
Frontiers in Immunology | www.frontiersin.

Edited by:
Ignazio Caruana,

University Children’s Hospital
Würzburg, Germany

Reviewed by:
Jochen Buechner,

Oslo University Hospital, Norway
Donovan Flumens,

Laboratory of Experimental
Hematology, University of Antwerp,

Belgium
Sara Mastaglio,

San Raffaele Hospital (IRCCS), Italy

*Correspondence:
Shao-An Xue

shao-an.xue@ucl.ac.uk

Specialty section:
This article was submitted to

T Cell Biology,
a section of the journal

Frontiers in Immunology

Received: 07 January 2022
Accepted: 03 March 2022
Published: 30 March 2022

Citation:
Wei F, Cheng X-X, Xue JZ and Xue S-A

(2022) Emerging Strategies in
TCR-Engineered T Cells.

Front. Immunol. 13:850358.
doi: 10.3389/fimmu.2022.850358

REVIEW
published: 30 March 2022

doi: 10.3389/fimmu.2022.850358
Emerging Strategies in
TCR-Engineered T Cells
Fang Wei , Xiao-Xia Cheng, John Zhao Xue and Shao-An Xue*

Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi’An University, Xi’An, China

Immunotherapy of cancer has made tremendous progress in recent years, as
demonstrated by the remarkable clinical responses obtained from adoptive cell transfer
(ACT) of patient-derived tumor infiltrating lymphocytes, chimeric antigen receptor (CAR)-
modified T cells (CAR-T) and T cell receptor (TCR)-engineered T cells (TCR-T). TCR-T
uses specific TCRS optimized for tumor engagement and can recognize epitopes derived
from both cell-surface and intracellular targets, including tumor-associated antigens,
cancer germline antigens, viral oncoproteins, and tumor-specific neoantigens (neoAgs)
that are largely sequestered in the cytoplasm and nucleus of tumor cells. Moreover, as
TCRS are naturally developed for sensitive antigen detection, they are able to recognize
epitopes at far lower concentrations than required for CAR-T activation. Therefore, TCR-T
holds great promise for the treatment of human cancers. In this focused review, we
summarize basic, translational, and clinical insights into the challenges and opportunities
of TCR-T. We review emerging strategies used in current ACT, point out limitations, and
propose possible solutions. We highlight the importance of targeting tumor-specific
neoAgs and outline a strategy of combining neoAg vaccines, checkpoint blockade
therapy, and adoptive transfer of neoAg-specific TCR-T to produce a truly tumor-
specific therapy, which is able to penetrate into solid tumors and resist the
immunosuppressive tumor microenvironment. We believe such a combination
approach should lead to a significant improvement in cancer immunotherapies,
especially for solid tumors, and may provide a general strategy for the eradication of
multiple cancers.
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INTRODUCTION

Immunotherapy of cancer based on adoptive cell transfer (ACT)
of T lymphocytes can be classified into three approaches. The
first, tumor-infiltrating lymphocyte (TIL) therapy, harvests
naturally occurring T cells that have already penetrated patient
tumors, expands them ex vivo, and then re-infuses them into
patients (1, 2). However, it is often very difficult to isolate tumor-
specific TILs, which are not present in all patients or may
generate too few cells for therapeutic efficacy.

The second approach, chimeric antigen receptor (CAR)-
modified T cells (CAR-T), bypasses this problem by directly
engineering T cells with known tumor-specific CARs. CARs are
fusion molecules that link a single-chain antibody with T-cell
activation signaling domains such as CD28-CD3z (3) or 4-1BB-
CD3z (4). When a CAR is transduced into human T cells, the
antibody fragment is expressed on the surface of the engineered
T cells to recognize a tumor antigen expressed on tumor cells,
while the CD28-CD3z or 4-1BB-CD3z domain delivers a
stimulatory signal once the antibody binds to a tumor antigen,
activating CAR-T cells to attack the tumor.

CAR-T cells are not restricted by MHC molecules, and thus
one CAR-T construct can be used to treat any patient regardless
of genetic background. Currently, the most widely used and
successful CAR is the CD19-CAR, which recognizes the CD19
molecule expressed on the surface of B cells, thus can eliminate
some B-cell-derived leukemias and lymphomas (5, 6), including
complete response in nearly 90% of B-cell leukemia patients (5).
However, antibody-based CARs can only recognize antigens
expressed on the cell surface, and not intracellular antigens,
limiting the number of targets and potential tumor types
addressable by CAR-T therapy.

The third approach, T cell receptor (TCR)-engineered T cells
(TCR-T), uses TCRS as found on native T cells to confer
specificity, instead of antibody-based CARs. TCRS can be
isolated from tumor-reactive T cells and further modified for
enhanced expression and functions. TCRS can recognize both
cell-surface and intracellular targets, these include neoantigens
(neoAgs) that arise from mutations and are specific to tumor
cells. The disadvantage of using TCR-T is that TCRS are
restricted by MHC molecules, thus any given TCR can only be
used to treat patients with the corresponding MHC genetic
background. In the following sections, we describe the settings
in which TCR-T may prove most effective.
TCR-T IMMUNOTHERAPY FOR CANCER
AS A COMPLEMENT TO CAR-T

CAR-T has been most successful in hematological malignancies
(7–10), with FDA-approved therapies targeting CD19 (Kymriah,
Yescarta, Tecartus, Breyanzi) and BCMA (Abecma) as of
December 2021. CD19-CAR-T can achieve complete response
in nearly 90% of B cell leukemia patients, although 50% of
patients may nonetheless relapse (11). One of the major reasons
for this relapse is loss of surface expression of CD19 from tumor
Frontiers in Immunology | www.frontiersin.org 2
cells (12), thus evading recognition by CD19-CAR-T cells. These
patients may no longer respond to CD19-CAR-T, although
targeting different antigens may still be viable, in which case
TCR-T may be used as a late-line option. For example, a recent
study reported transfer of WT1-TCR-engineered donor T cells
into AML patients at high risk of relapse following allogeneic
stem cell transplantation, 12/12 treated patients achieved
relapse-free survival (13), compared to 54% in a concurrent
group of 88 similar high-risk patients, and WT1-TCR-T cells
also showed prolonged persistence and maintenance of antigen-
specific polyfunctional activity.

The greater opportunity for TCR-T may exist in solid tumors,
where CAR-T has been less effective (14–16). The mechanisms
behind these limitations are poorly understood and under active
investigation. CAR-T recognition is limited to surface antigens,
and moreover CAR-T activation requires higher concentration
of target antigens (17, 18). This lower sensitivity helps avoid
damage to normal tissues with low antigen expression (19), but
conversely may be unsuitable for tumors with similarly low
tumor antigen expression. For example, CAR-T specific for
anaplastic lymphoma kinase (ALK) showed variable efficacy
towards different cell lines depending on expression level of
ALK (17). Recently, a study investigated B cell malignancies with
up to 33-fold lower CD20 expression than healthy B cells – below
the concentration required to activate CAR-T – but found that
CD20-specific TCR-T clones with high avidity were able to
overcome self-tolerance and eliminate these tumor cells (20). It
is estimated that CAR-T cells need in the order of hundreds of
target molecules to be activated (17, 18, 21), whereas TCR-T can
be activated by a single target molecule (22).

Initial clinical studies of TCR-T in solid tumors have shown
promising results (23, 24). An affinity-enhanced NYESO1-TCR
achieved 45-55% clinical response rate in metastatic melanoma
patients (25, 26), and 50-61% clinical response rate in metastatic
synovial sarcoma patients (25–27). The same NYESO1-TCR
achieved 80% clinical response rate in multiple myeloma
patients without apparent side effects, including 70% complete
response rate with median progression-free survival of 19
months (28). Recently, a phase 1 trial of TCR-T targeting
HPV-16 E7 in metastatic HPV-associated epithelial cancers
achieved 50% clinical response rate (6/12 patients), including
4/8 patients refractory to PD-1 blockade (29).

In recent years, neoAgs have been discovered as a class of
immunogenic tumor-specific antigens that are derived from
tumor-specific mutations of self-proteins (30–32) or from
tumor-causing oncogenic viral proteins (33) in the estimated
15% of human cancers attributed to viruses (34). T cells specific
for neoAgs and viral proteins would not have undergone central
thymic tolerance selection, making it possible to isolate high-
avidity T cell clones against these targets. These antigens are
rarely expressed on the cell surface, and represent a therapeutic
opportunity in solid tumors using TCR-T that CAR-T may be
unable to match (35).

Despite these promising results (24–27, 29), several hurdles
remain to be overcome to realize the true promise of TCR-T
immunotherapy. In early clinical trials, some non-responder
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patients lacked in vivo persistence of the infused T cells (36, 37),
suggesting that the transferred TCR-T cells need additional
support to enhance their in vivo survival. Some patients with
late relapse showed no evidence of T cell infiltration in the
tumor, and moreover infused TCR-T cells face a hostile
immunosuppressive tumor microenvironment (TME). In the
following sections, we discuss current and future engineering
strategies to address these challenges to deliver effective and
long-lasting tumor control to a broad range of cancer patients.
OVERCOMING THE CHALLENGES OF
TCR-T CANCER IMMUNOTHERAPY

Enhancing TCR Expression and Function
Through Reducing TCR Mis-Pairing
TCR-T therapy relies on mRNA or viral transduction of tumor-
reactive TCR genes to redirect T cell specificity towards tumor
cells. However, using either mRNAs or randomly integrating
viruses to deliver the exogenous TCR, leaves the endogenous
TCR genes intact. Therefore, this could potentially result in some
degree of mis-pairing between the introduced and endogenous
TCR chains (38–40). Mis-pairing poses certain safety risks, as T
cells expressing mis-paired TCRS may be auto-reactive against
the patient’s MHC molecules. Indeed, a murine study showed
that TCR mis-pairing in the context of adoptive transfer of TCR-
gene-modified T cells combined with increased conditioning
resulted in graft-versus-host disease (GvHD) and serious
animal death (41). Similarly, an in vitro study of human EBV-
transformed lymphoblastoid cell lines showed that mis-paired
TCRS drove potentially dangerous off-target toxicity (42).

Several strategies have been explored to prevent TCR mis-
pairing (43, 44). The interaction between TCRa and TCRb
chains is largely governed by the invariant Ca/Cb-interface
(45), enabling modification of this region to prevent pairing
with endogenous TCRS. Reciprocal “knob-hole” amino acid
changes in the center of the TCR C domains led to preferential
pairing of the modified chains while disfavoring combinations
with native TCR chains (46). Introduction of an additional inter-
chain disulfide bond within the TCR Ca/Cb-interface (47) also
enhanced the pairing of the modified chains whilst reducing the
efficiency of pairing with wild-type chains (48, 49). This
preferential pairing of cysteine-modified TCR chains has
accounted for improved TCR gene expression and enhanced
antitumor activity of transduced T cells (50). Replacing the
human TCR constant domains with whole (49, 51, 52) or
partial (53, 54) murine sequences represents an alternative
strategy to reduce unwanted mis-pairing, and can also increase
the expression level of the introduced TCR genes (51). The
enhanced expression of the human/murine hybrid TCR in
human T cells may be partly due to the greater binding
capacity of the murine TCR constant domains to human CD3
molecules when compared with human TCR constant domains
(51). Finally, instead of using murine sequences, exchanging the
human TCR constant domains Ca and Cb with each other
(domain swapping), or replacing Ca and Cb with the
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corresponding gd TCR constant domains, could also generate
functional TCRS with reduced mis-pairing and improved safety
profile (55). However, it is important to note that the individual
TCR subfamily V-domains and even the antigen-binding CDR3
a/b-loops may also contribute to the interaction of TCR a and b
chains (56, 57), and hence manipulation of the TCR constant
domains can only partially reduce the frequency of mis-pairing,
rather than eliminate the risk completely.

Another common approach to reduce mis-pairing is to
generate a so-called single-chain TCR (Sc-TCR) by covalently
linking the Va and Vb domains with a polylinker (PLK),
resulting in a single polypeptide which will in theory inhibit
mis-pairing through steric hindrance (58). T-cell-activation
signaling upon antigen encounter is provided by fusion of
CD3z onto the Cb-chain within the Sc-TCR. Using this
approach, Sebestyen et al. showed preferential pairing between
CD3z-modified TCR a and b chains while reducing mis-pairing
with unmodified TCR chains (59). To develop this concept
further, Aggen et al. replaced the constant domains of the Sc-
TCR construct with a CD28 or 4-1BB together with CD3z or
LCK signaling domains (60). Although this strategy was able to
reduce mis-pairing, activation of these T cells upon antigen
encounter no longer followed natural TCR signaling pathways,
but rather that of conventional CARs. Because CAR signaling is
less efficient than that of the TCR complex (23, 61), Voss et al.
developed an alternative Sc-TCR scaffold Va-PLK-Vb-Cb plus
Ca (62), relying on assembly with the native CD3 complex for
more physiologic T-cell signaling. To stabilize the structure of
the Sc-TCR, we introduced an extra new disulfide bond between
the Va and the polylinker, which strengthens the interaction
between the Va and Vb domains, favoring surface expression of
the Sc-TCR, while also greatly reduced TCR mis-pairing (63).
One of the potential drawbacks of using this technology is that
not all of the TCRS can form a stable Sc-TCR. According to our
experience, some of the weak TCRS can not be expressed on the
surface of T cells as a Sc-TCR due to the weak interaction
between the Va and Vb domains. With such weak TCR,
genetic engineering of certain frame work regions of the TCR
may be able to help to resolve the problem (64).

Aside from TCR protein design, another way of reducing
TCR mis-pairing and its related side effects is to knock out the
endogenous TCRS via genetic engineering, which also reduces
competition for CD3 binding from endogenous TCRS (65).
Several strategies have been explored to achieve this goal,
including the use of siRNAs (66, 67), zinc-finger nucleases
(68), transcription activator-like effector nucleases (TALENs)
(69, 70), and CRISPR/Cas9 technologies (71, 72). As the
CRISPR/Cas9 has several advantages, including (i) simple and
highly efficient editing, (ii) rapid and affordable manufacturing,
(iii) versatile multiplex genome editing through simultaneously
targeting several genes, and (iv) user-friendly and easily
deliverable. Therefore, this CRISPR/Cas9 system holds great
promise and may lead the way for future genetic engineering
of T cells for cancer immunotherapy (73). The feasibility of
genome editing using CRISPR/Cas9 targeting the TRAC and
TRBC loci was recently demonstrated in primary T cells (71, 74).
March 2022 | Volume 13 | Article 850358
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Using multiplex genome editing, the beta-2 microglobulin class I
MHC and PD-1 genes can also be disrupted alongside the TCR a
and b genes (75, 76). Removal of endogenous TCR and class I
MHC eliminates allogeneic antigen recognition and reduces risk
of GvHD and donor T cell rejection, generating allogeneic
‘universal’ T cells that can be infused in any recipient (77, 78),
as opposed to autologous T cells that can only be re-infused into
the donor patient. The immune checkpoint gene PD-1 is
removed to enhance T cell activity, for which reason the
T cell suppressor LAG-3 has also been knocked out to
improve antitumor activity in vitro and in murine xenografts
(79). We anticipate that other immune inhibitory receptors such
as TGFb receptors can also be disrupted to generate universal
CAR-T and TCR-T cells with enhanced resistance to the
inhibitory TME.

TCR-T cells have been generated by TCR transduction of T
cells in which the endogenous TCR a chain (80), b chain (81), or
both a and b chains (82) were removed using CRISPR/Cas9, or
by orthotopic replacement of TCR-ab chains with tumor
reactive TCRS using CRISPR/Cas9 (83, 84), resulting in
engineered TCR-T cells with enhanced TCR expression and
prolonged control of tumor growth in preclinical murine
models. However, for clinical use, the potential off-target
toxicity of the CRISPR/Cas9 technology has to be taken into
considerations (85). A recent study showed that DNA breaks
introduced by sgRNA/Cas9 can lead to on-target mutagenesis,
such as large deletions and genomic rearrangements at the
targeted sites in mouse embryonic stem cells and in a human
differentiated cell line (86). Therefore, strategies for improving
safety of the CRISPR/Cas9 technology need to be put in place. To
reduce the off-target toxicity, high-fidelity CRISPR–Cas9
nuclease has been developed (87), and a recent review has
provided many strategies about how to refine the CRISPR/
Cas9 technology for clinical applications (88). Recently, a
phase 1 clinical trial was designed to test multiplex CRISPR-
Cas9 gene editing of T cells from patients with advanced,
refractory cancer (89), in which endogenous TCR a and b
chains were removed to prevent mis-pairing, and PD-1
removed to avoid T cell exhaustion. The NYESO1-TCR
engineered T cells persisted for up to 9 months and trafficked
to tumor sites, demonstrating proof-of-concept for multiplex
CRISPR gene editing in cell therapy. Another study
applied CRISPR-edited T cells in patients with refractory non-
small-cell lung cancer also concluded that clinical application of
CRISPR–Cas9 gene-edited T cells is generally safe and
feasible (90).

To achieve the best results of maximally reducing mis-pairing
and enhancing expression and function of the tumor-specific
TCR, we have recently combined multiple strategies by knocking
out endogenous TCR using CRISPR/Cas9 together with
transduction of a single-chain EBV-specific TCR (EBV-Sc-
TCR) (91). This almost eliminated mis-pairing between the
introduced EBV-Sc-TCR and endogenous TCR chains, and we
further enhanced tumor-specific TCR expression, functional
avidity, and IL-2 production by introducing an extra intra-
chain disulfide bond between the Va and the poly-linker (91).
Frontiers in Immunology | www.frontiersin.org 4
Enhancing Persistence and Anti-Tumor
Functions of the Genetically Engineered
T Cells
T cell persistence is a fundamental requisite for durable
immunosurveillance, as many clinical trials revealed that most
non-responder patients showed no in vivo persistence of the
infused tumor specific T cells (36, 37), and in contrast, patients
who achieved complete response or relapse-free survival and
tumor control showed robust proliferative capacity and long-
term persistence of engineered T cells (13, 27). To maintain
persistence of the transferred T cells, a variety of cytokines have
been coadministered to support T cell survival and expansion.
The standard ACT regimen comprises lymphodepletion with
cytotoxic agents, including cyclophosphamide and fludarabine,
followed by administration of recombinant human IL-2 after T
cell transfer (92). Systemic delivery of IL-2, is known to expand T
cells while maintaining functional activity (93), has achieved
durable regression in some metastatic melanoma and renal
cancer patients (94), is approved by the FDA, and is used in
both CAR-T and TCR-T immunotherapy of cancers today.
However, there is evidence suggests that IL-2 may
preferentially expand CD4+ regulatory T (Treg) cells rather
than tumor-killing CD8+ cytotoxic T cells (CTLs) (95, 96).
Therefore, recent attention has focused on modifying the IL-2
molecule to preferentially bind and activate CD8+ CTLs over
Treg cells (97). For example, a half-life-extended super mutant
IL-2 conjugated to a tumor-targeting antibody allowed more
efficient CTL stimulation and expansion in the TME, resulting in
significantly improved complete response rate and lower tumor
relapse in vivo (97).

IL-7, is a hematopoietic cytokine regulating multiple aspects
of T cell biology (98), is essential for T cell survival and
homeostatic proliferation, and promotes the survival of naïve
and memory T cells by upregulating the antiapoptotic molecule
Bcl-2 (99, 100). IL-7 supplementation improved the persistence
and efficacy of transferred T cells, supporting its usage as an
adjuvant for adoptive immunotherapy (101). When IL-7 was co-
expressed in NKG2D-based CAR-T cells, it enhanced CAR-T
persistence and expansion while inhibiting apoptosis and
exhaustion (102). Similarly, IL-7 co-expression in GPC3-CAR-
T cells improved CAR-T efficacy toward liver cancer (103).

IL-12 is a major contributor to effective anti-tumor immune
responses (104), stimulating the effector functions of activated T
cells and NK cells via induction of cytotoxic enzymes such as
perforin and cytokines such as IFN-g (104, 105). Cytotoxic
enzymes can mediate direct killing of tumor cells (106), while
production of IFNg from NK cells as well as CD4+ and CD8+ T
cells inhibits tumor growth (107, 108). IL-12 further modifies the
TME through inhibition of Tregs (107), upregulating MHC class
I presentation on tumor cells (109, 110), and converting
immunosuppressive M2 macrophages into activated antitumor
M1 macrophages (111). IL-12 also prevents the activation-
induced cell death of naïve CD8+ T cells, favoring their
survival and differentiation towards the effector phenotype to
sustain anti-tumor activity against mouse models of
melanoma (112).
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These studies demonstrate that IL-12 is not only required for
the activation of anti-tumor cytotoxic immune responses, but
also directly relieves immune suppression (107). However,
systemic administration of IL-12 is very toxic (113), severely
limiting its utility in clinical applications. To minimize systemic
exposure and potential toxicity while maintaining the beneficial
effects of IL-12, several strategies have been explored, for
example local delivery (114, 115), encapsulating IL-12 with
nanoparticles or heparin (116, 117). Alternatively, deleting the
N-terminal signal peptide of IL-12 or tethering IL-12 to the
surface of TCR-engineered T cells via a membrane anchor
prevents secretion (118, 119), thereby attenuating toxicity
while improving antitumor efficacy. These treatment strategies
may have broad applications to cellular therapy with TILs, CAR-
T, and TCR-T cells. A recent multi-center phase 1 trial used a
chemically activatable IL-12 gene delivered into the tumor site,
where IL-12 expression triggered by the drug veledimex achieved
conversion of an immunologically “cold” TME to an inflamed
“hot” TME with increased influx of IFN-g–producing T cells
(120). IL-18 is another cytokine that shares biological effects with
IL-12 but with reduced toxicity (121). Recent studies exploring
IL-18 in the place of IL-12 suggest that CAR-T cells engineered
to secrete IL-18 enhances CAR-T cell survival and antitumor
activity both in vitro and in vivo by producing IFN-g and several
other cytokines, stimulating expansion of human CD4+ cells as
well as activating the endogenous immune system in
immunocompetent mice (122, 123).

IL-15 is known to stimulate the generation of stem cell
memory T cells (Tscm) with potential to sustain durable T cell
responses (124). Unlike IL-2, IL-15 does not bind to the IL-2Ra
chain, and thus does not stimulate Tregs and may have a more
selective effect. When compared with IL2, IL15 tend to enhance
CAR-T cell antitumor activity by preserving their Tscm
phenotype (125). A comparison of CAR-T cell expansion in
the presence of IL-2, IL-15, or a combination of IL-15/IL-7,
revealed that IL-15 best enhances CAR-T persistence and
function in a mouse model of multiple myeloma (126).
Preclinical observations strongly support the antitumor activity
of IL-15 mediated by CD8+ T cells (127), and IL‐15 co-
expression in CD19-CAR-T not only revealed a strong killing
effect against leukemia cells, but most of the persistent T cells
were phenotypically consistent with Tscm that drive long‐term
persistence (128).

To improve IL-15 half-life and effectiveness in vivo, IL-15 was
associated with IL-15-receptor-a to form a pre-bound IL-15/IL-
15Ra dimer, which showed stronger antitumor activity than IL-
15 monomer (129). Recently, subcutaneous injection of
recombinant human IL15 was tested in patients with advanced
solid tumors, although the treatment produced substantial
increases in circulating NK and CD8+ T cells, nonetheless, no
objective responses were observed (130). However, when IL-15/
IL-15Ra sushi-domain was co-expressed on CD5-specific CAR-
T cells, and tested in a patient with relapsed T-lymphoblastic
lymphoma with CNS infiltration, a rapid ablation of the CNS
lymphoblasts to undetectable levels within 4 weeks and disease
remission was observed (131). To address IL-15-induced
Frontiers in Immunology | www.frontiersin.org 5
immune checkpoint activation, IL-15 can also be combined
with anti-PD-(L)1 and anti-CTLA-4 antibodies (132).

IL-21 is a newly discovered member of the common g-chain
family of cytokines. Like IL-12 and IL-15, and in contrast to IL-2,
IL-21 does not stimulate Tregs, instead, it inhibits Treg
expansion through suppression of Foxp3, thus favoring the
enrichment of antigen-specific CD8+ T cells (133). IL-21
facilitates the maturation and enhances the cytotoxicity of
CD8+ T cells and NK cells, and promotes the differentiation of
memory CD8+ T cells (134, 135). IL-21 synergizes when
combined with IL-12 to further inhibit Tregs (136), and
synergizes when combined with IL-15 to expand CD28-
expressing antigen-specific CD8+ T cells (137, 138). Utilizing
these characteristics, IL-21 performed much better than IL-2 or
IL-15 during in vitro generation of antigen-specific CD8+ CTL
and in an in vivo murine model of cancer immunotherapy (139,
140). In murine tumor models, intratumoral injection of IL-21
strongly inhibited tumor growth and increased the frequency of
tumor-infiltrating CD8+ T cells and mice survival (141). In a
phase 1/2 trial, 4 out of 4 leukemia patients who received WT1-
specific CTL generated in the presence of IL-21 demonstrated
both relapse-free survival without GvHD and did not need
further anti-leukemic treatment (142).

To reduce the toxicity and increase the half-life of IL-21, IL-21
has been conjugated to tumor-targeting antibodies such as anti-
EGFR antibody (143), selectively expanding functional CTLs while
restricting exhausted T cells in the TME. IL-21 upregulates
perforin and granzyme expression in memory and effector CD8+

T cells (144), thus augments the antitumor activity of CD8+ T cells
(145), consistent with the requirement of IL-21 for the long-term
maintenance and function of CD8+ T cells (146). IL-21 fused to
anti-PD-1 antibody stimulated generation of Tscm with enhanced
cell proliferation and tumor-specific CD8+ T cells, outperforming
anti-PD-1 antibody and IL-21 infused as separate treatments
(147). These results demonstrated that IL-21 can be used alone
or in combination with other cytokines to produce tumor-specific
T cells with a memory phenotype, with enhanced persistence,
proliferative capacity, and antitumor efficacy for adoptive
cancer immunotherapies.

Endogenous immune cells can act as a “sink” for administered
cytokines (148), thus the use of a lymphodepleting conditioning
regimen prior to ACT helps to spare the limited cytokines for the
transferred T cells. Moreover, conditioning can also eliminate
immunosuppressive Tregs and MDSCs (149), further supporting
the engraftment and expansion of engineered T cells and
improving therapy persistence and efficacy (150, 151).

Finally, purposeful selection of T cell sub-populations is
another way to enhance persistence and functionality of the
adoptively transferred T cells. Less differentiated T cells such as
Tscm and central memory (Tcm) cells are more effective than
effector T cells when transferred into tumor-bearing mice (152),
thus CAR modification of naïve T cells can generate antigen-
specific Tscm and Tcm cells with long in vivo persistence which
mediated robust, long-lasting antitumor responses (153, 154). To
preserve this early differentiated T cell population, tumor-
specific CTLs can be stimulated by a combination of IL-21 and
March 2022 | Volume 13 | Article 850358
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anti-CD3/anti-CD28 antibody-conjugated microbeads or
nanomatrices (155, 156). Addition of IL-21 alone or in
combination with other cytokines (such as IL-7 and IL-15)
into the expansion culture, can further support the enrichment
and expansion of Tscm cells with superior antitumor activity
(157), consistent with recent clinical data that WT1-TCR
engineered T cells generated in the presence of IL-21 showed
long-lasting persistence with superior anti-leukemia activity in
humans (13, 142).

Enhancing the Homing and Penetration of
Engineered T Cells Into Solid Tumors
To achieve tumor eradication, cancer-specific CTLs need to
migrate and penetrate into solid tumors (158), driven by
interactions between tumor-secreted chemokines and
chemokine receptors expressed on CTLs (159–163). This
process is rate-limited when CTLs express chemokine
receptors at low density or that do not match the specific
chemokines secreted by the tumors (164, 165). This creates an
opportunity to engineer tumor-specific T cells’ chemokine
receptors to match known chemokines or cytokines abundant
in the TME, with encouraging results for enhanced CTL homing
and antitumor efficacy.

The chemokines CCL2, CCL7, and CCL8 are expressed in
many cancer types as well as cancer-associated fibroblasts
(CAFs), tumor-associated macrophages (TAMs), MDSCs, and
mesenchymal stem cells found in the TME, which support the
tumor growth and metastasis (164). All three of these
chemokines are ligands for the CCR2 receptor, thus when
CCR2b was transduced together with a CAR specific for GD2
into human T cells, these modified T cells showed enhanced
trafficking with >10-fold improved homing to CCL2-secreting
neuroblastoma, and significantly enhanced activity against
neuroblastoma xenografts in vivo (166). The same approach,
resulted in 12.5-fold increase in infiltration of CAR-T specific for
mesothelin into established mouse tumors, and significantly
enhanced antitumor activity and tumor eradication (167).
When CCR2 was transduced together with a TCR specific for
WT1 into CD3+ human T cells, double gene-modified CD3+ T
cells demonstrated CCL2-tropic tumor trafficking and
potentiated antitumor activity against WT1-expressing LK79
lung cancer cells both in vitro and in vivo (168). Similarly,
transduction of CCR2 into TCR-T cells specific for the SV40
large T antigen, enhanced recruitment into CCL2-expressing
metastatic prostate adenocarcinoma, and improved in vivo
antitumor effect (169).

Multiple chemokine ligands for the CXCR2 receptor are
expressed in many tumors (170), and also promote tumor
initiation, proliferation, migration, metastasis, and immune
invasion. Thus, CXCR2 has been explored intensively for
cancer immunotherapy. Human hepatocellular carcinoma
(HCC) tumor tissues and cell lines express several chemokine
ligands for CXCR2, however, both human peripheral T cells and
TILs of HCC lack expression of CXCR2. In a recent study (171),
Liu et al. transduced human T cells with a GPC3-CAR together
with CXCR2; compared with CAR-T cells without CXCR2, these
Frontiers in Immunology | www.frontiersin.org 6
cells exhibited identical cytotoxicity but significantly increased
migration in vitro, as well as accelerated in vivo trafficking and
tumor-specific accumulation in a xenograft tumor model.
Similarly, CXCR2 enhanced trafficking and in vivo antitumor
efficacy of CAR-T cells specific for integrin avb6 in advanced
pancreatic and ovarian tumor xenograft models (172). In the
TCR-T field, when CXCR2 was transduced into pmel-1 TCR
transgenic T cells (173), or MAGE-A3-specific TCR-engineered
T cells (174), the CXCR2-TCR-T cells showed increased in vivo
homing, enhanced tumor infiltration, and preferential
accumulation in tumor sites in mice, with enhanced survival
and tumor regression compared with mice receiving control
TCR-T cells. These results indicate that introduction of the
CXCR2 gene into tumor-specific T cells can enhance their
homing and localization to tumors and improve antitumor
immune responses. CXCR2 has also been used to enhance the
migration and homing of NK cells to CXCL5-expressing renal
cell carcinomas (175). Recently, Jin et al. used radiation therapy
to induce tumor secretion of IL-8 (CXCL8), and found that
CD70-CAR-engineered T cells expressing either of the IL-8
receptors CXCR1 or CXCR2, showed enhanced migration and
persistence, leading to complete tumor regression and
immunologic memory in models of aggressive tumors,
including glioblastoma, ovarian, and pancreatic cancers (176).
Like radiation therapy, chemotherapy may also induce
chemokine secretion from tumor cells, resulting in increased
homing and infiltration of adoptively transferred T cells (177).
These studies indicate that genetic engineering of tumor-specific
T cells with chemokine receptors can be combined with
conventional radiation and chemotherapy to enhance
antitumor efficacy. CXCR1 has also been used to enhance
migration and tumor infiltration of NK cells modified with a
CAR specific for NKG2D (178).

Other chemokine receptors used in this way include CCR4
and CXCR4. Similarly, coexpression of CCR4 enhanced
migration of CD30-specific CAR-T cells in response to CCL17
secreted by Hodgkin’s lymphoma in murine xenografts (179).
CXCR4 has also been explored as a means of recruiting T cells
into the bone marrow, whose microenvironment is suggested to
improve memory T cell formation and self-renewal. Khan (180)
et al. overexpressed CXCR4 in CD8+ T cells, observing enhanced
migration toward CXCL12-expressing cells in the bone marrow,
with enhanced memory differentiation, expansion, persistence,
and antitumor function of adoptively transferred T cells. CXCR4
also enhanced migration of NK cells to bone marrow as a means
of targeting bone-marrow-resident tumor cells such as leukemia
(181). CXCR4-modified CAR-NK cells also significantly
improved survival and tumor regression of mice bearing
glioblastoma (182).

Aside from engineering T cells with chemokine receptors,
chemokines can be directly introduced into tumors to enhance T
cell recruitment. For example, intratumoral injection of CXCL2
plasmid DNA combined with inactivated Sendai virus envelope,
suppressed the growth of murine breast cancers and inhibited
lung metastasis through recruitment of CTLs and neutrophils,
further enhanced with anti-PD-1 antibodies to inhibit T cell
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exhaustion (183). Chemokines can also be introduced into
tumors through chemokine-armed oncolytic viruses, which
simultaneously, replicate within and directly kill tumor cells to
amplify antitumor efficacy (184). T cells can also be engineered
to express both chemokines and cytokines to improve antitumor
efficacy. For example, transduction of CAR-T cells to express IL-
7 and the chemokine CCL-19, not only enhanced T cell survival,
infiltration and accumulation in the tumor, but also achieved
complete regression of pre-established solid tumors and
prolonged mouse survival (185). When the chemokine CCL21
and IL7 was transduced into CAR-T cells, it significantly
improved survival and infiltration of both CAR-T and
dendritic cells in the tumor, leading to complete tumor
remission (186).

Overcoming the Immunosuppressive
Tumor Micro-Environment
Infiltration of genetically engineered T cells into the tumor is
only the first step in fighting cancers. Tumor cells inhabit a
heterogeneous microenvironment of infiltrating and resident
host cells, secreted factors and extracellular matrix (187).
Infiltrated cells include immune cells, such as T cells (TILs and
Tregs), macrophages (M1 and M2), and MDSCs, and secreted
factors include the immunosuppressive cytokines IL-10 and
TGFb. The TME also includes stromal cells such as CAFs and
TAMs. These components can mutually interact to induce a
supportive milieu for malignant cell growth, migration, and
metastasis, that evades the immune system and tumor-specific
CTLs (188, 189).

Most tumor stromal cells in the TME express the
immunosuppressive checkpoint ligand PD-L1 (190–192),
which can interact with PD-1 expressed on T cells, resulting in
inhibition of antitumor function and exhaustion of adoptively
transferred TILs (193), CAR-T (194) and TCR-T (195). This
effect can be relieved via checkpoint blockade with anti-PD-1
(196–199) and anti-PD-L1 (200, 201) antibodies. CTLA-4
expressed on activated T cells have a similar effect, as CTLA-4
binds to CD80/86 on antigen-presenting cells with higher affinity
in competition with the T cell costimulation molecule CD28,
dampening antitumor immunity (202). Anti-CTLA4 antibodies
both block the interaction between CTLA4 and CD80/86, and
can also deplete Tregs (203), thus facilitate the costimulation and
expansion of tumor-specific CTL with improved clinical benefits
(204, 205).

Checkpoint inhibitors alone induce a response rate of
approximately 20% of patients in one meta-analysis (206), and
some responding patients will develop resistance (207). One
important resistance mechanism is the upregulation of PD-L1
expression on tumor cells treated with immunotherapy, resulting
in T cell exhaustion and relapse (207, 208). Immune checkpoint
blockade is also associated with significant and in some cases life-
threatening toxicity (209). An alternative approach to
eliminating the immunosuppressive effect of PD-1 on tumor-
specific CTLs uses CRISPR/Cas9 technology to remove PD-1
from CAR-T (210), and TCR-T cells (89). It is possible to go
beyond PD-1-deletion by introducing a chimeric switch receptor
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(CSR) consisting of a PD-1 extracellular domain (PD1ex) and
CD28 intracellular domain (CD28in). When this PD-1:CD28
CSR was transduced together with a CAR (211, 212) or TCR
(213, 214) into T cells, the engineered CTLs still interact with
PD-L1 on tumor cells, but delivers a costimulation signal via
CD28 rather than an inhibitory signal. CAR-T cells generated
using this strategy show increased cytokine production (211),
enhanced killing ability, and increase in central memory T cells
(212). Similarly,this PD-1:CD28 CSR enhanced TCR-T cells to
increase cytokine production and cell proliferation in vitro and in
vivo (213), and prevented PD-L1 upregulation and Th2
polarization in the TME (214). CSR TCR-T cells also
synergized with anti-PD-L1 antibody to secrete more IFNg
compared with control TCR-T (214). Recently, this strategy
has begun to be used in the clinic. In a CD-19 CAR-T study of
relapsed/refractory diffuse large B-cell lymphoma (215), 6
patients who progressed following CD19-CAR-T therapy, were
given CAR-T cells engineered with CSR PD1ex-CD28in, of
which 3/6 patients achieved complete remission, and 1/6
achieved partial response. In another study, in relapsed/
refractory PD-L1+ B-cell lymphoma (216), CSR-engineered
CAR-T cells targeting CD19 showed superior T-cell
proliferation, cytokine production, and cancer cell killing in
vitro and in vivo. Among 17 treated adult patients, 10 patients
had objective response (58.8%), including 7 with complete
remission (41.2%). In both trials no severe neurologic toxicity
or cytokine release syndrome was observed. Endogenous PD-1
was not depleted in these trials, thus we anticipate additional
opportunity to enhance antitumor activity by combining CSR-
engineered T cells with PD-1 knockout. The same CD28 CSR
approach has also been applied to the immune checkpoint
molecules TIGIT (T cell immunoreceptor with Ig and ITIM
domains) and CTLA-4. Co-transduction of a TIGIT : CD28 CSR
together with a tumor-specific TCR or CAR into human T-cells,
drove enhanced cytokine production and superior anti-tumor
function in a xenograft model of established human melanoma
tumors (217). Transduction of a CTLA-4:CD28 CSR into tumor-
specific T cells, resulted in elevated IFN-g and IL-2 production
and enhanced antitumor effect without systemic autoimmunity
(218). A recent study engineered a CTLA4:CD28-CD3z CSR
with the intracellular domains of both CD28 and CD3z,
demonstrating increased cytokine production and cytotoxicity
in vitro and in xenograft models (219). These engineered CAR-T
cells were found to accumulate in tumors and to target MDSCs
without severe GvHD or CRS (219).

Among the multiple immunosuppressive factors secreted
within the TME, TGF-b plays a central role driving tumor
signaling, remodeling, and metabolism (220). TGF-b is
produced by many cell types including tumor cells, stromal
cells and Tregs (221), and stimulates autocrine and paracrine
signaling to promote angiogenesis (222), suppress CD8+ and
Th1 anti-tumor responses (223), and induce epithelial-to
−mesenchymal transition of neoplastic cells and thus facilitate
tumor invasion (224). Recent clinical data associated patient
non-responders to checkpoint blockade with TGF-b signaling
(225). Therefore, blocking TGF-b signaling in the TME could
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potentiate antitumor responses. Indeed, one possible
mechanism of anti-CTLA4 antibody therapy is the depletion of
immunosuppressive TGF-b-producing Treg cells (203), thus
facilitating the costimulation and expansion of tumor-specific
CTL with improved clinical benefit (204, 205). To further
improve on the efficacy of checkpoint inhibitor antibodies,
bifunctional antibody-ligand traps comprising an antibody
targeting CTLA-4 or PD-L1 fused to a TGFb receptor II
ectodomain (TGFbRIIecd) have been generated (226), in
which TGFbRIIecd sequesters TGF-b secreted in the TME,
while the checkpoint inhibitor antibody depletes Tregs and
facilitates the CTL costimulation. This dual strategy may be
more effective against cancers that are resistant to immune
checkpoint inhibitors alone.

As an alternative to TGF-b sequestration, tumor-reactive T
cells can be transduced with a dominant-negative TGFb
receptor-II (dnTGFbRII), generating TGF-b-resistant
antitumor T cells (227). TCR-T cells expressing dnTGFbRII
demonstrated complete tumor regression and prolonged
survival in a mouse model of advanced and invasive prostate
carcinoma. In a recent clinical study, patients with relapsed
Hodgkin lymphoma were treated with EBV-specific T cells
engineered to express dnTGFbRII, and 4/8 patients showed an
objective clinical response (228), demonstrating that TGFb-
resistant tumor-specific T cells can persist safely in patients
and potentially enhance the efficacy of T cell immunotherapy.
To take advantage of the high concentration of TGF-b in the
TME, a recent study fused the TGF-b receptor II (TGFbRII)
extracellular domain to the intracellular domain of 4-1BB to
convert the immunosuppressive effect of TGF-b into an
immunostimulatory signal (229). The same cells were also
transduced with a CAR-CD3z targeting the prostate-specific
antigen and an inverted cytokine receptor consisting of the IL-
4R extracellular domain fused to the IL-7R intracellular domain.
Coexpression of these 3 transgenic receptors generated an
additive effect with improved expansion, persistence, tumor
lysis, and selective antitumor activity in vivo. Transduction of
the TGFbRII-41BB CSR together with a NYESO1-specific TCR
promoted abundant effector cytokine production in T cells,
resulting in markedly enhanced tumor clearance in an in vivo
solid tumor model (230). Like TGF-b, the Fas ligand-mediated T
cell death signal that is highly expressed in the TME can also be
converted into pro-survival signal via CSR, by fusing the Fas
extracellular domain with the 4-1BB intracellular domain (231),
resulting in engineered T cells with increased pro-survival
signaling, proliferation, antitumor function, and enhanced in
vivo efficacy against leukemia and pancreatic cancer mouse
models. These studies clearly demonstrate the potential for
using CSRs to convert the TME’s immunosuppressive signals
into immunostimulatory signals in engineered antitumor T cells.

Enhancing Tumor-Specific Killing by
Targeting Neoantigens
Over the past decade, many tumor-associated antigens (TAAs)
have been discovered and investigated as targets for cancer
immunotherapy. These include the cancer testis antigens (e.g.,
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New York esophageal squamous cell carcinoma 1 (NY-ESO)-1)
(25), melanoma-associated antigen (MAGE-A3 (174), MAGE-
A4) (232), differentiation antigens (e.g., melanoma antigen
recognized by T-cells 1 (MART-1) (233), tyrosinase/gp100
(234), overexpressed oncogenes (e.g., Wilms’ Tumor antigen 1
(WT1) (13, 235, 236), surviving (237), tumor suppressor genes
(e.g., TP53) (238); and TAAs that are organ-specific (e.g.,
prostate-specific antigens) (239) or cell-type-specific antigens
that are transiently expressed during differentiation (e.g.,
terminal deoxynucleotidyl transferase) (240), or normally
expressed only during embryonic development (e.g.,
carcinoembryonic antigen) (241). While many of these have
advanced to the clinic, the residual expression of many TAAs in
normal tissues often leads to toxicity from TAA-targeted therapy
(234, 242–244). There is therefore a need to target truly tumor-
specific antigens. This is the basis for targeting antigens from
oncogenic viruses, such as HPV (245), EBV (246) and HBV
(247), which can potentially eradicate virus-induced cancer cells
(248, 249).

While most cancers are not viral in origin, they share a
hallmark of genomic instability (250), which often leads to the
occurrence of a large number of mutations. Mutant amino acid
coding sequences can be expressed, processed, and presented on
the surface of tumor cells as cancer-specific neoAgs, and
subsequently recognized by T cells. CTLs targeting neoAgs are
less likely to react against normal tissues or face immune
tolerance. Indeed, evidence from treatment of cancers with
checkpoint blockade suggests that tumors with higher
mutational burden are likely to respond to immunotherapy
(251, 252). In a study of 266 cancer patients, responders to
checkpoint blockade therapy more often had tumors harboring
TILs (so-called ‘hot’ tumors), while non-responders had tumors
with few TILs (‘cold’ tumors) (253). It is thought that tumors
harboring more mutations generate more neoAgs, which can be
recognized by neoAg-specific TILs (254). These TILs are
frequently suppressed in the TME by immune checkpoint
molecules such as CTLA-4 and PD-1/PD-L1, but can be
reactivated following checkpoint blockade and thus able to
induce tumor regression. As a result, cancers with high
mutational load, such as melanoma and lung cancer, are more
susceptible to checkpoint blockade therapies. There is also
evidence that checkpoint blockade not only increases the
number but also enhances the antitumor activity of neoAg-
specific TILs (255).

Combining these clinical data, we hypothesize that
immunotherapy through checkpoint blockade could be further
augmented with neoantigen vaccines. Such vaccines could
stimulate and amplify neoAg-specific TILs, which are released
and reactivated upon checkpoint blockade to destroy tumor cells.
Indeed, a personalized RNA-based vaccine was recently used to
treat stage III and IV melanoma patients (256). All 13 patients
developed T cell responses against multiple neo-epitopes, and
each patient developed T cells against at least three mutations.
Vaccination reduced rate of metastases and sustained
progression-free survival in 8 patients. Notably, 1 patient
showed complete response when the vaccination was
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combined with PD-1 blockade therapy. In another study, 4/6
neoAg-vaccinated patients showed no tumor recurrence at 25
months after treatment, while 2/6 patients with recurrent disease
subsequently showed complete tumor regression following
treatment with anti-PD-1 therapy (257). A phase Ib trial
combining a personalized neoAg vaccine with PD-1 blockade
found durable, neoAg-specific CD4+ and CD8+ T cell responses
in all 82 treated patients, and T cells migrated to metastatic
tumors and mediated tumor cell killing (258). Many clinical
studies suggest that neoAg-specific T cells are the main
mediators of tumor destruction in patients who responded to
checkpoint blockade therapy (252, 259) or adoptive T cell
transfer (260, 261). Both CD8+ and CD4+ neoAg-specific T
cells contribute to lasting tumor clearance (262–265), and work
continues to develop strategies to promote maximal cytotoxic T
cell responses (266).
SUMMARY AND FUTURE PERSPECTIVE
The power of the human immune system in fighting cancer has
been demonstrated by the adoptive transfer of TILs (1, 2) and
CAR-T therapy for hematological malignancies (5, 6). However,
the promise of adoptive cell therapy for solid tumors has not yet
been fully realized (14, 15). TCR-T therapy holds a number of
advantages over alternative strategies. TCRS can recognize
epitopes derived from both surface and intracellular proteins,
enabling detection of a much broader range of targets compared
to CAR-T, including TAAs, cancer germline antigens, viral
oncoproteins, and neoAgs. Moreover, TCRS have naturally
developed to sensitively detect low epitope concentrations,
down to as little as a single molecule. Recent clinical research
on TCR-T has produced meaningful responses in a variety of
cancers (24–27), and in some cases durable and curative
responses in solid tumor patients (29, 262–265). However, as
many of these studies mainly targeted TAAs, we envisage
targeting tumor-specific neoAgs to produce more profound
antitumor immune responses. To achieve the goal of complete
eradication of solid tumors, several aspects need to
be considered:

1. Targeting tumor-specific antigens, combining neoAg
vaccines, checkpoint blockade therapy, and adoptive
transfer of genetically engineered neoAg-specific T cells
(Figure 1). While targeting neoAgs can achieve complete
tumor regressions in some settings, combination strategies
are likely to expand their utility and increase response rates.
We propose to extend the concept of combining neoAg
vaccines and checkpoint blockade therapy, together with
the adoptive transfer of neoAg-specific T cells as a
generalizable therapeutic strategy. This starts with high-
throughput screening of large patient cohorts –
encompassing multiple tumor types – to identify and
collect a library of patient-derived neoAgs. This will enable
vaccination using combinations of unique and shared cancer-
specific neoAgs, to be tested in conjunction with checkpoint
blockade therapies. In a second step, we propose to isolate
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neoAg-specific CTLs from responding patients, especially the
CTLs specific for neoAgs representing driver mutations, to
construct a TCR library that can be used to generate cell
therapies for patients where vaccination is not effective (267).
Challenges faced in this step include the limited availablity of
patient derived materials and the low frequencies of neoAg-
specific T cells from patients. To overcome these limitations,
Stronen et al. developed a strategy for the induction and
isolation of neoAg reactive T cells from healthy donor T cell
repertoires (268), which contain higher frequency of neoAg
reactive T cells that are not affected by the patient’s TME.
Recently, this strategy has been optimized by Ali et al. into a
standard protocol which will facilitate the isolation of neoAg
specific T cells for cancer immunotherapy (269).

2. Eliminating TCR mis-pairing. Although neoAgs represent
ideal targets for cancer immunotherapy, nonetheless, they are
frequently ignored by patient’s TILs (268). Under such
situation, adoptive transfer of high avidity neoAg-specific
TCR-T cells will be a valuable supplementation to the neoAg
vaccine and check point blockade therapies. However, mis-
pairing of introduced TCR with endogenous TCRS could
potentially cause auto-reactivity against patient’s MHC
molecules, thus thoughtful innovations in TCR engineering
technology could be incorporated. In this regard, genetic
engineering of the TCR constant domains can be combined
with design of a single-chain TCR, and the CRISPR/Cas9
genome editing can be used to orthotopically replace the
endogenous TCR with tumor reactive TCR (83, 84). Through
applying these recent innovative technologies in T cell
engineering, TCR mis-pairing can be eliminated, while
generating antitumor T cells with enhanced TCR
expression and functions.

3. Maintaining long-lasting immunosurveillance against tumors
and keeping patients in relapse-free survival. To achieve this
goal, a fundamental requisite is persistence of genetically
engineered T cells after ACT. Provision of cytokines can play
important roles in supporting T cell survival and functions
(99, 100, 137, 138), but is often associated with severe
cytotoxicity if delivered systemically (113). Therefore,
controlled and targeted delivery of cytokines through
genetic engineering of tumor-specific T cells (116–119), can
not only support T cell survival and generate long-term
memory T cells (124, 138), but can also modify the TME to
create an inflammatory environment (109, 111), and
maintain a “hot” tumor milieu that self-sustains the
antitumor immune responses (120).

4. Facilitating migration and penetration of genetically
engineered T cells into the solid tumor (158). Genetic
engineering of tumor-specific T cells with chemokine
receptors that match chemokines secreted by the TME can
be adopted to recruit T cells to the tumor sites (168, 174). For
enhanced antitumor effect, chemokines and cytokines can be
combined (185, 186), and introduced through oncolytic
viruses or vaccine adjuvants (159, 184). Radiation and
chemotherapy can further augment ACT by stimulating
chemokine secretion from tumor cells, increasing homing
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and infiltration of adoptively transferred T cells into solid
tumors with enhanced antitumor activity (176, 177).

5. Overcoming the immunosuppressive effects of the hostile
TME and fully realizing the antitumor potential of
engineered T cells. The TME represents a formidable
hostile environment for antitumor T cells and favors tumor
growth, metastasis, and immune evasion. The field has made
advances in blocking the immunosuppressive factors of the
TME (206), and developed innovative genetic engineering
strategies to convert immunosuppressive ligands/factors into
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immunostimulatory signals (211–214, 229). These strategies
can not only remodel the immunosuppressive network
within the TME (230), and convert ‘cold’ tumors lacking
TILs into ‘hot’ tumors with genetically engineered T cells, but
can also enhance T cell co-stimulation and survival, and
produce TME-resistant antitumor T cells (214, 231, 270).
These TME-resistant T cells can be further expanded by
neoAg vaccines, and their antitumor activity can be further
enhanced by the checkpoint blockade therapies, and
potentially lead to complete tumor eradication.
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FIGURE 1 | Cancer immunotherapy by combining neoAg vaccine and chekpoint blockade therapy together with adoptive transfer of neoAg-specific TCR-T.
(A) Combination of neoAg vaccine and chekpoint blockade therapy. NeoAg vaccines can be used to stimulate and expand tumor reactive CTLs in the circulation
system. When these expanded CTLs come into the TME, they will be inactivated by the check point molecules such as PDL1 and CTLA4, or by the
immunosuppressive cytokine such as TGF-b (left). Using check point blockade therapies such as anti-PD(L)1 or anti-CTLA4 to block the check point interactions
(middle) or using immunomodulatory cytokines such as IL-12 (right) to convert the tumor associated macrophage M2 into activated antitumor M1, these neoAg
vaccine expanded CTLs can be reactivated and attack the tumor. (B) Genetically engineered TCR-T cells as a complement to neoAg vaccine and chekpoint
blockade therapy. Radiation and chemotherapy can induce secretion of chemokines, which could potentially attract the tumor reactive CTLs to the tumor site. But
more than offten, tumor reactive CTLs from patients are either too rare or with low avidity, thus could not control the tumor growth, as reflected by the fact that only
a proportion of patients responded to neoAg vaccines or check point blockade therapies. Therefore, genetic engineering strategies could be used to complement
the neoAg vaccines and check point blockade therapies. (1). By transducing patient’s T cells with neoAg-specific TCR, we could obtain truly tumor specific T cells.
(2). Expanding these neoAg-specific TCR-T cells with IL-15 or IL-21, we could potentially acquire T cells with early differentiated phenotype of Tscm and Tcm. (3). By
introducing chemokine receptor genes into these TCR modified T cells, these TCR-T cells could be attracted to the tumor site. (4). By expressing chimeric switch
receptor (CSR) on these neoAg-specific TCR-T cells, the immunosuppressive effect of certain immune suppression factors such as PD-L1 or TGF-b within the TME
could be potentially converted into immunostimulatory signals inside these TCR-T cells. Thus, with these innovative engineering strategies, we could not only obtain
sufficient numbers of high avidity, early differentiated long lasting tumor reactive TCR-T cells, but these T cells could also be attracted and infiltrate into the solid
tumor, and within the TME, these TCR-T cells would have the ability not only to resist the the immunosuppressive effect of the TME, but could also get stimulated
and further expanded by neoAg vaccine and check point blockade therapies, and finally achieve the ultimate goal of destroying the tumor.
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With the fast development and innovation of genetic
engineering technologies, incorporating the aspects
summarized above into the TCR-T therapeutics development,
TCR-engineered T cells can be made truly tumor-specific and
have the ability to migrate and penetrate into solid tumors, and
become TME-resistant. TCR-T has potential to become a
powerful tool for fighting cancers, especially solid tumors
where other approaches have been less effective. By combining
neoAg vaccines, checkpoint blockade therapy, and the adoptive
transfer of neoAg-specific TCR-engineered T cells, we believe
such a combination approach could lead to significant
improvement in cancer immunotherapies, and this approach is
scalable across different tumor types, and may provide a general
strategy for the eradication of multiple cancers.
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