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A fundamental concern of the majority of cancer scientists is related to the identification of
mechanisms involved in the evolution of neoplastic cells at the cellular and molecular level
and how these processes are able to control cancer cells appearance and death. In
addition to the genome contribution, such mechanisms involve reciprocal interactions
between tumor cells and stromal cells within the tumor microenvironment (TME). Indeed,
tumor cells survival and growth rely on dynamic properties controlling pro and anti-
tumorigenic processes. The anti-tumorigenic function of the TME is mainly regulated by
immune cells such as dendritic cells, natural killer cells, cytotoxic T cells and macrophages
and normal fibroblasts. The pro-tumorigenic function is also mediated by other immune
cells such as myeloid-derived suppressor cells, M2-tumor-associated macrophages
(TAMs) and regulatory T (Treg) cells, as well as carcinoma-associated fibroblasts (CAFs),
adipocytes (CAA) and endothelial cells. Several of these cells can show both, pro- and
antitumorigenic activity. Here we highlight the importance of the reciprocal interactions
between tumor cells and stromal cells in the self-centered behavior of cancer cells and
how these complex cellular interactions control tumor progression and repression.

Keywords: tumor microenvironment, neoplastic evolution, reciprocal interaction, metastatic dissemination,
stromal cells secreted molecules, philosophy of cancer
INTRODUCTION

Cancer is amulti-causal andmulti-level process categorized by heterogeneity of effects,mainly affecting
various cellular functions that regulate neoplasia process and progression. Previously, cancer was
considered as a disease related to the environment and endogenous factors, and lately molecular and
genetic studies emerged in attempt to explain cancer and to understand its main mechanisms (1). It is
now evident that cancer cells disrupt the rules and function of normal cells. Indeed, cancer cells divide
and proliferate when is not necessary, do not die when is required, take advantage of the resources of
other normal cells and perturb the harmony of the normal tissue environment. Furthermore, while the
collaborating “normal” cells have limited proliferative capacity, tumor cells can resist to cell death and
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escape from the immune system. Furthermore, while normal cells
generate and use biological signals andmediators essential for their
functions and survival, cancer cells transform their surrounding
normal cells to use more resources for themselves in order to grow
and spread indefinitely in an egocentric manner. Thereby, cancer
cells can be considered as newly modified normal cells that have
stopped interacting normally with the other immediate cells.
During these processes the transformed cells adapt malignant
mechanisms to impose their control of the newly transforming
microenvironment (2). However, although these cellular
interactions participate in carcinogenesis, they can also repress
tumor growth and evolution. Thereby, what are the elements that,
once affected, are responsible for the self-centered behaviors of
cancer cells? What are the mechanisms to be defined in order to
explain why cancer can or cannot develop following these
interactions? Why cancer cells and not normal cells that take
advantage of this cellular interactions? In addition, it is also
difficult to explain how certain primary tumors remain dormant
unable to progress and form metastases while interacting with
stromal cells? Finally, what are the factors that suddenlymake these
tumors to emerge and start to grow. In this review we address the
importance of the major cellular interactions in the tumor
microenvironment that control tumor cells and how these
interactions influence the causality of cancer and neoplastic
evolution. We consider the following:

Dynamic Reciprocity
Denotes bidirectional communication in all kinds of cells,
involving specifically the nucleus and cellular extracellular
matrix (ECM) elements.
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Reciprocal Cellular Interaction
Bidirectional interaction between cells and their microenvironment.
During this interaction, cells within a specific tissue express and
produce a panel of signals/mediators to which other tissues and cells
can react and reply. In turn, the responding cells produce distinct
signals towhich the signaling cells also respond. In this interaction all
the involved cells are signaling and responding elements.
DYNAMIC RECIPROCITY MODEL: FROM
HOMEOSTASIS OF SINGLE CELL TO
CANCER TISSUE

Normal tissue formation relies on wide range of cell types with
specific function and complementary roles, and on secreted factors
or mediators that mediate various effects on the developing tissue
and its cellular interactions.However, deregulations at the single cell
level may contribute to global cancer initiation, progression
and dissemination. In 1982, Bissell et al. (3) and later in 2009, Xu
et al. (4) introduced the Dynamic Reciprocity Model (DRM) to
explain at the cell level how the cross talk between several cell
constituents can be involved in carcinogenesis andmetastasis. This
model assumes that at the cell level some constituents such as the
cytoskeleton and the nuclear matrix are involved in a reciprocal
interaction with the ECM to maintain the normal architecture and
the function of specific cell in a specific tissue or organ (Figure 1).
Indeed, in addition to its role in thecellmovement andshapedesign,
through its intracellularmolecules, the cytoskeleton is also involved
in the regulation of various cellular functions at both, the cellular
FIGURE 1 | Dynamic Reciprocating Model (DRM). At the normal single cell level, the cytoskeleton and the nuclear matrix interact in a reciprocal manner (I). This
interaction maintains normal cellular architecture and functions through ECM components expression and remolding. Activated cytoskeleton molecules mediate the
activation of various nuclear promotors that in turn induce the expression of molecules including ECM components that control the cellular shape and structure (II). In
cancer cells this regulation is altered leading to high cytoskeleton and ECM components expression (III) and activation (IV).
April 2022 | Volume 13 | Article 850856
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and genetic levels. Following their activation, various cytoskeleton
molecules mediate through distinct and interconnected signals the
activation of various nuclear promotors. In turn, the latter induce
the expression of ECM proteins that control the cellular shape and
structure. Interestingly, the cytoskeleton and ECM molecules are
also regulatory factors of cell proliferation, motility and survival/
apoptosis. Thereby we can speculate that cancer occurs when the
dynamic and reciprocal interaction mediated by the cytoskeleton
and nucleus is compromised or altered. Undeniably, the expression
and the accumulation of ECM components such as collagen,
proteoglycans and their remodeling enzymes (MMPs,
Urokinases) are strictly regulated in order to maintain normal
cellular functions and shape. Dysregulation in the expression of
these ECMmolecules and alterationof the proteolytic activity of the
ECM enzymes affect the tissue microenvironment, leading to
tumorigenesis and tumor cell dissemination (Figure 1). We can
assume that the cytoskeleton is therefore essential in both cellular
and ECM regulation, although much work remains to be done to
define the mechanisms involved.

RECIPROCAL CELLULAR INTERACTION
AND TUMOR PROGRESSION

Tumors are considered as new developing organs that contain
both malignant cells and wide range of non-malignant cells that
lost their ability to continuously preserve tissue homeostasis and
architecture. The main non-malignant cells that participate in
the constitution of the tumor tissue are immune cells (e.g.
macrophages/TAMs, NK, and T cells), fibroblasts/CAFs,
endothelial cells and adipocytes/CAAs (5). The communication
between cancer cells and these non-malignant cells seemed to
control the outcome and the evolution of the developed tumors.
In normal tissues the cellular interactions can be mediated
through physical communication involving receptors and/or
various ECM constituents and ECM-imbedded enzymes and
through diverse range of mediators produced by the involved
interacting cells (5, 6). These include growth factors, chemokines
and cytokines and other mediators of which the expression and
production are strictly regulated (7). The proteolytic activation of
these molecules or expression was reported to be also required
for cancer cell interaction with the TME (8–11). Thereby, the
disturbance of the tissue homeostasis generates changes in the
activity and the function of the communicating cells. In turn
these changes affect cell proliferation, migration and survival
leading to tumor progression or repression (7). In this section we
will address the major cell-cell interactions within the tumor
microenvironment involving cancer cells and non-malignant
cells and their role in the neoplastic evolution and the outcome
of tumor progression and repression.

CANCER CELLS AND IMMUNE CELLS
INTERACTION

By infiltrating tumors, immune cells mediate cytotoxic effect on
cancer cells. Although the hypothesis about the host defense that
represses cancer cells growth were formulated in 1909 by Paul
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Ehrlich (12), the concept of immunological surveillance was
introduced by Frank MacFarlane Burnet in early 70s (6).
Indeed, based on the hypothesis that neo-antigens expression
on tumor cells are able to induce immunological events against
cancer cells he formulated the immune surveillance theory (6).
He wrote that: “It is by no means inconceivable that small
accumulation of tumor cells may develop and because of their
possession of new antigenic potentialities provoke an effective
immunological reaction with regression of the tumor and no
clinical hint of its existence” (6). However, the efficacy of the
tumor-infiltrating immune cells can be evaded by cancer cells
using complex mechanisms where various immune cells are
driven to participate in tumor initiation and progression.

The interaction of immune cells and cancer cells are mainly
summarized in three major phases (13). During all these steps,
cancer cells and immune cells use various mediators and
interactors that determine tumor growth or repression. These
include: 1-the cancer cells clearance phase or elimination, where
the immune cells are able to eradicate the newly transformed cells,
2-the equilibrium phase, that corresponds to a balance between
the eradicated and the newly formed cancer cells due to the
maintained activity of immune cells (14). In this phase
the tumor cells are considered as dormant. The last step is the
escape phase characterized by the accumulation of tumor-cell
variant subpopulations (or clones) occurred during the
equilibrium phase (15). This process is the direct consequence
of the heterogeneity of the transformed cells that subsequently
results in the development of cellular mechanisms allowing
immune cells escape or suppression (16). The generated cancer
cell clones increase their ability to grow and proliferate in an
immunocompetent environment.
ELIMINATION PHASE

In this cellular cross talk, the activity of the immune cells is optimal
and able to stop progression of tumor growth (Figure 2). Indeed,
under normal conditions, immune cells mediate their cytotoxic
activity only following the acquisition of the transformed
phenotype by cancer cells (16). The elimination of cancer cells by
the immune cells involves both the innate (general and rapid) and
the adaptive (specialized) immune systems (17). During these
processes, immune cells such as T cells and macrophages are able
to distinguish tumor cells from normal cells through expression of
specific molecules such as the ligands for NKG2D on tumor cells.
Throughout cell transformation, the release of various
proinflammatory molecules and chemokines by tumor cells is
enough to activate the innate immune system. Following cancer
cells recognition, the immunecells secrete variousmolecules suchas
IFN-g and perforin that eliminate the emerging tumor cells. These
processes are then gradually increased leading tohighproductionof
cytokines and chemokines that permit the recruitment of more
immune cells. In turn, the activated immune cells participate in the
accumulation of cytotoxic products such as perforin, reactive
oxygen or TRAIL (16). Thereby, this positive loop of immune
cells recruitment and activation enhances the generation of tumor
antigens of dead tumor cells. Subsequently, the generated antigens
April 2022 | Volume 13 | Article 850856
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induce the activation of the adaptive immune system that in turn
participate in the ongoing cancer cells elimination process. Thus,
this phase of cancer cells and immune cells interaction is an
uninterrupted mechanism where the newly formed cancer cells
expressing specificmarkers and cytokines are identifiedby immune
cells and eliminated.
EQUILIBRIUM PHASE

The tumor cells that have survived the elimination phase enter
into a dynamic equilibrium with their interacting immune cells.
This phase is the longest of the three phases of the cancer cells
and immune cells interaction and may persist for many years
(dormant tumors) (16). The T lymphocytes are the main
immune cells involved in the equilibrium phase where they
secure the preservation of this cancer cells and immune cells
communication. Cytokines like IFN and TNF were also found to
be involved during these interactions (18). In addition, IFN was
found to be a key player in the progression from the elimination
phase to equilibrium phase through its selective immunoediting
pressure (16). Despite the elimination of abundant emerging
tumor cells, several tumor cell variants with different mutations
may resist and survive to the activated immune cells. During this
period, the heterogeneity and genetic instability of cancer cells
that subsist the elimination phase are the main causes. Of these
Frontiers in Immunology | www.frontiersin.org 4
processes the nucleotide-excision repair instability (NIN),
microsatellite instability (MIN), and the chromosomal
instability (CIN) (19, 20) are the major genetic instability that
were found to provide tumor cells variants with reduced
immunogenicity and/or ability to grow in a highly
immunocompetent environment. The altered environment
with accumulated cytokines and hypoxia also favors
immunosuppression leading to the escape phase (Figure 2).
ESCAPE PHASE

Tumor cell variants derived from the equilibrium phase carry
various genetic changes that confer cancer cells resistance to
immune detection and elimination, allowing the tumors to
expand and grow. At this phase, cancer cells use various strategies
to avoid the immunosurveillance of the innate and/or adaptive
immune system. They can repress the anti-tumoral immune
responses through the production of immunosuppressive
cytokines such as TGF-b and IL-10 or through the recruitment of
T cells with immunosuppressive activities such as the regulatory T
cells, MSCs and MDSCs (14, 21) (Figure 2). The alterations that
occur on tumor cells can also affect tumor recognition by immune
cells. These include altered cell surface antigen expression, loss of
MHC elements (22), liberation of NKG2D ligands (23), and
resistance to IFN-g effect (24). The expression of aberrant
FIGURE 2 | Cancer cells and immune cells communication. From immune surveillance to immune escape. Exposure to internal and/or external risk factors induced
cell transformation (I) of which the development is repressed by intrinsic tumor suppressing mechanisms (e. g. tumor suppressor genes and apoptosis) (II). During the
elimination phase, immune cells such as natural killer cells (NK), and T cells are able to recognize (e.g. through presence of NKG2D ligand) and eliminate tumor cells.
The equilibrium phase involves the continuous elimination of tumor cells by immune cells secreting cytotoxic agents (INF, perforin and others) and the accumulation
of resistant cancer cell variants (III). At the escape phase, as a result of heterogeneity, tumor cells that are less immunogenic are able to escape immunosurveillance
and secrete cytokines and chemokines that recruit immunosuppressive cells (Tregs, MSCs and MDSCs), which suppress the antitumor immune responses through
different pathways including T cell and NK cell activity repression (IV).
April 2022 | Volume 13 | Article 850856
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antigens on tumor cells also affects the anti-tumoral response by
inhibiting the proliferative response of immune cells (25).
Production of MSCs with potent immunosuppressive function
may also contribute to inactivation of T cells through various
mediators such as nitric oxide (NO) that limit the proliferation
and mediate apoptosis of T cells (25, 26).
CROSSTALK BETWEEN FIBROBLASTS
AND CANCER CELLS

In normal tissues, fibroblasts are responsible for tissue integrity
(27). These cells can reply to tissue damage by their
differentiation to myofibroblasts that in turn coordinate the
wound healing process and the repair of the damaged tissue.
These biological functions are mediated by ECM synthesis and
remodeling and through the permanent fibroblasts interaction
with immune cells (28). Fibroblasts within the tumor
microenvironment that exhibit a cancer-associated phenotype
are denoted as “cancer-associated fibroblasts” or CAFs (29).
During tumor initiation and progression, the physiological
functions of normal fibroblasts are exaggerated in CAFs which
agrees with the image of tumors as “wounds unable to heal” (30).
CAFs produce and release various cytokines, chemokines,
metabolites, enzymes and ECM molecules that induce cancer
Frontiers in Immunology | www.frontiersin.org 5
cell proliferation, and migration and other processes that support
tumor growth and the malignant phenotype of tumor cells.
These include angiogenesis and Epithelial-Mesenchymal
Transition (EMT) (29–31). However, these molecules when
produced by CAFs can also repress tumor growth and
progression (29, 32, 33) (Figure 3).
PRO-TUMORIGENIC FUNCTION OF CAFS

The secreted molecules by the CAFs are the main driver of their
pro-tumorigenic function. Of the mediators involved in the cross
talk between CAFs and cancer cells are various chemokines (e.g.
CXCL12, CCL7) (34, 35), growth factors (TGFbs, FGFs and
HGF) and several ECM proteins (collagens and proteoglycans)
(36–40). These molecules induce tumor progression by directly
increasing cancer cell survival, proliferation, stemness, and the
acquisition of the metastatic phenotype. On the other hand,
cancer cells also secrete similar molecules that stimulate CAFs
activity and thereby leading to the generation of a set of signaling
activities converging to the promotion of tumor progression (41,
42). The cancer cells and CAF-derived molecules can also
function in a positive feedback loop to increase and maintain
CAFs activation (28). For example, both CAFs and cancer cells
are able to secrete LIF to activate CAFs and their ECM
FIGURE 3 | Roles of CAFs and cancer cells interaction in tumorigenesis. CAFs derived from normal fibroblasts interact with tumor cells physically (I) or through
secreted molecules and ECM remodeling (II) that either promotes (III) or suppresses tumorigenesis (IV). While the tumor-promoting CAFs participate in tumor cell
growth, survival and migration, angiogenesis (V), EMT and immune cell activity repression, the tumor repressing CAFs and normal fibroblasts inhibit these processes.
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remodeling that favors CAFs migration together with cancer cells
in a combined manner (43). CAFs are also involved in the
induction and enhancement of angiogenesis through their
ability to produce and secrete various proangiogenic factors
such as VEGF (44). Similarly, through their ability to secrete
inflammatory molecules such as IL-1, IL-6 and TNFa, CAFs
participate in inflammation-mediated tumor progression (45).
Various of the CAFs secreted molecules participate as well in the
generation of an immunosuppressive microenvironment that
suppresses the immune system activity and favors tumor
escape and progression (29, 45, 46). Furthermore, CAFs
contribute to tumor progression through their role in the
regulation of the metabolic activity within the tumor
microenvironment (29, 45, 46) (Figure 3).

By direct contact with cancer cells CAFs can also facilitate
metastasis. During this physical interaction CAFs were reported
to exert mechanical force on cancer cells to allow cooperative
invasion (47). This Force is mediated by junction between E-
cadherin expressed by cancer cells and N-cadherin expressed by
CAFs. Physical interaction between CAFs and cancer cells can
also trigger activation of signaling pathways involved in tumor
cell invasion (47). Alteration of this cellular connection abolishes
the CAFs migration during cancer cells invasion (47). Similarly,
CAFs were found to mediate invasion of cancer cells through
generation of migratory tracks in the ECM matrix where cancer
cells follow CAFs to mediate cooperative invasion (48). The role
of CAFs in the metastatic phenotype of tumor cells was also
linked to EMT. Cancer cells undergoing EMT lose their ability to
mediate cell-cell interactions and were found to have enhanced
secretion of IL-6 (29). In turn, this cytokine activates CAFs to
secrete several MMPs that further increase the EMT phenotype
in cancer cells and subsequently facilitating cancer cells
dissemination and metastases formation (29).
ANTITUMOR FUNCTION OF CAFS

Compared to the pro-tumorigenic function of CAFs, several
secreted CAF mediators can exert antitumor functions such as
IFNg. This factor promotes an anti-tumoral immune pressure
against cancer cells through the recruitment of immune cells and
their secreted molecules (29, 45, 49–51). Thus, the CAFs seemed
to have a dual role probably linked to their heterogeneous
populations and the nature of their secreted mediators (Figure 3).
ENDOTHELIAL CELLS AND CANCER
CELLS INTERACTION

The importanceof endothelial cells in the context of cancerhas been
widely explored. Already in 1945, it was reported that inoculated
tumors inmice are able to recruit vessels directly from surrounding
tumor area (52). Lately, in the early 70s, a factor with activating
effect on the formation of new tumor vascular vessels was isolated
from the related tumors (53, 54). Subsequently, the appearance of
Frontiers in Immunology | www.frontiersin.org 6
new blood vessels formationwas designed as a predictable property
of various cancer cell types. This event was described by Judah
Folkman as the initial sign that a group of cell populations has
becomededicated toneoplasia (53).Cancer cells neednutrients and
oxygenderived fromtheir close bloodvessels inorder to survive and
proliferate. Tumors attain their vascularization by inducing the
formation of new vascular vessels, a process known as tumor
angiogenesis, or by using pre-existing vasculature, a phenomenon
described as vascular co-option (55).

The onset of malignancy requires also reciprocal interactions
between endothelial cells and tumor cells (56). Tumor
neovascularization can also affect the microenvironment of the
growing tumor and cause tumor immunosuppression by
recruiting immunosuppressive cells, and inhibiting cytotoxic T
cell activity through angiogenic factors (57). In turn, the
activated tumor microenvironment releases a large number of
factors that promote tumor angiogenesis, establishing a tumor
growth-promoting cycle (58) (Figure 4). In addition, the formed
tumor vessels are immature with high permeability and hypoxia
that further facilitates tumor growth and metastasis (59).

In normal conditions, endothelial cells in adult and mature
organs are inactive and dormant cells. These cells can be
activated to migrate and proliferate by pro-angiogenic factors
(60). This angiogenic switch participate in the activation of
dormant tumors that become more proliferative and acquire
more aggressive and metastatic phenotypes (56). Compared to
normal endothelial cells, tumor endothelial cells are
morphologically and functionally different and altered (61).
Within the tumors these cells acquire new capacities able to
provide tumors with proliferative and survival benefits.

The interactions between tumor cells and endothelial cells are
complex involving various reciprocal signaling mechanisms and
physical interactions. However, products derived from both
tumor cells and endothelial cells have been implicated in these
interactions (62). While tumor cells mediate tumor angiogenesis
by secreting soluble factors such as VEGF and PDGF that
enhance endothelial cells proliferation, migration and vessels
formation (62, 63), endothelial cells secrete wide range of pro-
inflammatory cytokines and chemokines (e.g. IL-1b, IL-6, TNF-
a, CXCL1 and CCL2 (64, 65) that stimulate cancer cells and non-
malignant cells within the tumor microenvironment, important
process in potentiating inflammatory responses and immune
cells activity regulation. Endothelial cells are also capable of
producing various growth factors including PDGF, VEGF and
FGF (66) that play a critical growth role during tumor
progression and act as survival factors, avoiding the apoptotic
death of both cancer and endothelial cells (66–68) (Figure 4).

To date, there is established agreement that the arrest of
circulating cancer cells due to their physical interaction with
endothelial cells is essential for their migration from the blood
stream and successive growth into metastatic lesions (69, 70).
Specificity in the site of cancer cell arrest has been identified as
one factor causative to the organ-specific metastatic patterns (69,
70). This process involves specific interactions between the
surface of circulating cancer cells and endothelial cells through
various adhesion molecules such as selectins, integrins,
April 2022 | Volume 13 | Article 850856
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cadherins, and immunoglobulins (69, 70). Some of these
molecules are expressed constitutively and appear to have
organ specificity in their distribution. Others are inducible and
under the influence of environmental signals, such as cytokines
(69, 70). The induction of these molecules on endothelial cells
was reported to be link the metastatic capacity of the interacting
tumor cells (69, 70). Indeed, compared with low metastatic or
nonmetastatic colon cancer cells, only the arrest of highly
metastatic ones in the hepatic circulation was found to mediate
this cascade of events. Indeed, the physical interaction of tumor
cells with liver endothelial cells induces a rapid release of several
cytokines such as TNF-a and IL-1 that in turn stimulate the
expression of E-selectin and other adhesion molecules on hepatic
endothelial cells, leading to enhanced tumor cell adhesion in the
liver (69, 70). Subsequently, the growth of the colonizing
metastatic cells is sustained by the overexpression and/or
increased activity of other molecules such as growth factors
and cytokines (69, 70). The expression and the activity of these
molecules were found to require the involvement of the
convertases for the mediation of their functions (71–76).
Indeed, the inhibition of these enzymes in metastatic cancer
cells was reported to inhibit E-selectin expression and their
adhesion on endothelial cells leading to repression of
metastases formation in the liver of tumor cells-inoculated
mice (8, 77). Further analysis, revealed that the convertases
found in cancer cells contribute to metastasis by enhancing the
Frontiers in Immunology | www.frontiersin.org 7
level of active cytokines (TNF, Il-1) involved in the first step of
cancer cell and endothelial cell interaction required for liver
colonization by tumor cells (8).
MYELOID DERIVED SUPPRESSOR CELLS
AND CANCER CELL INTERACTION

Myeloid derived suppressor cells (MDSC) are heterogeneous
populations of immune cells that were initially identified in 1970
(78). These cells are characterized by their suppressive effects on
immune cells and found to expand during tumor progression.
MDSCs can mediate their immunosuppressive function alone or
through their interactionwith othermyeloid cells including tumor-
associated neutrophils (TANs), tumor-associated macrophages
(TAMs), and regulatory dendritic cells (79).

MDSCs are mainly divided into two important groups: the
monocytic MDSCs (m-MDSCs) and granulocytic MDSCs (g-
MDSCs) groups. The expansion of MDSCs is induced by various
released factors produced by tumor cells, stromal cells, T-cells or
macrophages. These include cytokines, prostaglandin E2 (PGE2),
MMPs, chemokine and growth factor (80). Expression of inducible
nitric oxide synthase (iNOS) and arginase I was reported to be
involved in MDSCs-induced suppression of the proliferation and
the cytotoxic function of T cells (81). MDSCs can also indirectly
suppress anti-tumor immunity, through inhibition of TILs and the
FIGURE 4 | Endothelial cells and cancer cells interactions Tumor endothelial cells and tumor cells secrete various molecules and ECM components in the tumor
microenvironment (I) that mediate tumor angiogenesis (II) and growth (III). Tumor endothelial cells can also reciprocally interact with various stromal cells that in turn
participate in tumor progression and angiogenesis and (IV).
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generation of regulatory T-cells (Tregs) in the tumor
microenvironment following their production of TGF-b and
several cytokines (82). MDSCs also contribute to tumor
progression via various other mechanisms including their ability
to mediate angiogenesis (83) and epithelial–mesenchymal
transition (EMT) (84). These cells can also mediate cancer cell
invasion by secreting matrix metalloproteinase-9 (MMP9)
(85) (Figure 3).
TUMOR-ASSOCIATED MACROPHAGES
(TAMS) AND CANCER CELLS
COMMUNICATION

In addition to cancer-associated fibroblasts (CAFs) and tumor
vascular endothelial cells the tumor-associated macrophages
(TAMs) are also important constituents of the tumor
microenvironment where they play a key role in the interaction of
cancer cells with the immune components of the tumor
microenvironment (86). In early 70s, TAMs were reported to
promote tumor growth (87) and only in the last decades, TAMs
were divided into two broad categories: the pro-inflammatory M1
macrophages with antitumor properties and anti-inflammatory M2
macrophages with tumor-promoting functions (87). In the majority
of tumors, the TAMs are mainly M2 macrophages actively involved
in tumor growth and dissemination (88). However, TAMs were
found to mediate both M1 and M2 macrophage functions (87).
UsuallyTAMsderive fromcirculatingmonocytes and tissue-resident
macrophages (89) and their effect on tumor progression and
metastasis is linked to the nature of tumor microenvironment, the
tumor type and their localization within the tumor (89). By secreting
molecules including EGF, FGF and TGFb the TAMs directly affect
cancer cell proliferation (87, 90). Similarly, through the upregulated
secretion of various pro-angiogenic factors, such VEGF-A, TNFa,
FGF and others, TAMs promote vascular vessel formation and
through production of molecules such as VEGF-C and VEGF-D
the TAMs induce also the formation of lymphatic vessels (90). The
release of several enzymes such as plasmin, and MMPs, TAMs also
participate in tumor cells invasion andmetastasis (91, 92). TAMs can
also promote metastasis through the release of exosomes containing
various miRNA and oncogenic proteins (91).

For their reciprocal interaction with TAMs, tumor cells were
found to secrete some signal molecules and cytokines such as
CSF1 and IL-6 required for TAMs activation. The expression of
these cytokines by tumor cells is associated with the infiltration
of TAMs in the growing tumors (93). The release of these
cytokines by cancer cells induce macrophages to secreted the
same cytokines (94–96) that further mediate TAMs recruitment
to the newly developed tumor, indicating that the interaction
between tumor cells and TAMs forms a secretory rotation that
promotes the recruitment of macrophages in tumors and
subsequently tumor growth and progression (Figure 5).

By secreting wide range of cytokines and chemokines, such as
CCL3, CCL5, CCL22 and TGFb, TAMs participate also in the
recruitment of regulatory T cells (Treg) to the tumor
microenvironment and suppress cytotoxic T cell functions
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(92, 97, 98). TAMs ablation was found to block Treg cell
recruitment and inhibits tumor growth by lowering the CCL20
level in mice model (99). In addition, TAMs can inhibit cytotoxic
T-cell proliferation through several mechanism such as the
secretion of IL-10, prostaglandins, TGF-b and reactive oxygen
species (ROS) (100, 101). Furthermore, various molecular
mechanisms used by tumor cells during their interaction with
macrophages mediate tumor immune escape. For example, like in
activated T cells, TAMs express the programmed cell death ligand
1 (PD-L1), a ligand of the immune checkpoint receptor
programmed cell death protein 1 (PD-1) that contributes to the
generation of an immune-suppressive tumor microenvironment.
This by repressing normal function of macrophages including
cytokine release, antigen presentation and phagocytosis (102).
Accordingly, PD-1 expression by TAMs increases with tumor
progression and the blockade of PD-1 and PDL-1 interaction
was found to reduce tumor growth in micemodels (103). Similarly,
to escape immune system tumor cells express on their surface
CD47 that functions as an inhibitor of phagocytosis following its
interaction with the signal-regulatory protein alpha (SIRPa)
expressed on macrophages cell surface (104). Indeed, SIRPa/
CD47 pathway is referred to as the “do-not-eat-me” signal and
tumor cells with CD47 expression can be recognized as self-normal
cells and escape phagocytosis (105, 106) (Figure 5).

M1-type macrophages are able to distinguish tumor cells from
normal cells and kill tumor cells. M1-type macrophages use
mainly two different mechanism to directly eliminate tumor
cells: 1-direct cytotoxic action that involves the release of
multiple cytotoxic molecules such as ROS and NO (107) and 2-
through antibody-dependent cellular cytotoxicity (ADCC) that
directly target tumor cells (108). Other indirect mechanisms were
also reported to be involved in tumor cells elimination byM1-type
macrophages such as the expression of cytokines (IFN-g, IL-1, and
IL-6) that activate the cytotoxic Th1 cells leading to an antitumoral
immune response activation (109, 110).
ADIPOCYTES AND CANCER CELLS
INTERACTION

Increased use of lipids by cancer cells is a hallmark of cancer
progression and dissemination (2) and in various cancers, the
presence of adipocytes can be largely predominant in the tumor
tissues. where they mediate various reciprocal interactions with
cancer cells (111). This cross-talk can be either bymeans of physical
interactions or through secreted factors (Figure 6). Thereby cancer
cells mediate reprogramming of adipocyte metabolic activity that
acquire a cancer-associated adipocyte (CAAs) phenotype (112).
During this interaction adipocytes byundergoing lipolysis serve as a
source of lipids for cancer cells, used to increase their proliferation
and invasiveness (113–115). Accordingly, adipocytes close to
cancer cells or physically interacting with tumor cells were found
to have reduced lipid droplets compared to adipocytes distant from
the tumors (111, 116). Similarly, adipocytes co-culturedwith cancer
cellswere found to lose their lipiddroplets (116). Indeed, tumorcells
are able to synthesize most fatty acids (FAs), essential cellular
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process that allow the conversion of nutrients intometabolites used
for energy filling, protein synthesis and the generation of signaling
molecules involved in various biological functions (117). However,
when endogenous lipogenesis becomes insufficient for tumor
progression and survival, cancer cells take advantage of the
cancer-associated adipocytes to acquire additional extracellular
FAs (118) that participate in their more malignant and metastatic
phenotype. Cancer cells use various mechanisms and mediators to
induce adipocyte lipolysis. These include extracellular vesicles that
transfer cytokines such as IL-6 (119) leading to activation of NFkB
signaling and inflammatory phenotype (120). In turn, activated
adipocytes secrete chemokines (CCL2, and CCL5), cytokines (IL-
1b, IL-6, TNF-a), and angiogenic factors (VEGF), all required for
the promotion of tumor growth, angiogenesis and metastasis (115,
121, 122). Interestingly, adipocytes like tumor cells also secrete
exosomes that are used by cancer cells to favor their migration and
invasion (Figure 6).

Recent studies have shown that exosomes contribute to tumor
invasion via their influence on the intercellular space (123) and
contain high levels of several ECM proteases (MMP3 and MMP-
Frontiers in Immunology | www.frontiersin.org 9
9) involved in invasion (123). These proteases are also involved
in lipid metabolism, and modulate cancer cell migration through
metabolic reprogramming and mitochondrial activity (123).
Recent proteomic analysis revealed that adipocyte exosomes
contain more than 1000 different proteins. Of these, several are
involved in protein turnover, metabolic activity and tissue repair
(124). These studies indicate that adipocyte exosomes could
promote tumorigenesis or drive cancer cells towards a more
aggressive phenotype by the storage of various oncogenic
molecules delivered to cancer cells. Activated adipocytes were
also found to mediate immune repression following the
expression of PD-L1 (104) and found to regulate anti-tumor
immune response through NK cell activation (103).
CONCLUSIONS

In tumors, cells lose their normal behavior such as their ability to
differentiate and communicate with each other in a way to
maintain the homeostasis of a specific tissue or organ. However,
FIGURE 5 | Crosstalk between tumor cells and TAMs in tumors. Macrophages have the function of killing tumor cells (I). However, a large number of TAMs
infiltrated in the tumor microenvironment not only kill tumor cells, but also promote tumor growth and metastasis (II). In the tumor microenvironment tumor cells
secrete a large number of chemokines and cytokines to recruit macrophages into tumors and regulate their signaling pathway to induce M2 macrophages formation
(III). Finally, TAMs differentiated into M2 type maintain tumor growth by promoting tumor cell growth (IV), angiogenesis (V) and immune cells repression (VI), through
physical interaction, secreted molecules or exosomes.
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cancer cells are also able to create a new and specific way to
behave and communicate with each other and with the cells in
their newly developed microenvironment. In this context, the
microenvironment of normal tissue and the TME present various
similarities and differences that result from the nature of their
cellular interaction and the importance of the mediators and
signaling pathways involved. In this review, we highlighted the
importance of the dynamic reciprocity interaction at the single cell
level, that involves the nucleus and cellular extracellular matrix
elements. We also indicated how various secreted molecules and
mediators are involved in the reciprocal cellular interaction and
their role in the control of the fate of the developing tumors.
Indeed, the tumor stroma provides exceptional organizational
features where cancer cells respond to the constituents of the
TME through modulation of the expression/activity of proteins
involved in cell survival, proliferation and migration. On the other
hand, tumor cell-derived signals activate and recruit various cells
such immune cells, fibroblasts, adipocytes and endothelial cells
that acquired cancer-associated phenotype and influence the
structure and the composition of the TME by releasing ECM
enzymes and components, exosomes, cytokines, and growth
factors, all influence cancer cell functions and metabolism.
Although these activated associated-cancer cells often enhance
Frontiers in Immunology | www.frontiersin.org 10
tumor growth and invasion, their activation can also repress
tumor growth and invasion using the same released mediators.
Thus, in a reciprocal manner, tumor cells influence the stroma and
vice versa, jointly driving cancer progression or repression. The
identification and the understanding of all these cancer causal
factors and the degree of the importance of each reciprocal
interaction in a temporal and geographical point of view will
strongly help for the development of new prognostic and
therapeutic strategies. This by taking in account not only the
characteristic of the tumors and their TME but also the nature and
the levels of the interactions between the signaling and the
responding cells in the developing TME.
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FIGURE 6 | Adipocytes and cancer cells communication. Cancer cells produce various mediators including exosomes to reprogram metabolic activity of adipocytes
(I). In turn, cancer-associated adipocytes (CAAs) produce growth factors, cytokines, MMPs and release exosomes that directly affect tumor cell growth and invasion
(II). Lipolysis activated by tumor cells reduced lipid droplets in adipocytes and the CAA products such as free fatty acids are used as energy fuel molecules to
promote tumor growth, angiogenesis, inflammation and metastasis (III). In parallel, the adipocyte-derived factors activate various nontumor cells to control the
malignant and metastatic phenotype of tumor cells (IV).
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