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Acute kidney injury is a frequent complication of hospitalized patients and significantly
increases morbidity and mortality, worsening costs and length of hospital stay. Despite
this impact on healthcare system, treatment still remains only supportive (dialysis). Stem
cell-derived extracellular vesicles are a promising option as they recapitulate stem cells
properties, overcoming safety issues related to risks or rejection or aberrant differentiation.
A growing body of evidence based on pre-clinical studies suggests that extracellular
vesicles may be effective to treat acute kidney injury and to limit fibrosis through direct
interference with pathogenic mechanisms of vascular and tubular epithelial cell damage.
We herein analyze the state-of-the-art knowledge of therapeutic approaches with stem
cell-derived extracellular vesicles for different forms of acute kidney injury (toxic, ischemic
or septic) dissecting their cytoprotective, regenerative and immunomodulatory properties.
We also analyze the potential impact of extracellular vesicles on the mechanisms of
transition from acute kidney injury to chronic kidney disease, with a focus on the pivotal
role of the inhibition of complement cascade in this setting. Despite some technical limits,
nowadays the development of therapies based on stem cell-derived extracellular vesicles
holds promise as a new frontier to limit acute kidney injury onset and progression.

Keywords: acute kidney injury, acute tubular necrosis, ischemia-reperfusion injury, sepsis, chronic kidney disease,
stem cell, extracellular vesicles, regenerative medicine
INTRODUCTION: DEFINITION AND CLASSIFICATION OF ACUTE
KIDNEY INJURY

The term Acute kidney injury (AKI) indicates a sudden worsening of renal function due to acute
renal damage, with consequent accumulation of nitrogenous waste products and alteration of
hydrosaline and acid-base homeostasis. In the past decades, several criteria have been proposed in
order to uniform the definition of AKI: the recommendation statements of 2012 Kidney Disease
org March 2022 | Volume 13 | Article 8498911
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Improving Global Outcomes (KDIGO) Clinical Practice
Guideline define AKI as a rise in the serum creatinine (sCr)
level by 0.3 mg/dl within 48 hours, or a 1.5-fold increase from
baseline within prior 7 days; or oliguria (<0.5 ml/kg/h for 6
hours). In addition, AKI is staged for severity – from mild stage
1 to most severe stage 3 – according to serum creatinine values
and urine output, usually classifying patients requiring renal
replacement therapy (RRT) as stage 3 KDIGO. Several causes
may induce AKI in patients with or without underlying chronic
kidney disease (CKD); a potential classification is based on
pathophysiological mechanisms of renal injury such as kidney
hypoperfusion (pre-renal AKI), parenchymal kidney diseases
(intra-renal or parenchymal AKI, which includes acute tubular
necrosis, ATN) and obstruction of the urinary tract (post-renal
AKI). Incomplete recovery of an AKI event due to persistence
of renal pathophysiologic process can lead to AKI-CKD
transition, especially in patient with some degree of pre-
existent CKD (Figure 1). As for AKI epidemiology, incidence
and prevalence are not well defined due to different AKI
definitions. Despite these limitations, a metanalysis of
Susantitaphong et al. (1) observed that in-hospital AKI
incidence was 22% – using 2012 KDIGO AKI definition –
while it reached 57% in intensive care units (ICU) according to
the multinational AKI-EPI study (2). Overall AKI incidence
seems to be rising in the United States and it is associated with
higher health care costs, greater long-term care, increased risk
of CKD and hospital mortality (3, 4). This increase especially
affects Afro-American population, due to genetic factors which
also condition a reduced number of nephrons. A large
metanalysis (5) and recent studies (6) confirmed that Black
race is an independent risk factor for AKI.

Similar to CKD, other factors associated to the rise of AKI
incidence are older age, increasing burden of comorbidities
(e.g. hypertension, diabetes mellitus, CKD, heart failure, sepsis,
cancer), improved clinician’s awareness (leading to inclusion of
less severe forms), growing use of nephrotoxic drugs and
increasing frequency of surgical and angiographic procedures
(7, 8). Among these, older age is strongly associated with
AKI incidence through multifactorial mechanisms. Renal
senescence reduces nephron number and functional reserve,
predisposing to relapsing AKI episodes and also to maladaptive
repair, incomplete recovery and AKI-CKD transition. This
process can be considered as a form of accelerated renal
senescence and will be analysed in a specific Section (9, 10).

Different causes related to ischemia-reperfusion injury due to
hypovolemia and/or hypoperfusion, administration of
nephrotoxic drugs and the presence of sepsis/septic shock have
been identified as hallmarks for AKI development. Recent
studies have also provided new insights into complex AKI
pathophysiology, with remarkable progress especially in the
field of sepsis-associated AKI (s-AKI).

Sepsis is a dysregulated immune response to infection that
causes multiple organ dysfunction: the immune response after a
septic insult is characterized by unbalanced hyperinflammation
and immune suppression (11). Sepsis-associated excessive
inflammation is sustained by several cell types including
Frontiers in Immunology | www.frontiersin.org 2
leukocytes (neutrophils, macrophages, natural killer cells),
endothelial cells (EC), cytokines, complement products, and
the coagulation system (12). The widely used concept of
“cytokine storm” refers to the release of proinflammatory
cytokines such as TNF-alpha, IL-1b, IL-12, and IL-18 that
may contribute to organ injury (12). However, a complex
network of several mediators is embedded in sepsis-associated
multiple organ dysfunction such as the release of extracellular
traps by neutrophils (NETs) (13), the complement activation
resulting in the release of the anaphylatoxins C3a and C5a, the
immunothrombosis in the microvasculature mainly triggered by
tissue factor that initiates blood coagulation by forming a
complex with clotting factor (F) VIIa, thereby inciting blood
coagulation by activating FX and FIX (14). These alterations
have been also recently described in COVID-19-associated
AKI (15).

Sepsis represents nowadays the most frequent cause of AKI
in critically ill patients admitted to Intensive Care Units (ICU)
with pathogenic mechanisms similar to those described
above for immune dysfunction. Indeed, experimental and
clinical studies aimed to evaluate kidney perfusion clearly
demonstrated that during sepsis, AKI can develop in the
presence of a normal or even increased renal blood flow: this
finding suggested the presence of other key mechanisms of
tissue injury such as microvascular derangement, endothelial
dysfunction, inflammation, metabolic reprogramming and sub-
lethal injury of tubular epithelial cells, overthrowing the
simplistic old paradigm based on kidney hypoperfusion
(16, 17). Recent works have further shed light on these
etiopathogenetic mechanisms: for example, interaction of
damage-associated molecular pattern (DAMPs) and
pathogen- associated molecular pattern (PAMPs) molecules
with Toll-like Receptors (TLRs) expressed on renal tubular
epithelial cells (RTEC) and other renal resident cells can
activate several pro-inflammatory pathways (18) and
mitochondrial DNA (mDNA) damage due to oxidative stress
also plays a key role in inducing RTEC dysfunction (19).
Basically, PAMPs and DAMPs can be freely filtered by
glomeruli, a process favored by sepsis-induced increased
permeability, thus reaching the tubular lumen and inducing
functional alterations of RTECs; moreover, microvascular
damage of ECs located in the peritubular capillaries may
enhance metabolic alterations of RTECs (20).

Innate and adaptive immunity activation during AKI have
been increasingly recognized to play an important role in AKI.
Cross-talk between RTECs and immune cells through a network
of cytokines seems to be essential to induce T cell phenotype
changes which affect AKI evolution (21). In this setting an
important role of IL-15 has been delineated. RTECs express IL
15 and its receptors and intrarenal IL 15 levels inversely correlate
with AKI severity in experimental models. Inhibition of RTECs
apoptosis during pathological stress appears to explain IL 15
protective effects (22) Furthermore, IL 15 can reduce
extracellular matrix (ECM) synthesis by myofibroblasts and
monocyte chemoattractant protein (MCP-1) release by
macrophages and also inhibits Transforming Growth Factor-b
March 2022 | Volume 13 | Article 849891
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(TGF-b) 1-induced RTEC epithelial-mesenchymal transition
(EMT): these multiple anti-fibrotic effects suggest a role in the
prevention of AKI-CKD transition (23, 24).

Despite progress in understanding AKI pathophysiology,
however, efforts to develop targeted therapies has not led to
robust results yet (16) and treatment is still mainly supportive
(e.g. hemodynamic stabilization, dose adjustment or
discontinuation of nephrotoxic drugs, antibiotic therapy in s-
AKI) (25–28). Also in s-AKI, neither pharmacological
approaches nor extracorporeal blood purification therapies
aimed at removing PAMPs and DAMPs have led to a
significant improvement of in-hospital AKI incidence and
mortality (16).

In this setting, stem-cell (SC) therapy and SC-derived
extracellular vesicles (EVs) represents a new frontier in the
treatment of acute and chronic kidney disorders, because of
their anti-inflammatory, immunomodulatory and regenerative
properties. Recent studies observed the beneficial therapeutic
properties of Mesenchymal Stromal Cells (MSCs) in ischemic
AKI, renal transplantation, lupus nephritis and diabetic
nephropathy (29, 30). These actions are mainly paracrine and
mostly mediated by transfer of EVs containing microRNAs,
Frontiers in Immunology | www.frontiersin.org 3
mRNAs, and proteins that reprogram cell functions via
immunomodulatory and regenerative effects (31), as detailed in
the following section.

In this review, we summarize the state-of-the-art knowledge
on EVs derived from different types of stem cells (SCs) as therapy
of AKI, focusing on impact of EVs on different pathophysiological
mechanisms underlying toxic, ischemic and s-AKI (29–31) and
AKI-CKD transition.
GENERAL FEATURES OF STEM CELLS
AND EXTRACELLULAR VESICLES (EVs)

SCs are unspecialized cells with self-renewal capacity, which can
potentially differentiate into any cell type of organism. Their
therapeutic potential is revolutionizing regenerative medicine
and is providing promising applications also in the field of
Nephrology (32).

Among progenitor cells, MSCs represent the most studied
type over the last decades: MSCs are adult multipotent stromal
cells with a high proliferative potential, derived from non-
hematopoietic precursors. They can differentiate into
FIGURE 1 | Clinical course of AKI and evolution towards CKD (Created with BioRender.com).
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mesenchymal (osteocytes, adipocytes and chondroblasts) and
non-mesenchymal lineages (33). Initially found in bone marrow
(BM) (34), they were subsequently isolated from multiple fetal
and adult tissues such as adipose tissue (AD-MSCs), umbilical
cord blood (UC-MSCs), fetal membrane (FM-MSCs) and human
placenta (hP-MSCs) (35–37). This makes them one of the most
accessible SC type and an attractive candidate source to develop
products for cell therapies (38). Due to the ease of preparation,
MSCs remain the most common option among cellular therapies
and have already proven to be safe and effective in reducing AKI
in experimental models and clinical trials, displaying
cytoprotective, regenerative and immunomodulatory properties
(39, 40).

Other types of SCs have been recently investigated as a
therapy for AKI, including inducible Pluripotent Stem Cells
(iPSCs). These are derived from differentiated adult cells (e.g.
keratinocytes, fibroblasts) which are induced into pluripotency
by exposing them to specific reprogramming factors through
viral vectors and directed towards renal lineages such as
podocyte progenitors (41). Administration of iPSC has proved
to be effective in a rat model of AKI, reducing oxidative stress
and inflammation (42).

Spermatogonial stem cells (SCCs) have also been shown to be
capable of differentiating into pluripotent stem cell lines,
converting into embryonic-like SCs and differentiating into
renal tubular-like cells. Also, this type of SC has shown
promise in restoring kidney function after AKI (43).

Endothelial progenitor cells (EPCs), a BM-derived progenitor
type able to circulate in the bloodstream, play a major role in
vascular integrity by protecting ECs and promoting angiogenesis
and recovery also in AKI models (44).

Of interest, the beneficial effects of all these SC types are
predominantly mediated by paracrine/endocrine actions, via
secretion of growth factors and especially EVs. The latter
represent crucial components of cellular secretome and
mediate intercellular communication through transfer of
bioactive molecules between originator and recipient cells,
especially mRNAs and microRNAs (miRNAs), modifying
phenotype and function of target cells (45, 46). As their
parental cells, EVs are not immunogenic and may successfully
activate regenerative processes in injured cells and tissues
(47, 48).

Recently, EVs released from renal cells themselves have been
investigated as therapy for AKI: kidney-derived MSCs (49),
glomerular and tubular renal progenitors (50), renal tubular
epithelial cells (RTEC) (51) and even urinary EVs (uEVs) from
healthy subjects have shown initial promising results in this
setting (52). The efficacy of SC-derived EVs has been
demonstrated in different settings including numerous studies
showing an interesting cross-kingdom communication: EVs
from different eukaryotic and prokaryotic kingdoms are
involved in many processes including host-pathogen
interactions and modulation of cellular functions (53). Of note,
some studies showed that exogenous dietary RNAs of plant and
animal origin are protected from food processing and gut
microenvironment through encapsulation within EVs. EV-
Frontiers in Immunology | www.frontiersin.org 4
carried RNAs (in particular miRNAs) are able to exert
biological activities between the host and gut microbiota
influencing organ function in the recipient after ingestion (54).
Our group has already demonstrated the horizontal transfer of
mRNAs and miRNAs from SC-derived EVs of human origin in
rat cells: indeed, in a rat model of anti-Thy1.1-induced
mesangioproliferative glomerulonephritis, EVs released from
human Endothelial Progenitor Cells (EPCs) horizontally
transferred to rat mesangial cells distinct mRNAs coding for
Factor H, CD55 and CD59, thus inhibiting complement-induced
apoptosis and C5b-9/C3 mesangial cell deposition (55).
Moreover, the same type of EVs protected the kidney from
ischemia-reperfusion injury in rats by delivering their RNA
content, the miRNA cargo of which was shown to contribute
to reprogramming hypoxic renal endothelial and tubular
epithelial cells to a regenerative program (56).

EV-based therapeutic approach has some advantages
compared to cell-therapy. First, EVs exhibit a superior efficacy
profile as they pass through the blood-tissue barriers and
efficiently reach injured cells (57). Second, no adverse immune
responses have been reported in patients undergoing allogeneic
administration of SC-EVs and no evidence of oncogenic
potential of SC-EVs has been reported. In fact, they can inhibit
tumor growth by interfering with cell cycle and inducing
apoptosis and/or necrosis of cancer cells (58, 59). Thus, EVs
represent a feasible, cell-free therapeutic alternative and their
role has recently been investigated in several renal diseases (45,
46), especially in AKI. This is the setting in which therapeutic
properties of SC-EVs and the rationale for their employment has
been better defined and represents the main focus of this Review.
RATIONALE OF THERAPY WITH EVs
IN AKI

A growing body of pre-clinical studies indicates a potential
therapeutic role of EVs derived from MSCs and other
progenitor cell types especially in IRI-induced AKI. EVs can
shuttle miRNAs and other genetic material into injured renal
cells – such as RTEC and ECs – and epigenetically re-programme
them. This leads to activation of signaling pathways, which exerts
multiple beneficial effects within three main areas (60,
61) (Figure 2).

• renal protection: inhibition of apoptosis/necrosis, oxidative
stress, senescence and fibrogenesis; promotion of autophagy
(62).

• renal regeneration: stimulation of cell proliferation,
migration, tubular dedifferentiation, angiogenesis (63).

• immunomodulation: anti-inflammatory and immunosuppressive
effects, mainly through induction of M2 macrophages and T-
regulatory cells (Treg) (64) and modulation of NK cell activity
(65).

The combination of these effects can heal injured RTECs and
ECs, thus promoting regression of AKI (66). Of note, pre-
March 2022 | Volume 13 | Article 849891
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treatment with RNAase consistently abolished these effects,
indicating that mRNA and miRNA transfer from SCs to
injured renal cells is crucial in this healing process (67).
Ferguson et al. identified 23 top-miRNAs which account for
over 79% of total miRNAs in MSC-derived exosomes and seem
to mediate the predominant effects, targeting 5481 genes (68). A
comprehensive review of miRNA repertoire carried by SC-
derived EVs for AKI treatment has been recently published
and it is beyond the scope of this work (69).
THERAPY WITH SC-DERIVED EVs IN
DIFFERENT FORMS OF AKI

As previously mentioned, while most studies were performed
with EVs derived from BM-MSCs, UC-MSCs and AD-MSC,
other EV sources have been recently employed, including kidney
resident populations (50, 70) and uEVs (71). Potential
mechanisms of actions and main mediators, with a focus on
miRNAs, will be briefly analyzed. A summary of the main studies
on EVs as therapy of AKI is outlined in Table 1, in which they
are categorised according to type of originating cell type (49–51,
56, 65–67, 72–96).
Frontiers in Immunology | www.frontiersin.org 5
Nephrotoxic AKI
Several cellular sources of SCs have been tested in models of toxic
AKI. Bruno et al. first demonstrated that BM-MSC-derived EVs
facilitated morphological and functional renal recovery in a
model of glycerol-induced AKI mimicking rhabdomyolysis-
associated tubular damage (66). Human liver stem cells
(HLSCs) cells were then tested in the same experimental model
with similar results. A single intravenous injection of HLSCs
facilitated histological and functional renal recovery through the
induction of RTEC proliferation and inhibition of apoptosis. Of
interest, EVs were the main component of HLSC-derived
conditioned medium capable of promoting regeneration (72).

Furthermore, uEVs have been recently employed in the same
mouse model of glycerol-induced toxic AKI. Intravenously
injected uEVs stimulated RTEC proliferation, reduced
expression of inflammatory markers and restored endogenous
Klotho. Interestingly, murine uEVs derived from Klotho-null
mice lost these reno-protective effects, suggesting a key-role of
Klotho in mediating uEVs beneficial effects on RTECs (52).

EVs obtained from BM-MSCs were also tested in a lethal
cisplatin-induced AKI model, in which they stimulated RTEC
proliferation and conferred them resistance to apoptosis in vitro,
resulting in improvement of renal function and morphology in
an in vivo SCID mouse model (73). Similar results were reported
FIGURE 2 | Cytoprotective, regenerative and immunomodulatory effects of MSC-derived EVs in the setting of AKI (Created with BioRender.com).
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TABLE 1 | EVs derived from MSCs or other cell types as therapy of AKI.

Source of EVs Type of experiments Mechanisms of action and mediators References

Human BM-MSC Animal model (mice)
In-vitro

Increased proliferation of RTECs (66)

Human Liver Stem cells (HLSC) Animal model (mice)
In-vitro

Increased proliferation and reduced apoptosis of RTECs (72)

Human BM-MSC Animal model (mice)
In-vitro

Increased proliferation and reduced apoptosis of RTECs;
anti-inflammation (upregulation of genes involved in metabolic

pathways and downregulation of genes involved in
inflammation)

(73)

Human UC-MSC Animal model (rat)
In-vitro

Increased proliferation and reduced apoptosis of RTECs (74)

Human BM-MSC Animal model (rat) Increased proliferation and reduced apoptosis of RTECs;
protection against chronic kidney injury

(67)

Human BM-MSC In-vitro Reduced apoptosis (EVs transfer miR-148b-3p, miR-410,
miR-495, miR-548c-5p and miR-886-3p to RTECs)

(75)

Human UC-MSC Animal model (rat)
In-vitro

RTECs dedifferentiation and proliferation
(increased ERK1/2 and HGF expression)

(76)

BM-MSC Animal model (mice)
In-vitro

Reduced RTEC apoptosis (inhibited NLRP3 expression
through miR-223)

(77)

Mouse kidney resident glomerular progenitors (Gl-MSC) Animal model (mice)
In-vitro

Increased RTECs proliferation (50)

Human UC-MSC Animal model (rat)
In-vitro

Increased RTECs proliferation (releasing from G2/M cell cycle
arrest).

(78)

Human BM-MSC Animal model (mice)
In-vitro

Inhibition of RTECs apoptosis (downregulation of Sema3A
expression and activation of AKT/ERK pathways through

miR-199a-3p); inhibition of NK.

(79)

Rat BM-MSC Animal model (rat)
In-vitro

Anti-inflammation (reduced IL1b and TNFa) (80)

Human BM-MSC Animal model (rat)
In-vitro

Immunosuppression (NK cells inhibition) (65)

Human UC-MSC Animal model (rat)
In-vitro

Anti-oxidation (decreased expression of NOX2 and activation
of Nrf2/ARE)

(81, 82)

Human UC-MSC Animal model (rat) Inhibition of mitochondrial fission (miR-30) and reduced
RTECs apoptosis

(83)

Human BM-MSC Animal model (mice)
In-vitro

Suppression of ER stress (through miR-199a-5p) (84)

Mouse kidney resident MSC Animal model (mice)
In-vitro

Increased angiogenesis; increased proliferation and reduced
apoptosis

(49)

EPC Animal model (rat)
In-vitro

Increased angiogenesis (56)

ECFC Animal model (mice)
In-vitro

Increased angiogenesis (transfer of miR-486-5p to EC inhibits
apoptosis and Endo-MT)

(85, 86)

RAVPCs Animal model (mice)
In-vitro

Increased angiogenesis, increased ECs migration (transfer of
miR-218)

(87)

Human BM-MSC In-vitro Increased angiogenesis (transfer of miR-125a) (88)
MSC-EVs Animal model (rat)

In-vitro
Increased angiogenesis (89)

Human BM-MSC Animal model (mice)
In-vitro

Increased angiogenesis (transfer of miR-199a-3p) (79)

Human UC-MSC Animal model (rat)
In-vitro

Anti-inflammation (downregulation of CX3CL1, reduction in
CD68+ macrophages infiltration) and decreased renal fibrosis

(reduction of a-SMA).
Downregulated CX3CL1 was associated with specific

miRNAs in EVs (miR-15a, miR-15b, mi-R16).

(90)

BM-MSCs Animal model (mice)
In-vitro

Anti-inflammation (EVs enriched in CCR-2 suppress
macrophage functions)

(91)

Rat AD-MSC Animal model (rat) Anti-oxidation, inhibition of apoptosis and renal fibrosis (92)
Human UC-MSC Animal model (rat) Inhibition of apoptosis, increased proliferation of RTECs;

Anti-inflammation (reduced CD68+macrophages infiltration);
Anti-fibrosis (decreased expression of a-SMA and TGFb;

Increased expression of HGF)

(93)

HPC-Human RTECs Animal model (rat)
In-vitro

Hypoxia can enhance and differentiate EVs regenerative
properties compared with EVs released under normal

oxygenation.

(51, 94)

(Continued)
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employing UC-MSCs-derived EVs in the same experimental
setting (74).

Last, BM-derived MSC repaired but did not prevent
gentamycin-induced AKI (97).

Ischemic AKI
SC-derived EVs have also been studied in several models of
ischemia/reperfusion injury (IRI)-associated AKI, as outlined in
Table 1. In all of these experimental models, administration of
EVs derived from different cell types after IRI accelerated
recovery of renal function and/or decreased histological
tubular injury through multiple mechanisms (61).

Gatti S et al. demonstrated a beneficial effect of BM-MSC-
derived EVs in favouring recovery from ischemic AKI and the
need for multiple injections to achieve renal function
normalization. This effect was mainly due to upregulation of
anti-apoptotic genes in injured RETCs and prevented transition
from AKI to CKD (67).

Of interest is the fact that i.v. administered human MSC-
derived EVs were effective in alleviating renal damage even in
rats which had received kidney transplant after cardiac death, a
setting characterized by severe IRI (93).

Another study highlighted the role of specific miRNAs within
the cargo of MSC-derived EVs (miR-148b-3p, miR-410, miR-
495, miR-548c-5p, miR-886-3p) in protecting RTECs from IRI in
an in vitro model induced by ATP-depletion. Down-regulation
of miRNAs involved in apoptosis, hypoxia and cytoskeletal
reorganization mediated this effect (75).

Other studies brought out a wide spectrum of beneficial
actions of BM-MSC-derived EVs in ischemic AKI: they can
induce RTEC dedifferentiation and growth via hepatocyte
growth factor (HGF) induction (76) and prevent apoptosis
through transfer of miR-21 (98) and miR-223 (77); they inhibit
CXC3CL1, blunting evolution towards fibrosis (90); finally, they
are enriched in chemokine receptor type 2 (CCR-2), which
enables them to buffer extracellular free chemokine ligand 2
(CCL-2), suppressing macrophage functions (91).

Of note, several EVs biological activities are specifically
related to aerobic metabolism; for example, MSC-derived EVs
can carry respiratory complexes, supporting an independent
aerobic metabolism when mitochondrial respiratory capacity is
impaired (99); they can inhibit mitochondrial fission through
miR-30 transfer (83) and re-establish adequate intracellular ATP
levels, with beneficial epigenetic changes such as reversion of
histone H2 and H2B up-regulation, a typical feature of apoptotic
cells (100); they can attenuate mitochondrial damage in RTECs
Frontiers in Immunology | www.frontiersin.org 7
by stabilising mitochondrial DNA (mDNA) previously depleted
by oxidative stress (101).

Furthermore, they might contribute to the anti-oxidant
potential of injured cells, for example down-regulating
calnexin, a nicotinamide adenine dinucleotide phosphate
(NADPH)-oxidase 4 (NOX4)-interacting protein (102).

Similarly, Zhang et al. reported that human Warton Jelly
(hWG) MSC-derived EVs can reduce expression of NADPH-
oxidase 2 (NOX2) and stimulate the nuclear factor eryhroid 2-
related factor 2 (NRF-2) and anti-oxidant response element
pathway (81, 82). All these actions result in an overall
reduction of reactive oxygen species (ROS) formation and
could limit tubular cell death and senescence after re-oxygenation.

EVs derived from iPSC (103) have also been shown to protect
mitochondrial function and regulate several genes associated
with oxidative stress. Interestingly, iPSC-EVs showed a higher
efficiency in renal protection than AD-EVs (104, 105).

Another aspect which contributes to reparative effects of
EVs is their capacity to promote angiogenesis, counteracting
renal hypoxia. EPCs administration determined increased
tubular proliferation and reduction in capillary rarefaction,
glomerulosclerosis and tubulointerstitial fibrosis in a rat
model of IRI-associated AKI, suggesting protection against
post-IRI fibrosis. In this study, pro-angiogenic miR-126 and
miR-296 shuttled by EPC-derived EVs to ECs located in
peritubular and glomerular capillaries accounted for this
effect, as treatment with RNAase or specific antagomiRs
abolished it (56). Other studies subsequently proved that
similar pro-angiogenetic effects were mediated by EVs
released from other human SC types, such as kidney-
derived MSCs (49, 50), endothelial colony-forming cells
(ECFCs) (85, 86), vascular progenitor cells derived from
renal arteries (87) and BM-MSCs (79, 88, 89).

Interestingly, the study of Zou X et al. showed that hWJ-
MSC-derived EVs upregulated vascular endothelial growth
factor (VEGF) and downregulated hypoxia-inducible factor 1
(HIF-1a) in a rat model of IRI and that VEGF was through
directly transferred by EVs (89).

Recent studies have shown that hypoxia preconditioning
(HPC) can improve and differentiate EVs regenerative
properties compared with EVs released under normal
oxygenation, as secreted EVs convey the metabolic state of
originating cell, including trophic factors protecting against
hypoxia (106).

In the study by Collino et al. peculiar anti-apoptotic, anti-
oxidative, mitochondrial energy-supply and pro-angiogenic
TABLE 1 | Continued

Source of EVs Type of experiments Mechanisms of action and mediators References

HPC-Human RTECs can release EVs with anti-oxidant
properties and the potential to induce SCs differentiation

normal RTEC
AD-MSC Animal model (mice)

In-vitro
Increased proliferation of RTECs; Inhibition of AKI-to-CKD

transition (activation of Sox 9)
(95, 96)
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EC, Endothelial Cells; ER, endoplasmatic reticulum; HLSC, Human Liver Stem Cell; HGF, Hepatocyte Growth Factor; ECFC, Endothelial Colony-forming Cell; EPC, Endothelial Progenitor
Cells; RAVPC, Renal Artery Vascular Progenitor Cells; Gl-MSC, Glomerular progenitor MSC; NLRP3, NLR family-pyrin domain containing 3.
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pathways were activated by hypoxic AD-MSC derived EVs and
induced a distinct proteomic pattern is in RTECs (107). Four
effects were specifically enhanced in hypoxic EVs: downregulation
of fibroblast growth factor receptor 1 (FGFR-1) and reduction of
Transforming Growth Factor b-1 (TGFb-1)-induced epithelial-to-
mesenchimal transition (EMT) (108); promotion of angiogenesis
through vascular endothelial growth factor (VEGF), blunting renal
microvasculature rarefaction (109); translocation of Nrf-2 into the
nucleus, activating antioxidant genes including Heme-oxigenase-1
(HO-1) (110); downregulation of IL6, reducing macrophage
infiltration and polarization towards a M2 phenotype (111).

Hypoxic conditions have also been shown to promote
angiogenic potential of iPSC-derived EVs (112).

An interesting aspect is that injured RTECs can themselves,
especially when treated with HPC (113, 114), release EVs with
anti-oxidant properties (94) and have the potential to modulate
phenotypic and functional features of SCs, stimulating them to
differentiate into normal RTEC. This effect may be ascribed to
the release of a specific EV phenotype by de-differentiated
tubular cells (57).

In another study, Dominguez JM et al. harvested hypoxic
human RTECs and derived EVs from kidneys declined for
transplantation and demonstrated that, after injecting them
into nude rats exposed to bilateral renal ischemia, they both
preserved renal function; however, EVs proved superior in
maintaining renal vascular and epithelial networks, preventing
oxidative stress and blunting pro-inflammatory and fibrogenic
pathways. Proteomic analysis demonstrated broad ischemia-
induced alterations at all cell levels and prevention of major
drift in transcriptome by EV infusion (377 out of 628 altered
proteins were “corrected” by EVs). This resulted in a reduced risk
of evolution towards fibrosis and CKD (51).

On this basis, association of normoxic and hypoxic EVs has
been proposed with the rationale of integrating respective
peculiar effects (92, 115).

Finally, a recent study by Liu et al. showed that encapsulation
of EVs isolated from human placenta (hP)-derived MSCs in a
collagenmatrix improved their retention in an AKImurine model,
remarkably enhancing their therapeutic effects (inhibition of
RTEC proliferation and of endoplasmic reticulum stress,
stimulation of angiogenesis) compared with hP-MSC-derived
EVs alone (116).

Taken together, all these studies indicate that SC-derived EVs
have a multi-level therapeutic potential and that different type of
EVs may specifically target pathophysiological aspects involved
in ischemic AKI, either preventing it or accelerating its recovery.

Sepsis-Associated AKI (s-AKI)
As described above, sepsis is a common and life-threatening
systemic disorder often leading to AKI in a clinical scenario of
multiple organ failure due to the maladaptive host response to
infection. S-AKI is not merely a consequence of ischemic damage
due to hypoperfusion (renal overflow is in fact often normal or
even increased) but recognizes a more complex pathogenesis.
This includes microvascular damage and intrarenal
redistribution of renal blood flow, activation of immune cells
and complement with massive release of inflammatory molecules
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causing RTEC dysfunction (autophagy and mitophagy; arrest of
cell cycle; dedifferentiation), endocrine dysregulation (16).

Transfer of miRNAs, mRNAs and proteins from activated
immune and ECs through EVs may play a pivotal pathogenetic
role in these processes but, on the other hand, it may also
represent a therapeutic option for the use of SC-derived EVs
(117). For example, EPC-derived EVs carrying mi-RNA-93 5p
conferred renal protection in a LPS-induced mouse model of S-
AKI, also alleviating multiple organ injury and vascular leakage
(118) and blunted LPS-induced HK2 cell injury in another
study (119).

During infections, MSC-derived EVs have been shown to
eliminate pathogens and to regulate immune response through
the secretion of antimicrobial factors, both inhibiting the
replication of pathogens and activating the phagocytic function
of macrophages (120). In a mouse model in which Escherichia
Coli-derived outer membrane vesicles were intraperitoneally
injected to establish sepsis, MSC-derived EVs significantly
suppressed cytokine release into the systemic circulation, as
well as PMN and monocyte infiltration in the peritoneum, by
upregulating IL-10 production (121). In experimental models of
sepsis obtained by LPS administration or by cecal ligation and
puncture (CLP) MSC-derived EVs inhibited the development of
disease by downregulating JMJD3 and inactivating the NF-kB
signaling pathway through the selected transfer of miR-27b
(122). EVs isolated from AD-MSCs have been shown to
attenuate inflammation and protect from organ dysfunction by
regulating the Notch-miR148a-3p signaling axis and decreasing
macrophage polarization to M1 (123). In experimental s-AKI,
the administration of EVs isolated from AD-MSCs exerted a
renal protective effect through SIRT1 signaling pathway (124). In
another CLP model of s-AKI, EVs obtained from UC-MSCs
decreased IRAK1 expression through the up-regulation of
miR-146b level, inhibited NF-kB activity and limited AKI
and mortality (125). These results suggest an important
immunomodulatory effect induced by MSC-EV administration
in sepsis and a specific protective effect from AKI.

Last, EVs derived frommice pre-treated with remote ischemic
preconditioning, elicited by brief periods of IRI in femoral
arteries, appears to protect against s-AKI through miR-21,
which integrates into RTECs and targets the downstream
PDCD4/NF-kB and PTEN/AKT pathway (126).
THE PROCESS OF AKI TO
CKD TRANSITION

Recent studies have demonstrated that maladaptive repair after
an AKI episode can predispose to evolution towards CKD and
end-stage renal disease (ESRD) (127–129). Different factors
appear to contribute to maladaptive repair during AKI,
including oxidative stress, DNA damage, microvascular
rarefaction, tubular loss, early fibrosis induced by endothelial-
to-mesenchymal transition (EndMT) and pericyte-to-
mesenchymal transition (PMT), lymphocyte infiltrates,
inflammatory cytokine storm (128, 129). Pathophysiology of
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AKI-CKD transition has been the focus of research and
complement system activation is increasingly recognised as
having an essential role in this inflammatory scenario, which is
closely related to renal senescence (130). These aspects and the
potential of EVs as a tool to treat AKI and prevent AKI-CKD
transition will be analysed in the following sections.

The Role of Complement in Renal
Senescence and AKI-CKD Transition
In addition to liver synthesis, complement components can
derive from renal cells (131) and complement C3 can be
expressed by proximal RTECs, ECs, glomerular epithelial and
mesangial cells after IRI (132, 133). Recent evidence indicates a
crucial role of complement activation in renal tubules and vessels
in AKI secondary to rhabdomyolysis (134) and trauma (135).

An aberrant complement activation and a high number of
senescent cells also characterise both renal senescence and AKI-
CKD transition, which is currently viewed as an accelerated form
of kidney aging (136–138) and shares the same pathway and
intracellular mediators (139, 140). Thus, there is actually a tight
relationship between AKI itself and mechanism of senescence
activation (129). From a molecular point of view, senescence
refers to a well-defined program associated with cell cycle arrest,
apoptosis inhibition and a pro-inflammatory “senescence-
associated secretory phenotype” (SASP) (141). The SASP
secretome relies on the production of a wide range of pro-
inflammatory cytokines, chemokines, growth factors and matrix
degrading factors promoting spread of senescence and fibrosis
(142). Chronic accumulation of SASP cells leads to
“inflammaging”, a persistent, low-grade inflammatory state
which causes tissue deterioration (143, 144). Renal senescent
cells can be detected by several markers, including loss of key
nephroprotective factors such as Klotho. This transmembrane
protein, expressed mainly on proximal RTECs where it interacts
with the fibroblast growth factor receptor (FGF-23), regulates
phosphate homeostasis (145) and exerts anti-fibrotic and anti-
inflammatory actions through its 65-kDa soluble form, released
into the bloodstream and urine (146). Disruption of Klotho gene
determines shortened life span due to premature arteriosclerosis
in mice (147) and AKI-induced Klotho deficiency accelerates
renal fibrogenesis, retards renal tissue regeneration and promotes
AKI-CKD transition (148, 149). Aberrant complement
activation during AKI triggers inflammaging and represents an
important link between AKI and CKD. Complement activation
is involved in two key processes leading to CKD lesions:
endothelial-to-mesenchymal transition (EndMT) and pericyte-
to-myofibroblast transition (PMT) (130). In EndMT,
complement drives ECs to acquire a myofibroblast phenotype,
contributing to vascular damage and early fibrosis (150), as
demonstrated in preclinical models of AKI induced by LPS
and I/R (151). Similarly, complement also promotes PMT and
enhances renal fibrogenesis. The loss of pericytes, which play a
key role in angiogenesis and vascular homeostasis, is a hallmark
of AKI and correlates with the decline of kidney function (152–
154). Another interesting aspect is the role of C3 and C1q
complement components in macrophages polarization, an
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essential factor in AKI evolution. While classically activated
M1 macrophages contribute to initial injury, conversion to M2
anti-inflammatory macrophages during the recovery phase is
critical in resolving inflammation and restoring tubular function.
Strikingly, their differentiation into the M1 or M2 phenotype is
regulated by C3 and C1q (155, 156). Overall, available evidence
supports a critical role of complement in accelerating the process
of premature aging which characterizes AKI-CKD transition.
This phenomenon is more marked in the elderly, increasing
susceptibility to accumulate chronic irreversible lesions after AKI
events (157).
Potential Therapeutic Role of EVs in
AKI-CKD Transition
Can EVs play a therapeutic role in reducing the risk of AKI-CKD
transition? Although no study has specifically focused on this
endpoint, there is some evidence from some of the previously
mentioned studies that EV pleiotropic actions (Table 1) could
inhibit AKI-CKD transition (51, 67). Activation of specific
mediators such as Sox 9 (95) and transfer of miRNAs such as
mi-R29b, which modulates Angiotensin 2-induced EMT of
RTECs (158), are examples of effects which could be exploited
to inhibit mechanisms leading to irreversible renal damage.
Furthermore, as already mentioned, uEVs from healthy
subjects can carry Klotho protein and transfer it to RTECs,
restoring normal intra-tubular levels with beneficial effects on
recovery from AKI (70).

Another interesting approach to prevent fibrosis after AKI is
through complement blockade (159). A few studies suggest that
EVs may exert an anti-complement activity through transfer of
specific complement inhibitors. Cantaluppi et al. demonstrated
that EPC-derived EVs could protect from complement mediated
injury in experimental anti-Thy1.1 glomerulonephritis by
transferring mRNAs coding for Factor H, CD55 and CD59
and related proteins to mesangial cell, thus inhibiting
antibody/complement-induced apoptosis and C5b-9/C3
mesangial cell deposition (55). Similarly, EPC-derived EVs
were able to preserve glomerular EC and podocyte integrity
from complement-induced damage in a co-culture model
mimicking the glomerular filtration barrier (160).

Although this setting is completely different from AKI, it is
tempting to speculate that this mechanism of action might also
explain some of the beneficial effects of EVs in AKI-CKD
transition. Initial evidence indicates that human MSCs can
ameliorate complement-induced inflammatory cascade and
improve renal function at very early stages in experimental
ischemic AKI, suggesting an immunomodulatory capacity
possibly mediated by EVs (161). Finally, preliminary results
from our group showed that EPC-derived EVs may limit
ischemic AKI through complement inhibition (data not
shown). Further studies are needed to investigate the potential
of EVs as anti-complement therapy in order to prevent AKI-
CKD transition. However, the potential of EV therapy to limit
AKI development and AKI-CKD progression based on the
horizontal transfer of proteins, receptors, bioactive lipids and
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different types of RNAs represents a great incentive for future
research in this field.
LIMITS AND PERSPECTIVES OF
EV-BASED THERAPY

The use of SC-derived EVs as a therapeutic tool to deliver growth
factors, proteins and genetic material to injured renal resident
cells is promising in different AKI fields: however, several
obstacles still limit their translation to clinic and have been
recently reviewed (162, 163).

Biochemical composition is not defined and can vary
depending on parental cell but also on surrounding milieu (e.g.
inflammation, hypoxia). EVs released from the same cell-type
may even have contradictory effects: for example, hypoxic
RTECs have proved beneficial in alleviating tubular damage
and fibrosis but injured RTECs can also release EVs which
contribute to amplify inflammation (164). Moreover, focusing
on SC-derived EVs, a different phenotype may depend on donor
characteristics (autologous vs. heterologous, age, gender,
presence of comorbidities or transient inflammatory states, etc.)

Furthermore, EV production or uptake mechanisms by
kidney resident cells or infiltrating inflammatory cells are not
completely defined and an intact glomerular filtration barrier
could prevent EVs from reaching podocytes and tubular
cells (165).

Finally, lack of good manufacturing practice standards and
high-scale EV production hinder clinical application. At the
moment, the clinical use of EVs is not classified as cell therapy
and their mechanisms of action look like more to administration
of a drug rather than a real cell therapy. Moreover, despite the
development of new isolation procedures, cGMP production of
SC-derived EVs for clinical application seems still to depend on
an ultracentrifugation step to be performed within a cell factory.

Despite these limits, EV-based therapy has many strengths
and is opening new therapeutic perspectives for a condition
currently treated only with supportive therapy.

In general, EV lipid and surface protein composition
(e.g.CD47) limits phagocytosis by circulating monocytes and
prolongs blood half-life if compared to liposomes or other
nanoparticles employed to carry drugs. EVs usually express
integrins and adhesion molecules which allow to enhance their
homing to inflamed or injured tissue: moreover, EVs protect
RNA from degradation after their intravenous administration
and at tissue level.

Technologies such as tangential flow filtration (TFF) appears
to allow large-scale production of high-quality, reproducible EVs
from AD-MSCs, paving the way for potential widespread clinical
application in AKI (166). Other technological advances may
potentiate EV qualitative therapeutic properties. For example,
EV encapsulation could make their therapeutic content (e.g.
miRNAs, mRNAs, proteins) more protected and stable.
Nanomedicine techniques may help engineering EV features
(size, shape, surface charge) in order to enable them to pass
specific biological barriers, including glomeruli. Decoy exosomes
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have been proposed to antagonize inflammatory mediators
(167). Another therapeutic approach is that of transfecting
MSCs with specific miRNA mimics in order to enrich them
with selected miRNAs. These enriched EVs proved to be more
effective than naïve ones, potentially allowing the use of a lower
amount of them (168). Combination therapy of pulsed focused
ultrasound (pFUS) and EVs has proved more effective than
either approach alone in reversing AKI-related inflammation
through suppression of heat shock protein 70 –mediated NLPR3
inflammasome (169).

An interesting tool to increase therapeutic potential of MSCs
is the adoption of three-dimensional (3D) culture of human
placental MSC (hPMSCs), which proved to be more effective
than two-dimension (2D) culture in preventing renal damage
when injected in a mouse model of IRI-induced AKI (170). MSC
3D spheroid structures enable increased cell-cell interactions and
enhance MSC trophic and immunomodulatory functions, with
more reproducible clinical outcomes in many preclinical models
(171) including cisplatin-induced AKI (172).

We have already discussed the potential of hypoxia and
collagen matrix encapsulation to enhance EV protective effects,
paving the way to new possibilities of therapeutic manipulation
(106, 107, 116). Of note, the use of EVs avoid the possible adverse
effects associated with whole cell therapies such as pulmonary
embolism, vascular thrombosis, maldifferentiation and
tumorigenesis (173).
CONCLUSIONS

A growing body of evidence based on pre-clinical studies
suggests that EVs released from MSCs of different origin and
from other SC types could be effective to treat toxic, ischemic and
septic AKI through direct interference with multiple
etiopathogenetic mechanisms of tubular and endothelial
damage. A network of cytoprotective, regenerative and
immunomodulatory EV properties is being defined. EV-based
therapy could prevent renal fibrosis and AKI-CKD transition,
also through inhibition of complement-mediated processes such
as EndMT and PMT. Hypoxia-conditioned and engineered EVs
with enhanced therapeutic properties are promising new tools.
Even though some technological hurdles must still be overcome
before widespread clinical application, EV-based therapies may
become a cornerstone for the treatment of the most common
forms of AKI in the near future.
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AKI acute kidney injury
AD adipose tissue
ATN acute tubular necrosis
BM bone marrow
CCL-2 chemokine ligand 2
CCR-2 chemokine receptor type 2
C1-INH C1-Inhibitor
CKD chronic kidney disease
CLP cecal liagation and puncture
CM contrast medium
DAMP damage associated molecular pattern
DC dendritic cell
EC endothelial cell
ECFC endothelial colony-forming cells
ECM extracellular matrix
EMT epithelial-to-mesenchimal transition
EndMT endothelial-to-mesenchymal transition
EPC endothelial progenitor cell
EV extracellular vesicle
FGFR-1 fibroblast growth factor receptor 1
HGF hepatocyte growth factor
HIF-1a hypoxia-inducible factor 1
HLSCs human liver stem cells
HO heme-oxigenase
hP human placenta
HPC hypoxia pre-conditioning
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ICU intensive care unit
iPSC induced pluripotent stem cells
IRI ischemia-reperfusion injury
LPS lipopolysaccharide
mDNA mitochondrial DNA
miRNA microRNA
MCP-1 monocyte chemoattractant protein 1
MSC mesenchymal stromal cell
NADPH nicotinamide adenine dinucleotide phosphate
NET neutrophil extracellular trap
NOX nicotinamide adenine dinucleotide phosphate oxidase
NRF-2 nuclear factor eryhroid 2-related factor 2
rIPC remote ischemic pre-conditioning
PAMP pathogen associated molecular pattern
PMN polymorphonuclear cell
PMT pericyte-to-mesenchymal transition
pFUS pulsed focused ultrasound
ROS reactive oxygen species
RRT renal replacement therapy
RTEC renal tubular epithelial cells
s-AKI sepsis-associated AKI
SASP senescence-associated secretory phenotype
SC stem cell
TGFb-1 Transforming Growth Factor b-1
TLR Toll-like receptors
UC umbilical cord
uEVs urinary extracellular vesicles
VEGF vascular endothelial growth factor
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