

ignificant reduction in
of days with

uppress early stages

ls of HSV-2
bodies

(34) von Andrian UH, Mackay CR. T-cell
function and migration. Two sides of the same
coin. N Engl J Med, 343(14), 1020-1034
(2000).

women who are
V-1 but
SV-2

en regardless of

(39) Jiang X, Chentoufi AA, Hsiang C et al.
The herpes simplex virus type 1 latency
associated transcript (LAT) can protect
neuronal derived C1300 and Neuro2A cells
from Granzyme B induced apoptosis and CD8
T-cell killing. J Virol, (2010).

mucosal infection (40)

(41) Jameson SC, Masopust D. Diversity in T
cell memory: an embarrassment of riches.
Immunity, 31(6), 859-871 (2009).

(Continued)

C
hentou

fi
et

al.
C
om

binatorialH
S
V
Vaccine

S
trategies

Frontiers
in

Im
m
unology

|
w
w
w
.frontiersin.org

A
pril2022

|
Volum

e
13

|
A
rticle

849515
6

Type of
Vaccine

Vaccine Construct Administration
Route

Phase ofTrial Virus Subtype Results Limita

• Provides protection against lethal HSV-2
challenge

• Reduces vaginal HSV load and viral
latency in DRG

pDNA encoding HSV-2
gD2 and UL46 and UL47
genes coupled with
Vaxfectin ®

Intramuscular Preclinical trial HSV-2 • Reduces viral replication and shedding in
genital tract, latent HSV-2 DNA in DRG,
and frequency of recurrent disease

• Completely protects from both primary
and recurrent genital disease

• Includes additiona
irrelevant plasmid
Vaxfectin®

Codon-modified
polynucleo-tide vaccine

Intradermal in
forearm

Clinical trial HSV-2 • Provides safe and well tolerated
protection with no moderate or serious
adverse effects

• Increases immune cellular activity

• Minimal antibodie
no statistical signi

• Insufficient numbe
determine a signifi

COR-1: (1) Full-length
HSV-2 envelope gD2
and (2) truncated
version of gD2 fused to
a ubiquitin sequence

• Presence of CD45+, CD4+, CD68+

macrophages and polymorphonucle ar
neutrophils at site of immunization

• Decreases mean number of outbreaks
and viral shedding

SLV-20: (1) pGX27 with
tissue plasmino- gen
activator (tpa), Flt3L and
HSV-2 gB and UL39, (2)
pGX27 with gD2, ICP0
and ICP4 and (3) pGX27
with IL-12- IL-21 and
MIP-1a

Intramuscular Preclinical trial HSV-2 • Inhibits pathological progression after
viral infection

• Increases survival rate

• Reduces virus titer and viral shedding

• Increases IFN- g, CD4+, CD8+ and
CD44hiCD62Lhi central memory T-cells
expression

• Does not sho
differences in imm
IgG1 and IgG3 lev

Protein-
based
subunit
vaccine

HSV-2 gD2t with 3-O-
deacylated mono-
phosphoryl

Intramuscular Preclinical trial HSV-1 • Reduces latent viral load significantly

• Provides protection against acute and
recurrent HSV-2 infection

• Not as effective as
dl5-29

lipid A (MPL)- aluminum
hydroxide (alum)

Subcutaneous Preclinical trial HSV-2 • Provides protection against acute and
recurrent HSV infection and acute viral
shedding

• Reduces recurrent lesion days; sufficient
to prevent most recurrent lesion
episodes significantly

• Does not show s
the mean number
recurrent diseases

• Not sufficient to s
of
viral reactivation

• Produces low leve
virion-specific anti

HSV-2 gD with MPL-
alum

Intramuscular Clinical trial HSV-1-/HSV-2-,
HSV-1±/HSV-2±

Presents a protective effect in those women
who were HSV-1 and HSV-2 seronegative

• Ineffective in
seropositive for H
seronegative for H

• Ineffective in m
serologic status

Subcutaneous Preclinical trial HSV- 1 and HSV- 2 • Gives almost complete protection against
primary infection

• Presents better protection against latent
infection

• Does not prevent

HSV-2 gD and gB
adjuvanted with a novel
T- cell antigen and
tegument protein UL40

Intramuscular Preclinical trial HSV-2 • Increases HSV-2 antigen-specific CD8+
T- cell responses

• Stimulates high titers of neutralizing
antibodies

• Reduces HSV shedding in vagina, lesion
scores and latent infection

N/A
s

s
fi

S

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chentoufi et al. Combinatorial HSV Vaccine Strategies

Frontiers in Immunology | www.frontiersin.org 7
nuclear localization signal (NLS) on the ICP0 gene (0DeltaNLS),
developed in 2010 by Halford and tested in mice and guinea pigs
(69, 73–76); (5) The HSV2-gD27 mutant vaccine reported by
Cohen in 2012 (77); (6) The HSV-2 gE2-del mutant vaccine
reported by Friedman in 2012 (78); (7) The HSV-2 UL24 mutant
tested in mice and guinea pigs reported by Visalli in 2014 (67);
and (8) The HSV-1 VC2 mutant reported by Kousoulas in
2014 (79).
Replication-Defective HSV Vaccines
Replication-defective virus vaccines, also called DISC (Disabled
Infectious Single Cycle) virus vaccines, are defective for one or
more genes that are essential for viral genome replication or
synthesis and assembly of viral particles. In normal cells, they
express viral gene products but do not replicate to form progeny
virions. Replication-defective HSV vaccines can stimulate
immune responses but produce no progeny viral particles.
However, because they do not replicate and spread in the host,
replication-defective virus vaccines may be less immunogenic,
specifically less T cell stimulators because they have a relatively
limited capacity to solicit professional antigen presenting cells
(i.e., B, macrophage, and dendritic cells), a prerequisite for the
induction of CD4+ and CD8+ T cell responses.

The replication-defective HSV vaccines developed during the
last 24 years include: (1) DISC HSV-1 vaccine tested in guinea
pigs by McLean, back in 1996 (80); (2) This was followed by
another DISC HSV-2 vaccines which consisted of gH-deleted
HSV-2 mutant tested in guinea pigs for recurrent genital herpes
and reported by McLean in 1997 (81); (3) The HSV-2 mutant
engineered by Dr. Knipe back in 1997, by replacing the ICP8
gene of HSV-2 strain 186 with an ICP8-lacZ fusion gene from the
HSV-1 HD-2 mutant strain. The resulting HSV-2 5BlacZ mutant
was later tested in guinea pigs by the same group as reported in
2001 (61, 62), (4) The most studied replication-defective virus
HSV-2 dl5-29 vaccine, was developed by Knipe in 2008 and
tested in mice and guinea pigs by Cohen in 2010 (12, 59, 63, 82)
and by Londono-Hayes in 2015 (14) and shown to be have a
protective effect. Eventually, this vaccine progressed to human
trials only to show unsuccessful results in a Phase 1 clinical trial
conducted recently by Sanofi Pasteur; (5) The HSV-2 ACAM529
mutant tested in a mouse model of genital herpes challenge and
reported by Knipe and others in 2010 and 2012 (12, 83, 84); (6)
The HSV-1 D gK mutant tested in mouse model of herpes
challenge and reported in 2013 by Kousoulas (85); (7) The
HSV-1 CJ2-gD2 vaccine, a glycoprotein D-expressing
replication-defective and dominant-negative HSV-1
recombinant viral vaccine, tested in mice guinea pigs and
reported in 2011 (11) and 2014 by Yao (86); (8) The latest
replication defective HSV vaccine is the HSV-2 DgD (gD1-/+)
reported in 2015 by Herold and Jacobs group as being protective
in a mouse model of genital herpes challenge (87). The efficacy of
the HSV-2 DgD vaccine in prophylactic and therapeutic settings
has yet to be evaluated in the guinea pig model of primary and
recurrent genital herpes. Compared to clinical trials using
adjuvanted subunit vaccines (e.g., the adjuvanted gD/gB
T
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vaccine trials), many live attenuated/replication defective
vaccines-based Phase 1 trial trials, were either terminated or
did not progress to Phase II, because of: (i) A lack of
immunogenicity; and/or (ii) Concerns related to safety of using
a live virus as vaccine, as detailed above.
Subunit HSV Vaccines
A variety of subunit HSV vaccine approaches have been
developed including proteins, DNA and peptide epitope-based
vaccines (88, 89). Traditional protein-based vaccines are safe
compared to live-attenuated and replication-defective HSV
vaccines. Recombinant soluble HSV-2 glycoprotein D (gD) has
been the most promising subunit vaccine that went into
extensive clinical evaluation. Over the past 25 years, there has
been one Phase II therapeutic genital herpes vaccine and three
Phase III clinical trials of prophylactic subunit vaccines, all using
the HSV-2 gD (or mixed with gB in one trial) (90–95). Back in
1994, the first therapeutic vaccine trial delivered the gD with
aluminum salt (i.e. Alum) adjuvant in 98 symptomatic genital
herpes patients who reported 4 to 14 recurrences per year (96).
Unfortunately, this vaccine reduced the frequency of recurrences
by only 24% despite that the vaccine boosted neutralizing
antibodies to HSV-2 four-fold over baseline levels (96). These
disappointing results from the first therapeutic gD/Alum vaccine
trial suggested that for therapeutic protection; a vaccine must: (1)
Induce CD4+ and CD8+ T cell responses, in addition to
neutralizing antibodies, (2) Incorporate HSV-2 antigens other
than gD; and (3) Must test different adjuvants, other than Alum.
Three years later in 1997, the Chiron vaccine trial used a
combination of gD and gB delivered together with the MF59
Novartis’ adjuvant, an oil-in-water emulsion of squalene oil,
using the same target population of genital herpes patients as in
the 1994 trial. This gB/gD/MF59 vaccine did not elicit T cell
responses, produced high levels of neutralizing antibody to HSV-
2, yet had only a 9% efficacy (94). This trial suggested that: (1)
besides neutralizing antibodies, a protective vaccine must induce
antiviral CD4+ and CD8+ T cell responses; (2) a therapeutic
vaccine must incorporate HSV-2 antigens other than gB and gD;
and (3) must test different adjuvants, other than Alum and
MF59. Later, two GlaxoSmithKline (GSK) vaccine trials (one
reported in 2004 and the other in 2012), used the gD protein
delivered together with a different adjuvant, the 3-0-deacylated
monophosphoryl lipid A (MPL), a TLR4 agonist (93) together
with Alum (gD/MPL/Alum vaccine). The first trial enrolled
discordant couples, who have regular partners with genital
herpes, while the second trial enrolled HSV seronegative
women who have multiple and random partners (93). The first
trial, reported in 2004, showed a 74% efficacy against genital
herpes disease caused by HSV-2 (93). Unfortunately, later,
results using the same gD/MPL/Alum vaccine reported in
2012, showed only 58% efficacy against genital HSV-2 disease
(13). The apparent contradictions in efficacy against genital
HSV-2 disease, of the two GSK trials that used the same gD/
MPL/Alum vaccine, is puzzling. The difference in efficacy in the
two clinical trials attributed to different populations enrolled in
each trial (i.e. discordant couples vs. random seropositive women
Frontiers in Immunology | www.frontiersin.org 8
with multiple partners) (13). In the first clinical trial, the
distinguishing feature of discordant couples was that they were
a highly selected group in which the uninfected partner is
potentially repeatedly exposed to HSV by the infected partner.
This likely increased risk of infection and disease, hence lowering
the threshold of seeing a significant effect of the therapeutic
vaccine. In other words, the attack rates of HSV-2 genital disease
were high among discordant couples making easy to see a
significant reduction following therapeutic vaccination. In
contrast, the second clinical trial that enrolled random
seropositive women, with multiple lifetime sexual partners, in
which the attack rate and the risk of infection and disease was
much lower and hence likely raised the threshold of seeing a
significant effect of the therapeutic vaccine. Regardless of the
targeted population, the first GSK vaccine trial that produced
74% protective efficacy also stimulated both T cells and
neutralizing antibodies (13). In 2016-2018, a Genocea vaccine
trial (designated as Gen-003) used a combination of ICP4 and
gD2 truncated proteins with a novel adjuvant, named Matrix M-
2 (MM-2) (89). Matrix M is a saponin-based adjuvant that has a
balanced B and T cell immuno-stimulatory profile. This trial
reported a significant reduction of recurrent herpes lesions and
genital viral shedding (90–92). This protection appeared to
correlate with blood-derived antiviral CD4+ and CD8+ T cell
responses (90–92). Due to ethical and practical limitations, none
of the vaccine clinical trials have investigated the local tissue
resident CD4+ and CD8+ T cells in dorsal root ganglia (DRG)
and vaginal mucosal tissues.
MODIFIED RNA (MRNA) VACCINE
PLATFORMS AGAINST HSV-1 AND HSV-2

RNA vaccines, during the current pandemic, have emerged as a
versatile approach against emerging viral infections to overcome
the challenges confronted with the conventional vaccine
strategies 1–7. mRNA is the carrier of the genetic information
necessary for the endogenous proteins synthesis, it does not
integrate into the genome and safely metabolized and eliminated
by the cells 8–10. RNA-based vaccines have been shown safe in
animal models and in human clinical trials and trigger a strong
innate immune response. Many strategies have been used to
increase the delivery and immunogenicity of mRNA while
diminishing innate immune sensing11. Free and protamine-
complexed mRNA were among the first approaches to provide
robust antigen expression and immune-stimulation 12–14. This
vaccine set-up showed the ability to induce strong immunity and
protective efficacy against lethal influenza or rabies viral
infections in many animal models 4,15. The first ever
prophylactic mRNA-based vaccine (CV7201) in healthy
human volunteers was made against rabies. This vaccine was
generally safe and led to the induction of neutralizing antibody
that waned one year after the first vaccination 8. The success of
mRNA vaccines has greatly benefited from the development of
lipid- and polymer-based nanoparticles that protect RNA from
degradation, enhanced cell uptake and improve delivery to the
April 2022 | Volume 13 | Article 849515
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translational machinery. Currently, lipid nanoparticles (LNPs)
are the most frequently used and effective agents for in vivo
delivery of mRNA vaccines 9,16,17. Recently, the Food and Drug
Administration (FDA) issued an Emergency Use Authorization
(EUA) for the Pfizer-BioNTech COVID-19 (BNT162b2) vaccine
(Pfizer, Inc; Philadelphia, Pennsylvania), nucleoside-modified
mRNA vaccine formulated lipid nanoparticle- encoding the
spike glycoprotein of SARS-CoV-2, the virus that causes
coronavirus disease 2019 (COVID-19)7. This technology has
encouraged other groups working on vaccines against cancer
and viral pathogens to use the NLP-formulated mRNA platform.
Recently, the Friedman group18 showed that nucleoside-
modified mRNA in lipid nanoparticle vaccine encoding for
glycoproteins gC, gD, and gE induced strong and protective
immunity against acute and latent herpes simplex virus type 2
infection in mice. Indeed, and in a side-by-side experiment they
compared two vaccine platforms: (1) Trivalent gC2/gD2/gE
purified glycoproteins were given with adjuvants (CpG and
Alum) 19and (2) modified mRNA encoding the 3 glycoproteins
formulated in lipid nanoparticles (LNP) 20. The RNA was
modified to increase the cellular uptake and prevent the innate
immunity sensors from inhibiting the translation machinery 21.
The mRNA-LPN vaccine demonstrated to induce effective T-
follicular helper and germinal center B cell responses translated
into high titers and durable antibodies responses 22 that
outperform the glycoproteins-based vaccine in preventing
HSV-1 and HSV-2 genital infection and in protecting mice
and guinea pigs against intravaginal HSV-2 infection 20.
LESSONS LEARNED FROM PAST HSV
VACCINE CLINICAL TRIALS

The vaccine clinical trials produced valuable lessons that should
help improve future herpes subunit vaccines. Specifically, these
trials emphasize four major gaps in our current knowledge: (1)
The need to incorporate protective herpes protein Ags, other
than gB and gD, in the development of a future herpes
therapeutic vaccine (3); (2) The need to design a vaccine
strategy that induces anti-viral CD4+ and CD8+ T cell-
mediated immunity (in addition to HSV-specific neutralizing
antibodies) for a better protection against recurrent herpes (3).
This includes exploring new adjuvants and antigen delivery
systems, and (3) The need to develop a mucosal vaccine
strategy that would induce strong tissue resident CD4+ and
CD8+ TRM cells (beside mucosal antibodies such as IgA) that
would reduce virus reactivation from latently infected dorsal root
ganglia (DRG) and subsequent virus shedding in the genital tract
and recurrent herpetic disease. This is because of the failure of
past parenteral subunit vaccines that elicit systemic immune
responses against HSV-2. Although most of these vaccine
research trials have not been promising, we have gained a
better understanding of the correlates of protective immunity
for a therapeutic HSV vaccine, forming the platform for novel
combinatorial vaccine strategies against HSV.
Frontiers in Immunology | www.frontiersin.org 9
Phenotypic and Functionally Differential
HSV-Specific Memory CD8+ T Cell
Subsets in Asymptomatic and
Symptomatic HSV Infected Individuals
Understanding the immune mechanisms by which seropositive
asymptomatic individuals are protected from recurrent herpes
disease is significantly important as exploiting it can elicit a T cell-
based immune response in the mucosa lining the genital tract to
prevent HSV acquisition. Recurrent genital herpes disease occurs
following periodic reactivation of the virus that travels the axons
of DRG neurons to re-infect the genital tract (GT), where lytic
replication leads to herpetic lesions and transmission (15). In
asymptomatic individuals (ASYMP) HSV reactivation never
causes recurrent disease (16–18, 20). In symptomatic
individuals (SYMP), HSV reactivation often causes painful
recurrent genital disease (17, 19, 21, 22). Reports on HSV
therapeutic vaccine trials have shown that both innate and
adaptive immunity play an equal role in directing the right
immune response to prevent disease by causing a low to no-
shedding of the virus. Our research group has explored the
differential immune scenarios present in asymptomatic
protected individuals that gives them the natural immunity to
contain recurrence of herpes. The asymptomatic and
symptomatic individuals are strikingly different in their HSV-
specific CD8 T memory cell immune-profile. After resolution of
primary genital herpes infection, a heterogeneous pool (in terms
of anatomic distribution, phenotype and fu) of HSV-specific
memory CD8+ T cells develops (23) and can be divided into
three major subsets: (1) effector memory CD8+ T cells (TEM) (2)
central memory CD8+ T cells (TCM) (24) and (3) tissue-resident
memory CD8+ T (TRM) cells. The different CD8 memory T cell
subsets in HSV infection is illustrated in Figure 1. Regarding
anatomic distribution, effector memory CD8+ TEM cells and
central memory CD8+ TCM cells circulate between lymphoid
and non-lymphoid tissues, such as the DRG and GT (24). The
third subset does not enter circulation, but is instead selectively
retained in infected tissues, such as DRG (25–27) and GT (25, 28),
as a tissue-resident memory CD8+ TRM cells. These CD8+ TRM

cells are poised for immediate response to reactivation from DRG
(25, 29) and inhibit virus replication at GT (25). TRM cells have
altered T cell trafficking patterns due to the down-regulation of T
cell homing molecules CD62L and CCR7 (30–34). The
phenotypic profile of TCM cells is CD8CD103lowCD62Lhigh

CCR7high. TEM cells are CD8+CD103lowCD62LlowCCR7low. TRM

cells are CD8+CD103highCD62LlowCCR7lowCD11ahighCD69high

(24, 35, 36). TCM and TEM cells, but not TRM cells, express
CD103. TCM cells must proliferate and undergo differentiation
for effector function (37–40). In contrast, TEM and TRM cells are
already differentiated and poised for immediate effector function
(41). We recently discovered that most HSV-specific CD8 T cells
from ASYMP individuals expressed low levels of lymphoid
homing markers (CD62LlowCCR7low), suggesting that these T
cells are predominantly of a CD8+ TEM cell subset. In contrast,
most HSV-specific CD8+ T cells from SYMP individuals are
predominantly of TCM cell subset (42). Moreover, a decline in the
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number and function of memory CD8+ T cells positively
correlated with severe recurrent genital disease in SYMP individuals.

The critical role of antigen-specific CD8 T cells has been
demonstrated in studies using various animal models (43, 44).
We are now beginning to appreciate the differences observed in
CD8 T cell memory population in symptomatic and
asymptomatic HSV infected individuals, and understand the
importance of stimulating tissue-resident memory T cells for
prevention of HSV infection in the mouse model (44). T cell-
based immunotherapeutic strategies to treat recurrent herpes
infection and disease are emerging for HSV, and our laboratory
has contributed significantly towards developing human
asymptomatic CD8 T cell epitopes for HSV immunotherapy
(20, 44, 97, 98). In the last fifteen years of vaccine development,
we have succeeded in identifying new HLA-A2*01 restricted
“asymptomatic” human CD4+ and CD8+ T cell epitopes from
HSV-1 gB and gD glycoproteins and from HSV-1 VP11/12 and
VP13/14 tegument proteins. Ocular herpes models using HLA-
A2*01 restricted transgenic mouse and rabbits have shown that
these asymptomatic human epitopes stimulated protective CD8
T cell responses (21, 99, 100). Presently, we are making
significant headway with novel combinatorial approaches to
Frontiers in Immunology | www.frontiersin.org 10
use these epitopes as a SAPN (self-assembling protein
nanoparticle) with built-in flagellin domains as a therapeutic
HSV vaccine.

PRIME AND PULL VACCINES USING
ADENOVIRAL VECTORS DELIVERING
EPITOPES TOGETHER WITH T-CELL
CHEMOKINES INTO HSV
INFECTED TISSUES

Chemokines are naturally produced by our immune system and
could serve as safer and reliable adjuvants (101). Memory CD8+

T cells specific for HSV play an important role in inhibiting
HSV-1 reactivation from TG and subsequent viral shedding in
tears that trigger the recurrent corneal herpetic disease. The CXC
chemokine ligand 10 (CXCL10)/CXC chemokine receptor 3
(CXCR3) pathways are critical in promoting T cell immunity
against many viral infections (102). In a “prime and pull”
strategy, a topical chemokine was applied to the genital
mucosa after subcutaneous vaccination to pull HSV-specific
CD8 T cells and was shown to be associated with decreased
FIGURE 1 | Schematic of Prime-Pull-Keep Therapeutic Vaccine (PPK Vaccine). The PPK vaccine is designed to boost Neutralizing IgG/IgA antibodies (Abs) and
boost the number and function of antiviral CD4+ and CD8+ TRM cells within the cervico genital muco-cutaneous [CGMC, (1)] and dorsal root ganglia [DRG (2)]
tissues. The PPK vaccine is expected to help STOP the virus reactivation from latently infected DRG, virus shedding and virus replication in CGMC, thus curing or
reducing recurrent genital herpes disease. *, represent virus.
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disease upon challenge with HSV-2 (103). The CXCL10/CXCR3
pathway also affects TG- and cornea-resident CD8+ T cell
responses to recurrent ocular herpes virus infection and disease
(104). Chemokines can also be co-delivered in a DNA vaccine for
immunomodulation. Adenovirus-CCL21 transduced class I
peptide-pulsed DC, and autologous DC-adenovirus CCL21
vaccines are currently in Phase I clinical trials for the
treatment of malignant melanoma and stage IIIB-IV or
recurrent non-small lung cancer respectively while XCL1 along
with the IL-2 gene (CHESAT tumor vaccine) is in a clinical trial
for neuroblastoma (101). Pre-clinical studies in HSV have shown
immuno-potentiation of DNA vaccines by co-delivery of
chemokines such as CCR7 ligands and IL-8, RANTES
delivered to the mucosa (105, 106). We are in the advent of
testing multi-epitope vaccine that co-delivers chemokines using
adenovirus vectors. A “Prime-Pull-Keep” Therapeutic Vaccine
(PPK Vaccine) is being designed to boost Neutralizing IgG/IgA
antibodies and boost the number and function of antiviral CD4+

and CD8+ TRM cells within the cervico genital muco-cutaneous
(CGMC) and DRG tissues. The PPK vaccine is expected to help
STOP the virus reactivation from latently infected DRG, virus
shedding and virus replication in CGMC, thus curing or
reducing recurrent genital herpes disease (Figure 1).

Laser Adjuvants
As an alternative to currently used conventional adjuvants, the
chemical- and biological-free laser-adjuvant offers a well-
tolerated, simple to produce method to enhance mass
vaccination for widespread viral infections (107). Studies from
our laboratory have reported that skin exposure of B6 mice with
the FDA approved non-ablative fractional diode laser (PaloVia
Laser), followed by an intradermal delivery of a HSV peptide
vaccine, safely induced potent and sustained HSV-specific CD8+

T cells, detected in both the draining lymph nodes (DLN) and in
the vaginal mucosa (VM) (108). In the vaginal mucosa of laser-
treated and peptide vaccinated mice, we observed more HSV-
specific effector memory CD8 T cells. Following an intravaginal
HSV-2 challenge, we found decreased genital herpes lesions and
increased DC infiltrates around the laser-treated skin area. These
findings have important implications for the development of
efficient vaccine immunization strategies against HSV-1 and
HSV-2.

IMMUNE CHECKPOINT
BLOCKADE COMBINED WITH
THERAPEUTIC HERPES VACCINE

Total or partial loss of T cell function (dysfunction) occurs
following repetitive HSV latent/reactivation cycles (109–111)
and exposure to antigens is termed exhaustion (112) and is
usually linked with expression of T cell co-inhibitory receptors:
PD-1, TIM-3, LAG3 (CD223), TIGIT, PSGL-1, 2B4 (CD244),
GITR, CTLA-4 (CD152), CD160, and BTLA (CD272) (113, 114).
T cell dysfunction requires two signals: (1) T cell receptor (TCR)
engaged by MHC presenting an HSV epitope (113); and a (2) T
cell co-inhibitory receptor (e.g., PD-1) engaged by ligand (i.e.,
Frontiers in Immunology | www.frontiersin.org 11
PDL-1). In humans, latent HSV in sensory ganglia is
accompanied by chronic CD8 T cell infiltrates (115). A portion
of viral reactivation in sensory ganglia appears to be controlled
by CD8 T cell-mediated mechanisms (111, 116, 117). Recently,
we compared the expression levels of eight known T cell co-
inhibitory receptors on blood-derived HSV-specific CD8 T cells
from symptomatic and asymptomatic HSV infected individuals
and discovered that, HSV-specific CD8 T cells from
symptomatic individuals expressed significantly higher levels of
T cell co-inhibitory receptors like PD-1, LAG-3, TIM-3 and
TIGIT (Figure 1). This phenotype correlated with functional
exhaustion of HSV-specific CD8 T cells in symptomatic
individuals with increased virus titers and severe disease. In
mice, like humans, HSV-1 latently infected sensory ganglia have
chronic CD8 T cell infiltrates (118). HSV-specific CD8 T cells
producing IFN-g and Granzyme B appear to suppress (or abort)
induced viral reactivation in explanted mouse sensory ganglia
(118, 119) and may similarly reduce detectable HSV-1 and HSV-
2 reactivation in vivo (120–123). During acute (11 days) and
latent (30 days) post-infection HSV-1infection of mice, most
effector CD8 T cells from sensory ganglia simultaneously express
high levels of 2 to 3 immune checkpoint receptors (e.g. PD-1 and
LAG-3) (39, 111, 116, 117). This phenotype correlated with
functional exhaustion of sensory ganglia-derived CD8 T cells and
increased virus reactivation from infected sensory ganglia
explants (39, 111, 116, 117).

Pembrolizumab and nivolumab are the first of the anti-PD-1
pathway family of checkpoint inhibitors to obtain FDA approval
for the treatment of melanoma. The FDA has also granted
approval of nivolumab for squamous cell lung cancer and
Hodgkin lymphoma (HL), and MPDL-3280A, for bladder
cancer and non–small cell lung cancer (124). From 2014-2017,
the FDA approved several different anti-PD-1 mAbs opening the
field of next vogues of so-called “immune checkpoint therapy
mAbs” (125–127). Blocking the PD-1/PD-L1 (128–135) pathway
in animal models demonstrated an improvement in CD8+ T cell
effector function against persistent viral infections (136). Recent
reports show that the natural constitutive PD-L1 expression on
corneal cells impacts the HSV-1 infection of corneas. Genetic
deficiency in PD-L1 using B7-H12/2 mice and the use of anti–
PD-L1 blocking Ab significantly enhanced HSV-1 clearance
from corneas of C57BL/6 mice mediated mainly by
monocytes/macrophages (137). Based on our preliminary data
of PD-L1 and GAL-9 blockade, we hypothesized that blocking
PD-1, LAG-3, TIGIT and/or TIM-3 immune checkpoint
pathways will help in restoring the function of HSV-specific
CD8+ T cells in latently infected DRG and increasing efficacy and
longevity of a therapeutic herpes vaccine.

HERPES VACCINE- SAFETY EVALUATION

Safety concerns for vaccines include: (i) the potential inherent
toxicities of the antigen and the adjuvants, as well as potential
toxicities due to interactions of the components present in the
final formulation; and (ii) the possibility that the vaccine induces
inflammatory responses that may lead to undesired toxic side
effects. Some adjuvants may elicit elevated levels of
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proinflammatory cytokines and other mediators of toxicity,
irrespective of the immune response against the antigen.
Preclinical standard repeated-dose toxicology studies
performed in animals will identify whether intrinsic toxicity
and immunotoxicity are: (i) confined primarily to the sites of
injection; (ii) caused by the delivery method (i.e., the side effects
are seen in both control and vaccinated animals) or (iii) caused
by the intended immune responses to the vaccine (i.e., side effects
occur with greater frequency and severity in vaccinated animals
compared to controls). (1) Parameters for monitoring of systemic
toxicity: Toxicity studies, repeated-dose toxicity studies, address
the potential for systemic toxicity including, but not limited to,
the systemic effects on the immune system. A broad spectrum of
information should be obtained from the toxicity study, and both
in-life and postmortem data should be collected. This routinely
includes careful monitoring of body weight and food
consumption, body temperature, histopathology, clinical
chemistry, hematology, coagulation parameters and acute
phase reactants. (2) Parameters for monitoring of local
reactogenicity: Local toxicity studies of intramuscularly
administered vaccines should preferably be conducted in
animals with sufficient muscle mass, (such as rabbits) to test
the full human dose of the final vaccine formulation.

CONCLUSIONS

Since most of the current HSV vaccine candidates were not
promising individually in clinical trials, combinatorial vaccine
approach seems to be the most appropriate in the present
scenario to further advance HSV vaccine trials. Combinatorial
application practically poses many problems and hence requires
optimization in animal models. For example, one such approach
optimized in the guinea pig model in our laboratory, is illustrated
in Figure 1.

Results from clinical trials of the HSV vaccine indicate that it is
essential to explore combinatorial approaches in the discovery of
an effective therapeutic vaccine. Our long-term goal is to develop
a long-lasting immunotherapeutic vaccine against genital herpes.
HSV-specific CD8+ T cells are critical in preventing HSV
reactivations from neurons of DRG and in limiting the severity
of GT inflammatory lesions by reducing HSV replication (138–
142). By harnessing the immune mechanisms active in
seropositive asymptomatic individuals that make them
“naturally” protected from recurrent herpes disease, we came
up with a multiple-asymptomatic/protective epitope-based
vaccine strategy, a promising HSV vaccine candidate when
combined with other T cell-based immunotherapies like
immune-checkpoint blockade or immunomodulation using
various chemokines.

EXPERT REVIEW

▪ The latest failures of most of the clinical herpes vaccines
indicate that immunotherapeutic vaccine against HSV should
be efficient in eliciting antigen-specific immune responses
that contain reactivation of the virus, to control both
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recurrent lesions and viral shedding. Our vaccine research
approach is based on the understanding and harnessing of
immune strategies that make the seropositive asymptomatic
individuals “naturally” protected from recurrent herpes
disease throughout their life. We realized that the best
strategy for an effective HSV vaccine would be to elicit a T
cell-based immune response that boosts HSV specific effector
memory T cell functionalities in the mucosal lining to prevent
HSV-1/HSV-2 acquisition/reactivation.

▪ Much remains unknown about the protective immune effector
of herpes, however, improved knowledge of HSV immuno-
epidemiology, and immunopathology should help guide new
vaccine strategies for HSV. In the last fifteen years of vaccine
development, we have succeeded in identifying many
protective “asymptomatic” human CD4+ and CD8+ T cell
epitopes from HSV-1 gB and gD glycoproteins and from
HSV-1 VP11/12 and VP13/14 tegument proteins. We are
currently progressing with novel combinatorial approaches to
use these epitopes as a SAPN with built-in flagellin domains
as therapeutic HSV vaccine. A Prime-Pull-Keep Therapeutic
Vaccine (PPK Vaccine) is designed to boost Neutralizing IgG/
IgA antibodies (Abs) and boost the number and function of
antiviral CD4+ and CD8+ TRM cells within the cervico genital
muco-cutaneous (CGMC) and dorsal root ganglia (DRG)
tissues. PPK vaccine is expected to help STOP the virus
reactivation from latently infected DRG, virus shedding and
virus replication in CGMC, thus curing or reducing recurrent
genital herpes disease.

▪ Since most of the current HSV vaccine candidates were not
promising individually in clinical trials, a combinatorial
vaccine approach seems to be the most appropriate in the
present scenario to further advance HSV vaccine trials.
Combinatorial application practically poses many problems
and hence requires optimization. We are currently optimizing
these combinatorial approaches in animal models. We came
up with multiple-asymptomatic/protective epitope-based
vaccine strategy which will be a promising HSV vaccine
candidate when combined with other T cell-based
immunotherapy-like immune-checkpoint blockade or
immunomodulation using various chemokines.
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