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Inflammation is a defensive reaction for external stimuli to the human body and generally
accompanied by immune responses, which is associated with multiple diseases such as
atherosclerosis, type 2 diabetes, Alzheimer’s disease, psoriasis, asthma, chronic lung
diseases, inflammatory bowel disease, and multiple virus-associated diseases. Epigenetic
mechanisms have been demonstrated to play a key role in the regulation of inflammation.
Common epigenetic regulations are DNA methylation, histone modifications, and non-
coding RNA expression; among these, histone modifications embrace various post-
modifications including acetylation, methylation, phosphorylation, ubiquitination, and ADP
ribosylation. This review focuses on the significant role of histone modifications in the
progression of inflammatory diseases, providing the potential target for clinical therapy of
inflammation-associated diseases.
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INTRODUCTION

Inflammation is a response of the immune system to harmful stimuli including but not limited to
microbial stimuli, pathogens, traumatic stimuli, toxic stimuli, or post-ischemic stimuli (1). It is a
frequent occurrence to protect organisms from the spread of infection and recover the affected
compartments to a normal state, which is called “resolution” (2). However, if the inflammation fails
to subside, it will turn to a trouble itself and contribute to the pathogenesis of a great sort of
inflammatory diseases (3).

The study of epigenetics, especially histone modifications, and their involvement in
inflammation disease is still an emerging research filed, but it is becoming to attract more and
more attention and growing at a fast pace. As the basic proteins in both eukaryotic and prokaryotic
cells, histones combined with DNA constitute the nucleosome structure (4). Post-translational
modifications (PTMs) of proteins are rising as a pivotal means by which chromatin could be altered
to regulate gene expression; in other words, intracellular metabolites can modulate immunity. PTMs
of histones on both the histone core and N-terminal tails affect a variety of biological processes such
as transcription, replication, and chromosome maintenance (5).
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Related studies have shown that themodifications of histones are
closely associated with the occurrence of inflammatory diseases,
including atherosclerosis, type 2 diabetes, Alzheimer’s disease,
psoriasis, asthma, multiple chronic lung diseases, and
inflammatory bowel disease (Table 1 and Figure 1). This article
offers an illustrative landscape of histonemodifications as significant
regulators for chronic or virus-related inflammatory diseases,
providing a perspective on the therapy of inflammatory diseases.
IMMUNITY AND INFLAMMATION TO
INFLAMMATORY DISEASE

Inflammation is a coordinated immune response to tissue injury
and pathogenic or non-pathogenic infections. The process
involves a variety of cell responses, including immune cell
migration and cytokine release (65). The function of
inflammation is to repair the damage or resist the infection
and restore the balanced state through redeploying the immune
system (66). In the acute phase of inflammation, immune cells
migrate to the injury site to contain the infection and repair
damaged tissue, and then the lesion begins to heal. Effective,
rapid, and targeted resolution is the ideal inflammatory response.
Persistent inflammatory response can give rise to serious
consequences, such as tissue damage, immune dysfunction,
organ lesion, cancer, and even death, finally resulting in
chronic diseases (67–70). The inflammatory process involves
complex regulations of target genes through mass of signalings or
epigenetic mechanisms.

Histone Post-Translational Modifications
Histone modifications are one of the key components of
epigenetic mechanisms, producing heritable changes in gene
expression without alterations in the DNA sequence
(Figure 2). Over the past two decades, explosive discoveries of
epigenetics have been laid down to unravel the mysteries of
various biological processes.

The nucleosome core is formed by a histone octamer
consisting of two copies of H2A, H2B, H3, and H4 and
surrounded by ~150 base pairs of DNA, which is the basic
functional unit of chromatin (71). PTMs of histones mostly
present on the amino-terminal tail domains of the histones, but
yet new data showed it also happened on the core of histones
which could alter chromatin architecture by directly mediating
the protein–DNA interaction (72). Besides the long-studied
PTMs such as acetylation, methylation, ubiquitination,
phosphorylation, citrullination, glycosylation, formylation,
deamination, ADP ribosylation, proline isomerization, and
sumoylation (4), a series of novel PTMs were identified
recently, including crotonylation (73), propionylation,
butyrylation (74), and lactylation (75). Among these, histone
acetylation and methylation are the best understood PTMs.

Histone acetylation is mostly related to active transcription,
while histone methylation is a kind of complex which depends
on the specific methylated sites to regulate transcriptional states.
The coexistence of mono-methylated H3K4 (H3K4me1) and
Frontiers in Immunology | www.frontiersin.org 2
acetylated H3K27 (H3K27ac) is the hallmark of active enhancers
(76, 77). Histone methylation is commonly mediated by histone
methyltransferases (HMTs), which specifically occurs on histone
H3 and H4 at distinct lysine or arginine residues (78). Moreover,
the enzyme family of the Complex of Proteins Associated with
Set1 (COMPASS) is indispensable for H3K4 methylation
(79, 80). Normally, histone methylation is considered to be a
stable epigenetic mark because it sustains a stable overall charge
of the histone tails, while with increasing level of methylation,
it will lead to the increase of basicity, hydrophobicity, and
affinity for DNA and then alter chromatin and regulate gene
transcription (78).

Moreover, histone acetylation is highly mediated by the
activities of histone acetyltransferases (HATs) and histone
deacetylases (HDACs) (81) (Figure 3). HATs catalyze the
transfer of acetyl from donor-acetyl coenzyme A to lysine
residues of the histone peptide, which could increase the level
of histone acetylation to make the chromatin sustain an active
transcription (78). In contrast, HDACs are responsible for
catalyzing the removal of acetyl from ϵ-amino groups of
conserved lysine residues at the histone amino terminal tail,
thus leading to a low level of acetylation as well as
heterochromatin and gene silence (82, 83). There are 18
human HDACs identified and categorized into four classes:
class I are Rpd3-like proteins and composed of HDAC1,
HDAC2, HDAC3, and HDAC8; class II are Hda1-like proteins
consisting of HDAC4~HDAC7 and HDAC9~10; class III are
Sir2-like proteins including SIRT1~7; and class IV only contains
HDAC11 (84).

Otherwise, the polycomb group consists of PRC1 and PRC2
protein complexes maintaining catalytic properties for distinct
histone modifications (85). As an E3 ubiquitin ligase, PRC1
mediated histone H2A mono-ubiquitylation for gene silencing
(86, 87), whereas PRC2 compacts chromatin and catalyzes the
methylation of histone H3K27 via its catalytic subunit EZH1/2
(88). Furthermore, additional enzymes related to histone
modifications include the phosphorylation of specific serine
groups by histone kinases (HKs) (89), catalyzing the
conversion of butyryl-CoA to crotonyl-CoA by acyl-CoA
dehydrogenase, ACADS, acyl-CoA oxidase, and ACOX3 (90);
the attachment of ubiquitin (Ub) by PRC1 (91); the ADP-
ribosylation of histones by poly(ADP-ribose) (PAR) units (92);
and sumoylation by small ubiquitin-like modifiers (SUMOs)
(93). Although plenty of histone modifications has been
identified, the hidden mechanisms for epigenetic regulation
still have a long way to go.
HISTONE MODIFICATIONS IN
INFLAMMATORY DISEASES

Atherosclerosis
Atherosclerosis (AS) is characterized by large and medium
arteries, which is caused by chronic inflammatory disorder of
the arterial vessel wall, and it is commonly considered as a major
contributor of cardiovascular diseases (CVDs) including stroke
February 2022 | Volume 13 | Article 852272

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lin et al. Histone Modifications in Inflammatory Diseases
TABLE 1 | Histone modifications in inflammatory diseases.

Diseases Target Modification Regulators Reference

Atherosclerosis HDAC1 Deacetylation KLF5, miR-224-3p (6, 7)
HDAC3 Deacetylation miR-19b (8)
HDAC4 Deacetylation miR-200b-3p (9)
HDAC6, H3K9 Deacetylation NORAD (10)
SIRT6 Deacetylation (11)
H3K9, H3K27 Methylation↓ (12)

　 H3K27 Trimethylation↓ EZH2 (13)
Type 2 diabetes H3K9, H2AK119, Dimethylation, Acetylation,

Ubiquitination↑
DBP (14)

　 H2BK120 Trimethylation↑ GLUT4 (15)
Alzheimer’s disease H3K9 Deacetylation Keap1 (16)

HDAC3 Methylation, Acetylation↑ amyloid-b42 (17)
H3K9, H3K27
SIRT1, 3, 6 Deacetylation↓ (18)

　 H3K4, H3K9 Trimethylation 　 (19)
Psoriasis H3, H4 Acetylation↓ (20)

H3K4 Methylation↑
H3K27 Trimethylation↑ EZH2, JMJD3 (21, 22)

　 H3K27 Acetylation↑ 　 (23)
Asthma H3K9, K14, K18, K23, K27, K36, H2B1KK120, B2BK20, BK16,

BK20, BK108ac, BK116ac, BK120ac
Acetylation↑ (24)

H2BK5, H2BK11 Acetylation↓
H3 Citrullination↑ (25)

　 HDAC4 Deacetylation↑ Slug, CXCL12 (26)
Chronic obstructive
pulmonary disease

H3K4, H3K27 Methylation, Acetylation↑ IL6-AS1 (27)

H3K9 Trimethylation↓ (28)
HDAC2 Deacetylation↓ (29)

　 SIRT1 Deacetylation↓ 　 (30)
Cystic fibrosis lung
disease

HDAC6 Deacetylation (31)

　 HDAC7 Deacetylation 　 (32)
Inflammatory bowel
disease

H3K27 Trimethylation EZH2 (33)

H3K4 Trimethylation↑ (34)
H4K20 Monomethylation SETD8 (35)
H3R8 Methylation↑ PRMT2 (36)
H3K27 Acetylation (37)
H1, H3 Citrullination (38)

　 SIRT1 Deacetylation↓ 　 (39)
Virus-associated disease
SV40 H3/H4 Hyperacetylate P300/CBP (40, 41)

H3K9/H4K20 Methylation (42)
Merkel cell polymavirus H3K27 Trimethylation↓ (43)

H3K27 Acetylation P300/CBP (44)
HPV H3 Acetylation↓ E6 and p300/CBP, TIP60,

HDAC1, HDAC2
(45, 46)

H3 Acetylation↑ E7 and p300/CBP (44)
H3 Methylation ↑ E6/E7 and EZH2 (47)
H3 Methylation↓ E6/E7 and KDM6A/KDM6B (48)

HBV H3/H4 Acetylation HBx and p300/CBP,
HDAC1, SIRT1

(49, 50)

H3K4/H3K9 Methylation HBx and SETDB1, EZH2,
SMYD3,

(51, 52)

HDV H3 Acetylation (53)
HCV H3/H4 Acetylation H2AX (54)

H3 Methylation KDM5B, LSD1, G9a, EZH2 (55, 56)
HIV H3 Acetylation CTIP2, HDAC1/2, BRD4 (57, 58)

H3 Methylation LSD1, SET1, EZH2 (57, 59)
SARS-CoV-2 H3 Acetylation NSP5 and HDAC2, SIRT1 (60, 61)

H3K9 Methylation
　 H3 Citrullination↑ PAD4 (62–64)
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and myocardial infarction (94, 95). Monocyte-derived
macrophages mainly contribute to the development of AS
(96, 97). Accumulating research showed the significant effects
of histone modifications in the progression of AS. Therein,
HDACs play a non-negligible role (98). HDAC1 was targeted
by microRNA (miR)-410 to increase the level of IKBa through
suppression of NF-kB by KLF5, thus preventing the development
of AS (6). Meanwhile, overexpression of HDAC1 suggested to
promote the anti-AS effects of miR-224-3p-mediated FOSL2
inhibition via HIF1a deacetylation (7). The defect of myeloid
HDAC2 in high-calorie diet-fed (HFD) LDLR-/- male mice leads
to a significant AS reduction without affecting plasma lipid and
Frontiers in Immunology | www.frontiersin.org 4
lipoprotein profiles. The inhibition of HDAC2 prevents
monocytes and macrophages from nutrient stress-induced
dysfunction and reprogramming which could transform into
atherosclerosis (99). Excessive HDAC3 prevents inflammation to
restrain atherosclerosis progression through inactivating NF-kB/
p65 via upregulation of PPARg, and it was mediated by miR-19b
(8). Epicardial adipose tissue (EAT) may target HDAC4 and
cause endothelial cell damage induced by miR-200b-3p,
promoting oxidative stress (9). LncRNA non-coding RNA
activated by DNA damage (NORAD) is a novel long non-
coding RNA (lncRNA); it could recruit HDAC6 to enhance
H3K9 deacetylation and consequently suppress the transcription
FIGURE 1 | Overview of the role of histone modification in inflammatory disease.
February 2022 | Volume 13 | Article 852272
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of the VFGF gene which was supposed to enhance vascular
endothelial cell injury and atherosclerosis (10). Endothelial–
mesenchymal transition (EndMT) is associated with
atherosclerosis and plaque instability. Both in vivo and ex vivo
knockout of Hdac9 could prevent EndMT through sustained
endothelial protein expression and alleviate the increase in
mesenchymal proteins, thus slowing the development of
atherosclerosis (100). HDAC9 is also a regulator of
atherosclerosis plaque stability and IKK activation to drive
inflammatory responses in both endothelial and macrophages
cells (101). A lower expression of Sirtuin 1 (SIRT1) leads to
ovariectomy (OVX)-induced arterial senescence and
atherosclerosis in apolipoprotein E-knockout (ApoE-KO) mice
(102). SIRT3 has been reviewed to play multiple roles in the
development and regression of atherosclerosis (103). The
expression of SIRT6 is reduced in both human and mouse
plaque of vascular smooth muscle cells (VSMCs), and it is
indicated to regulate telomere maintenance and VSMC lifespan
as well as inhibit atherosclerosis depending on its deacetylase
activity (11).

In addition to histone acetylation, histone methylation and
citrullination also play a decisive role in atherosclerosis
progression. Methylation of H3K9 and H3K27 was decreased
in atherosclerosis plaques in smooth muscle cells (SMCs), and
H3K4 methylation showed a significant association with the
severity of atherosclerosis (12). Besides, histone H3K27
Frontiers in Immunology | www.frontiersin.org 5
trimethylation could be catalyzed by PRC2 with EZH2, which
is deemed to increase macrophage inflammatory responses
(13, 104). A recent study showed that Ezh2-deficient mice
reduced the levels of H3K27me3 and decreased H3K27
methyltransferase activity and also showed a significant
reduction of lesion size suggesting the improvement of
atherosclerosis (105). Citrullinated histones (Cit-histones) are
associated with neutrophil extracellular trap (NET) release and
are involved in different AS events in vitro. Cit-histones were
pro-atherogenic mediators which can accelerate low-density
lipoprotein aggregation when it is released at the lesion, thus
slowing down atherosclerosis progression (106).

Type 2 Diabetes
Over the years, type 2 diabetes (T2D) becomes a worldwide
disease with a leading prevalence of incidence. Unhealthy diets,
physical inactivity, and aging are the major risks of T2D, which
can lead to impaired insulin action and secretion (107). It has
long been uncovered that chronic inflammatory processes and
epigenetic mechanisms were underlying in the pathogenesis of
T2D (108–110). Recently, increasing data have focused on the
role of histone modifications in T2D progression. Increasing
levels of histone modifications such as H3K9me2, H3K9Ac,
H2AK119Ub, and H2BK120Ub in the heart of T2D rats can be
attenuated by telmisartan, which could ameliorate T2D
cardiomyopathy (14). Besides, exendin-4 induced a reversal of
FIGURE 2 | Major epigenetic mechanisms in regulation of gene expression.
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pancreatic histone H3K9 and H3K23 acetylation, and H3K4
mono-methylation and H3K9 di-methylation might improve
T2D progression (111). Increased H3K9me3 in the Slc2a4
promoter could reduce the expression of GLUT4, encoded by
Slc2a4, which contributes to glycemic impairment in T2D (15).
Acetylation of H3K9 at the promoter region of clock gene Dbp
and DBP mRNA expression in omental adipose tissue, a
compartment related to the mechanism of T2D, was
significantly lower in T2D patients (112).

Inhibition of HDACs has been frequently reported to
attenuate T2D progression. Reduction of pancreatic b cell mass
is a hallmark of T2D which can alter insulin signaling. Moreover,
reducing the expression of HDAC6 in pancreatic b cells tends to
downregulate insulin signaling (113). Selective inhibition of
HDAC3 by RGFP966 enhanced insulin secretion and synthesis
which might retard the development of T2D (114). In addition,
inhibition of HDAC3 accelerates vascular endothelial
proliferation during vascular impairment caused by T2D
through activating Nrf2 signaling by inhibiting Keap1 synthesis
and Nrf2–Nox4 association, which indicated the potential of
HDAC3 as an epigenetic regulator in T2D-related vascular
complications (16). Elevated levels of HDAC7 lead to b cell
dysfunction and the defects of T2D (115). SIRT4 has been
reported to deactivate AMPK signaling, which leads to insulin
resistance responses including inflammation and oxidative stress
and inhibits insulin secretion directly, ultimately producing T2B
(116). Defect of SIRT6 was supposed to increase H3K9 and
H3K56 acetylation and TXNIP expression, which is important in
maintaining b cell function and viability (117).

Alzheimer’s Disease
Alzheimer’s disease (AD) is a typical age-related neurodegenerative
disease, which is induced by chronic neuroinflammation with
increased microglia and astrocyte activation, leading to cognitive
Frontiers in Immunology | www.frontiersin.org 6
impairment and dementia (118–122). Accumulation of amyloid-b
plaques and tau tangles are two representative pathological
characterizations of AD. Recent research has shed light on the
critical role of epigenetic regulations especially histone
modifications in AD progression (123–125). Using genome-wide
RNA-interference-based screening, Yuan et al. identified 59 genes
that might regulate age-related behavioral deterioration including
cognitive decline in aging Caenorhabditis elegans (126, 127).
Moreover, a neuronal histone 3 lysine 9 methyltransferase is one
of the 59 genes identified; it was found to increase with age in the
frontal cortex and correlate positively with AD progression.
Meanwhile, multi-omics integrated by transcriptomic, proteomic,
and epigenomic analyses of the postmortem human brain with AD
revealed that the histone acetyltransferases for H3K27ac and
H3K9ac were upregulated at the mRNA level and enriched
specific to AD tissues at the protein level (17). In the same
study with a fly model of AD, increasing levels of H3K27ac and
H3K9ac in genome-wide aggravated amyloid-b42-driven
neurodegeneration are observed. In parallel, however, another
epigenome-wide association study employing the H3K9ac mark
in 669 human prefrontal cortices discerned tau protein burden but
not amyloid-b affecting 5,990 out of 26,384 H3K9ac domains,
which showed a greater effect on the AD-related brain epigenome
(128). Sirtuins have long been discussed to exert multiple functions
in brain aging and neurodegenerative diseases such as AD (129–
131). The expressions of SIRT1, SIRT3, and SIRT6 in the
hippocampus and saliva were 1.5- to 4.9-fold reduced in elderly
AD patients compared to healthy individuals of corresponding ages
(18). Several other studies also indicated that SIRT1, SIRT3, and
SIRT6 were reduced in AD patients in both mRNA and protein
levels (132–134).

HDAC inhibitors were deemed to be innovative agents for
AD therapy as its involvement in neurodevelopment, memory
formation, and cognitive processes (135, 136). HDAC6 has been
FIGURE 3 | Histone acetylation mediated by the activities of HATs and HDACs.
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indicated to regulate tau acetylation reversibly, and a HDAC6-
dependent surveillance mechanism that inhibits toxic tau
accumulation has been put forward (137). Choi et al. found a
HDAC6 inhibitor, CKD-504, which could dramatically change
the tau interactome to degrade pathological tau in amyloid
plaques and neurofibrillary tangles of AD model mouse brains
through the proteasomal pathway, in the end rescuing cognitive
decline in AD model mice (138). Another HDAC6 inhibitor,
MPToG211, can significantly reduce tau phosphorylation and
aggregation, which cause ubiquitination of phosphorylated tau
proteins through reducing the binding of Hsp90 and HDAC6.
This inhibitory activity ameliorates learning and memory
impairment in AD animal models (139).

Despite genome-wide changes of histone methylations being
displayed in aging and cognitive functioning, the impact of the
diverse arrays of histone methylation has not been deciphered
even in AD (140, 141). H3K4me3 has been targeted to recover
prefrontal cortex synaptic function and memory-related
behaviors by compound WDR5-0103, a newly identified
H3K4me3 inhibitor (142). Likewise, H3K9me3 highly occupied
epigenomes involved in synaptic transmission, neuronal
differentiation, and cell motility, to remodel heterochromatin
condensation, leading to a downregulation of the synaptic
pathology of sporadic AD (19).

Psoriasis
Psoriasis is a recurrent and chronic inflammatory skin disease
with multiple pathological features such as vascular hyperplasia,
abnormal keratinocyte proliferation, and infiltration of
inflammatory cells into the dermis and epidermis (143).
Multiple factors including genetic susceptibility, environmental
factors, and innate and adaptive immune responses were
involved in psoriasis, making it a complex disease. However,
the exact etiology remains largely unknown. In recent years,
accumulating studies have linked epigenetic network imbalances
with psoriasis, considering it as one of the major causative
elements for the disease (144, 145). In this regard, we focus on
the effect of histone modifications on psoriasis. An analysis of
peripheral blood mononuclear cells isolated from both psoriasis
patients before and after therapeutic drug administration and
healthy individuals shows that the levels of acetylated H3 and H4
were reduced while the level of methylated H3K4 was increased
(20). The expression of H3K27me3 and its trimethylation
mediator, EZH2, was also increased in the epidermis of
psoriatic lesional skin compared to the normal one. Moreover,
knockdown of EZH2 caused an abnormal proliferation of
keratinocytes which could be reversed by its target gene
Kallikrein-8 (KLK8) (21). Another study identified grainyhead-
like 2 (GRHL2) binding at the promoter region of target gene
EDC, which might inhibit the recruitment of histone
demethylase Jmjd3 to the EDC promoters and increase the
level of H3K27me3 leading to the inhibition of keratinocyte
differentiation (22). ChIP-seq with anti-H3K27Ac in psoriatic
and healthy skin identified an overexpressed enrichment
of H3K27Ac in psoriasis (23). HDAC1 was overexpressed in
psoriasis patients while SIRT1 was decreased in the basal layer of
psoriasis patients compared to healthy controls (146). Activation
Frontiers in Immunology | www.frontiersin.org 7
of SIRT1 by resveratrol induced human keratinocyte damage
through blocking the Akt pathway (147). The evidence linked
histone modifications with psoriasis progression providing a
therapeutic target for psoriasis.

Asthma
Asthma is a common chronic inflammatory respiratory disease
characterized by coughing, breath shortness, chest tightness, and
wheezing, usually triggered by noxious agents or aeroallergens
(148). Airway inflammation, hyperresponsiveness, and
remodeling are the major contributors to the development of
asthma (149). The role of epigenetic mechanisms in the
pathophysiological process of asthma is progressively identified
and confirmed (150–152). Using proteomics analysis of
asthmatic lung tissues, Ren et al. identified 15 differentially
modified acetylation sites, among which thirteen sites were
upregulated including H3K9ac, H3K14ac, H3K18ac, H3K23ac,
H3K27ac, H3K36ac, H2B1KK120ac, H2B2BK20ac, H2BK16ac,
H2BK20ac, H2BK108ac, H2BK116ac, and H2BK120ac, while
two sites were downregulated including H2BK5ac and
H2BK11ac. These are potential acetylation sites related to
asthma pathogenesis (24). The histone acetylation of
orosomucoid 1 like protein 3 (ORMDL3) was mediated by
histone acetylase p300 using a dual-luciferase reporter assay.
p300 increased the mRNA levels of endogenous ORMDL3 by
activating transcription from the ORMDL3 promoter. ORMDL3
expression and HAT activity were increased in the lung tissues of
asthmatic mice. When p300 expression and HAT activity as well
as aceH3 levels were impeded by C646, the expression of
ORMDL3 would be reduced and relieve airway hyperreactivity,
which improves airway inflammation and remodeling in asthma
(153). With a genome-wide profiling of the enhancer-associated
histone modification H3K27ac in bronchial epithelial cells
(BECs) from asthma patients, 4,321 (FDR < 0.05) regions were
identified to exhibit differential H3K27ac enrichment between
individuals with or without asthma (154). Inhibiting H3K27me3
demethylation by a selective inhibitor GSK-J4 could improve the
typical hallmarks of asthma, including airway inflammation,
hyperresponsiveness, and remodeling, then alleviate the
development of asthmatic disease (155). A study showed an
elevated circulating H3cit level in stable asthmatics which is
related to the enhanced lung extracellular traps (ETs) (25).

The activity of HDAC is distinctive in asthma progression
(156). HAT and HDAC activities were associated inversely
in blood monocytes isolated from healthy individuals and
patients with asthma, and HAT activity was increased while
HDAC activity was reduced during neutrophilic airway
inflammation (157). HDAC1 protein expression was inhibited
by intranasal curcumin to retard asthma severity in an allergic
asthmatic mouse model (158). HDAC2 protein expression
could be reduced by cigarette smoke exposure via enhancing
AKT signaling, and it can be reversed by roxithromycin
(RMX) treatment to increase HDAC2 expression and reduce
airway inflammation (159). The expression of HDAC4 was
upregulated in lung tissues of asthmatic mice, and it could
deacetylate Kruppel-like factor 5 (KLF5) to upregulate Slug
and CXC chemokine ligand-12 (CXCL12), thus triggering
February 2022 | Volume 13 | Article 852272
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airway remodeling and promoting progression of asthma
(26). Overexpression of SIRT6 reduced cell migration
and proliferation, suppressed the activation of Smad3
phosphorylation induced by TGF-b1 treatment, and at the
same time decreased the H3K9 acetylation level and the
transcriptional activity of the c-Jun promoter (160). Moreover,
SIRT1 restrained the inflammatory cytokine expression in
primary bone marrow-derived macrophages (BMDMs)
through the ERK/p38 MAPK pathways (161). The modulations
suggested that upregulation of the expression of SIRT6 might
improve airway remodeling in asthma.

Chronic Obstructive Pulmonary Disease
Chronic obstructive pulmonary disease (COPD) is also a chronic
inflammatory airway disease similar to asthma, involving an
obstruction in airflow, which is reversible in asthma while being
progressive and irreversible in COPD (162, 163). Aberrant
neutrophilic inflammation is characterized by COPD, which
contributes to airway damage and leads to alveoli loss, mucus
production increase, and mucociliary dysfunction (164, 165).
The underlying pathogenesis of COPD is still largely unknown.
Existing research indicated that epigenetic mechanisms are
associated with the disease progression in COPD (166). A
novel lncRNA, interleukin 6 antisense RNA 1 (IL6-AS1)
supposed to recruit early B-cell factor 1 to the IL-6 promoter
to increase the H3K4 methylation and H3K27 acetylation,
therein, increases airway inflammation in COPD (27).
SUV39H1 is a histone methyltransferase; the levels of
SUV39H1 and H3K9me3 were reduced in COPD patients.
Reduction of SUV39H1 by administration of its specific
inhibitor, chaetocin, or genetic knockdown, leads to a loss of
H3K9me3 and enhances inflammatory responses in COPD (28).
A proteome study of COPD and histone lysine crotonylation
(Kcr) found 190 proteins upregulated and 151 proteins
downregulated, among which 90 proteins were regulated by
differentially expressed crotonylation sites and expressed
differentially in COPD (167).

Targeting HDACs as a therapy approach for COPD has
drawn more and more attention within recent scientific
research (168). It has been shown that HDAC2 was
downregulated in skeletal muscle of COPD patients (29). In
addition, the HDAC2 protein level was decreased upon PM2.5
exposure, and myeloid-specific deficiency of HDAC2 enhanced
PM2.5-induced M2 alveolar macrophage polarization which
resulted in the progressiveness of COPD (169). Similarly,
knockout of HDAC2 enhanced cigarette smoke (CS)-induced
DNA damage, inflammatory response, and cellular senescence in
mouse models, indicating that HDAC2 is the key player in CS-
associated COPD disease (170). SIRT1 was shown to maintain a
lower expression in CD28nullCD8 + T and NKT-like cells than
in CD28+ cells from COPD patients and healthy controls, which
was related to increased IFNg and TNFa production, steroid
resistance, and disease progression. Increasing expression of
SIRT1 by treatment of multiple specific drugs such as
prednisolone can reverse these activities as to reduce systemic
inflammation in COPD (30).
Frontiers in Immunology | www.frontiersin.org 8
CF-Lung Disease (Cystic Fibrosis)
Cystic fibrosis (CF) lung disease is another life-threatening
chronic inflammatory lung disease with various mutations in
the cystic fibrosis transmembrane conductance regulator
(CFTR), which assists in the regulation and clearance of mucus
(171, 172). As a familial autosomal recessive disease, the related
epigenetic mechanisms were gradually revealed (173). Increasing
evidence showed that HDAC inhibitors could largely assist in
correcting protein-misfolding diseases such as CF-related
diseases (174). The most notable binding partner of HDAC6 is
alpha-tubulin, which is reduced in CF cells. Inhibiting the
expression of HDAC6 enables the restoration of tubulin
acetylation to normal levels in CF cells (175) and reversal of
the growth defects such as height and weight caused by CF (176).
Depletion of HDAC6 in CF mouse models can also regain the
growth and responsive activity to bacterial challenge and
inflammatory phenotypes of wild-type mice (31, 177).
Moreover, in HEK293 cells, inhibition of HDAC6 by
suberoylanilide hydroxamic acid (SAHA) regulated both innate
and adaptive immune responses of CF-lung disease-associated
pathogenesis and progression (178). The majority of CF patients
have a deletion of Phe 508 (△F508), which induces an efficient
degradation of CFTR and then leads to premature lung failure
(171). △F508 CFTR interacted with at least 638 proteins, which
forms a △F508 CFTR interactome, and remodeling the
interactome could promote the rescue of cystic fibrosis
development (179). Hutt et al. revealed that HDAC7 was
beneficial for restoring △F508 function through a SAHA-
sensitive mechanism (32).

Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) is a chronic inflammatory
disease with distinct gastrointestinal disorders, which maintains
two common clinical forms including ulcerative colitis (UC) and
Crohn’s disease (180). Not only genetic predisposition but also
environmental factors and imbalance of intestinal bacterial flora
tend to induce IBD incidence (181–183). As a multifactorial
disease, the exact etiology of IBD still needs to be unraveled, but
recent studies have linked the pathogeny of IBD with epigenetic
mechanisms (184–186). H3K27me3 can be regulated by
extracellular vesicles to control the differentiation of Th17 cells
in ulcerative colitis, which plays a distinct role in the
pathogenesis of IBD (187). Inhibiting the activity of EZH2 on
H3K27me3 promoted the development of functional myeloid-
derived suppressor cells (MDSCs), which was beneficial to
promoting the anti-inflammatory effect to treat IBD (33). A
large proportion of genes enriched in newly diagnosed pediatric
IBD patients maintained a significant level of H3K4me3, which
was related to the severity of intestinal inflammation during the
progression of IBD (34). SETD8 is a typical histone H4K20
methyltransferase in which silence of SETD8 could significantly
decrease the enrichment of H4K20me1 in the p62 promoter to
regulate the expression of p62 and inhibit the inflammatory
response in colitis (35). The level of H3K9 acetylation was
decreased upon dextran sulfate sodium (DSS) treatment, which
was reported to induce colitis by lessening the macrophage
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amount and the secreted inflammatory cytokines (188). Protein
arginine methyltransferase 2 (PRMT2) presents a high
expression in IBD patients; it could increase the asymmetric
methylation of H3R8 at the promoter of the suppressor of
cytokine signaling3 (SOCS3) to mediate colitis progression
(36). A genome-wide profiling of H3K27ac of colon tissues
from DSS-induced chronic colitis mouse model identified 56
candidate genes that are potentially involved in H3K27ac change,
among which special typical enhancers were upregulated by
H3K27ac that might be associated with the development of
intestinal inflammation (37). Citrullination of histone H1 and
H3 forms NETs to activate fibroblasts into myofibroblasts in
triggering fibrosis, thus potentially alleviating IBD (38).

HDAC inhibitors (HDACi) were shown to play a positive role
in the course of IBD (189–191). HDAC2, HDAC3, HDAC6,
HDAC9, and HDAC10 have been reported to be especially
associated with IBD (192). The family member IL-35 (EBI3/IL-
12p35) was indicated to induce anti-inflammatory activity in UC
(193), and the activity could be upregulated by histone
acetylation via HDACi administration (194). SIRT1 displayed
a lower activity in various IBD models, which is important for
the generation of oxidative stress and the production of pro-
inflammatory cytokines (39).

Virus-Associated Diseases
Virus infections are closely correlated with many diseases, such
as cancer and pneumonia. Inflammation induced by virus is the
main driving force in disease development (195). Both virus life
cycle and host cell viability are regulated by epigenetic
modifications. After infection, the virus DNA was transported
to the nucleus and then integrated into chromatin to form the
virus genome nucleosomes (41). Although the composition of
virus genome nucleosomes is simple, the epigenetic regulation
especially histone modifications plays an important role in the
expression of appropriate genes. Meanwhile, the infection also
changes the epigenetic modifications in host cells, even resulting
in the transformation of a normal cell to a cancer cell (41, 69,
196). Clarifying the changes in epigenetic modifications is
increasingly needed in the therapy of virus-related diseases.

Polyomavirus
Polyomavirus infection can lead to chronic inflammation-
associated diseases, such as cancer and nephropathy (197, 198).
SV40 is a polyomavirus with a small double strand and circular
DNA, which has been used as a model system to study basic
aspects of histone modifications after virus infection. The viral
DNA and histone were organized into a minichromosome,
presented in virions and infected cells.

In the SV40 virions, H3 and H4 were hyperacetylated, along
with the methylation of H3 on lysine9 (H3K9me1, H3K9me2,
H3K9me3) and H4 on lysine 20 (H4K20me) (40, 199). Each
methylated form of H4 was involved in different biological
functions in cellular chromatin. H4K20me1 appears to
associate with transcriptionally activation, while H4K20me2 is
especially associated with DNA damage and repair (42, 200). It is
consensus that H4K20me3 is concentrated in heterochromatin
(201, 202). In the SV40 minichromosome, H4K20me1 appears to
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associate with transcription and may be necessary to compact
minichromosome into the virion (40). The T-antigen in SV40
interacted with HAT and HDAC family members, such as p300,
CREB-binding protein (CBP), HDAC1, and HDAC3 in host
cells, resulting in the dysregulation of the genome (41). The
T-antigen was associated with the inflammation responses (197).
For the other polyomavirus, Merkel cell polyomavirus (MCPyV),
the H3K27 trimethylation (H3K27me3) was repressed and
the p300/CBP was upregulated (43, 203). The MCPyV sT was
reported to interact with PP4 and the interaction interferes with
the NF-kB pathway which was involved in the inflammation
response (198).

Papillomavirus
HPV is a human papillomavirus with a circular, double-stranded
DNA (204). High-risk HPV is the etiological factor of cervical
carcinoma which is the fourth most common malignancy in
women worldwide. HPV proteins are involved in the
development of chronic inflammation which is the pivotal
causal factor in the development of HPV carcinogenesis (205).
It has been known that during HPV infection, certain epigenetic
alterations occurred in HPV and host cellular genomes (206).

The main oncoproteins E5, E6, and E7 in HPV play
important roles in viral life cycle and cancer development
(207). The E5, E6, and E7 oncoproteins can activate the NF-kB
pathway which is related to the progression of cervical carcinoma
(208). NF-kB is the transcription factor to connect the immune
system activation, chronic inflammatory responses, and
carcinogenesis (209). Recent research suggested that the
expression of E6/E7 was increased in cervical inflammation
(205). Therefore, regulation of the translation and post-
translation modification of these oncoproteins is essential to
controlling the progression of inflammation. E6 and E7 mainly
participated in the epigenetic regulations in host cells. E6
inhibited the activity of p300/CBP to affect the H3 acetylation,
while E7 binds to p300/CBP to stimulate their activity (44, 210).
The interactions of E6 and E7 with HATs downregulated the
expression of the chemotactic interleukin 8 (IL-8) in immune
cells, thereby affecting the inflammatory response (47, 211). E6
can also target HAT TIP60 to reduce the acetylation of histone
H4 (45). The expression levels of HDAC1 and HDAC2 were
increased, but the mechanism was not clear, which may be
associated with the E6/E7-dependent elevation of SIRT1
expression (46).

Besides the acetylation, HPV infection can affect histone
methylation distinctly. Changing the repressive mark
H3K27me is a common histone modification in many cancers.
HPV E6 and E7 stimulated the expression of FOXM1 and E2F1,
respectively; both of them could bind the EZH2 promoter to
enhance transcription (212). Otherwise, E6 also enhanced EZH2
transcription through inhibiting repression protein p53 (47).
PRC1 bound to H3K27me-marked chromatin to silence gene
expression through monoubiquitinating lysine 119 of histone
H2A (213). However, researchers found that the H3K27me3
level was decreased in E6/E7-expressing cells. One reason is that
E6/E7 upregulated the expression of KDM6A and KDM6B,
which are demethylases targeting H3K27me (214). Controlling
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the balance of H3K27me may be a therapeutic intervention for
HPV-associated malignancy.

Hepatitis Virus
HBV is hepatitis B virus with a single strand of DNA, 3.2 kb in
size, the smallest among human DNA viruses. In the nucleus of
infected cells, HBV formed a covalently closed circular DNA
(cccDNA) minichromosome with host histone and non-histone
proteins (196). HBV infection can cause acute, chronic, or occult
hepatitis. With the infection, many people were at the risk of
hepatocellular carcinoma (HCC). The main reason of treatment
failure is the inability to eliminate the cccDNA (51). Strong
evidence suggested that epigenetic regulations on both cccDNA
and host genome were essential for viral life and pathogenesis.

HBx, bound to cccDNA, is the only regulatory protein encoded
by HBV, playing an important role in the viral replication (215).
HBx recruited p300/CBP acetyltransferase to cccDNA resulting in
acetylation of H3 and H4, consequently activating transcription
(49). HBx can directly interact with HADC1 and SIRT1 protein
associated with the low HBV replication (50). In HBx mutant cells,
the cccDNA-bound histones were hypoacetylated, resulting in low
transcription (51). As mentioned above, HBx participated in the
regulation of gene expression and viral replication through
mediating histone acetylation.

Apart from histone acetylation, HBx also mediated
methylation through affecting the level of H3K4me and
H3K9me. In the absence of HBx, H3ac and H3K4me3 were
decreased, and H3 dimethylation and tri-methylation (H3K9me)
were increased with the concomitant transcriptional silencing and
chromatin condensing. HBx affects histone methylation by several
pathways. HBx stimulated the expression of SETDB1, the histone
lysine 9-specific methyltransferase (51). HBx upregulated EZH2
expression and increased the half-life of EZH2. Furthermore, HBx
increased the expression of the H3K4-specific methyltransferase,
Set and MYND-domain containing 3 (SMYD3) (52). Histone
methylation was correlated with the condensation of chromatin.
In other words, HBx could regulate chromatin activation through
mediating histone methylation (216).

HDV is hepatitis delta virus with a subviral satellite RNA
virus that replicates only when it is surrounded by the helper
protein-HBV surface antigen (217). Although the role of HDV in
the development of hepatocellular carcinoma has not been well
investigated, many epidemiological studies favored that it
enhanced the development of liver cirrhosis and increased the
risk of HCC with HBV superinfection. With the expression of
HDV antigen HDAg, the transcription of CLU increased, which
was associated with increased acetylation of histone H3 (53).

HCV is hepatitis C virus with a single-stranded RNA virus
and is a unique human oncovirus that replicates in the cytoplasm
exclusively (218). HCV infection induced the inhibition of
histone H4 methylation/acetylation and histone H2AX
phosphorylation through overexpression of phosphatase A
catalytic subunit alpha (PP2Ac) with a significant expression
change in genes important for hepatocarcinogenesis (54).
Otherwise, histone H3 acetylation on lysine9/27, H3
acetylation on lysine14, and histone H2A acetylation on
lysine5 also changed in HCV-infected cells (219).
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For the role of histone methylation in HCV-infected cells, it has
been reported that the expressions of KDM5B/JARID1B and LSD1,
members of histone demethylase, were increased. Overexpression of
KDM5B and LSD1 resulted in poor prognosis in HCC. Further
studies may demonstrate KDM5B/LSD1 as a therapeutic target (55).
The histone lysine methylase, G9a for lysine 9 of histone 3 (H3K9),
is also associated with the progression of HCC prognosis (56). In
China, overexpression of EZH2 was considered as a promising
biomarker for HCC patients (220).

Human Immunodeficiency Virus
HIV-1 is human immunodeficiency virus type 1, with a single-
stranded positive-sense RNA that replicated in CD4+ human
immune cells. HIV-1 was integrated into the host cell genome
after infection, establishing a stable latency which is the major
obstacle for HIV cure (221). The proviral HIV genome was
regulated by host epigenetic modification machinery, while HIV
proteins affect the gene expression of host cells. The cellular
epigenetic regulator mainly affected the viral promoter located in
the 5′ long terminal repeat (LTR) sequence (222).

Histone deacetylases (HDAC1/2) were recruited on HIV LTRs;
as a consequence, the transcription was suppressed (223). Histone
acetylation was generally considered to promote gene expression,
and the methylation on histones produced a complex scenario
to control transcription. In microglial cells, CTIP2/BCL11B
recruited many types of enzyme-chromatin-modifying complexes
to establish the heterochromatic environment to repress HIV-1
gene expression. CTIP2 and LSD1 bound to the Sp1 site in
LTR. CTIP2 sequentially recruited HDAC1/2 to acetylate H3
and HMT SUV39H1 to catalyze H3K9me3 which was recognized
by HP1. In parallel, LSD1 recruited the COMPASS complex
containing the histone methyltransferase SET1 to stimulate
H3K4me3 (57, 224, 225). The bromodomain (BD) and extra-
terminal domain (ET) protein, BRD4, consists of two conserved
BDs that selectively bind to acetyl-lysine residues of histones. BRD4
was recruited to the HIV promoter to suppress gene expression,
resulting in promotion of latency (58). EZH2 together with the
EZH2-mediated H3K27me3 showed a higher level at the LTR of
silencedHIV proviruses. Another methyltransferase G9a for histone
H3 lysine 9 (H3K9) was responsible for transcriptional repression
through promoting repressive demethylation at H3K9 (59). The
relationship between PTM of histones and HIV-1 viral latency
provides the potential therapeutic strategy. A successful HIV
curative strategy needs to reverse HIV latency to purge hidden
viral reservoirs or enhance HIV latency to silence HIV transcription
permanently. Some epigenetic modifying agents have been
suggested for transcription control of HIV-1 latency, such as
histone deacetylase inhibitors (HDACi), histone methyltransferase
inhibitors (HMTi), and histone demethylase inhibitors (226).

COVID-19
The coronavirus disease 2019 (COVID-19) pandemic was caused
by acute respiratory syndrome coronavirus 2. The virus infection
resulted in dysregulated immune responses and mass of acute
inflammation. However, there is no specific drug. The virus life
cycle and the host immune response to infection were associated
with various epigenetic regulations, especially histone modifications
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which can be the therapeutic target. In a recent protein interactome
analysis, hundreds of human proteins were identified to interact
with SARS-CoV-2 proteins. Among these, eight proteins were
associated with epigenetic regulations. HADC2 was identified to
interact with NSP5 (non-structural protein 5) which participates in
the formation of the replicase–transcriptase complex (60). HDAC2
can suppress inflammatory gene expression while the activity and
expression of HDAC2 were inhibited in peripheral lung and
alveolar macrophages with pulmonary diseases, such as COPD
(227). The detection indicated that NSP5 was likely to inhibit
HADC2, which then influenced HADC2-based inflammation
responses. Another evidence was that ACE2 (angiotensin-
converting enzyme 2) which was regulated by some histone
modification proteins, such as HAT1 and HDAC2, was highly
expressed in a number of severe COVID-19 patients (61, 228).
SIRT1, another ACE2 epigenetic regulator, was also upregulated in
several COVID-19 patients. Furthermore, ACE2 was especially
regulated by histone methylation (H3K4mel and H3K4me3) and
histone acetylation (H3K27ac) (62, 228).

The complication risks of COVID-19 are highly age-dependent.
The age-dependent epigenetic regulation may be the foundation of
age-associated severity of COVID-19 symptoms (62, 229). Histone
modifications and the levels of histone proteins changed during
aging, which dramatically influence chromatin compaction and
gene expression. Solid evidence suggested that the acetylation level
of H4 was reduced during aging. In kidney and liver tissue with age,
the level of H4K20me3, a marker of constitutive heterochromatin,
was increased. In some studies in vitro, the level of H3K9me3 was
decreased (230). It is necessary to elucidate whether the epigenetic
change during aging affects the severity of COVID-19 directly.

NETs were elevated in COVID-19 patients due to the higher
level of 3 markers, cell-free DNA, myeloperoxidase-DNA, and
citrullinated histone H3 (Cit-H3) (62, 63). Cit-H3 was one of the
histone modifications, with the conversion of arginine to
citrulline which is targeted by peptidylarginine deiminase 4
(PAD4) (64). Higher arginine contents change the charge
distribution then affect the interaction with DNA, leading to
chromatin decondensation and transcription activation (230).
Meanwhile, Cit-H3 is an important epigenetic modification for
stem cell pluripotency. Therefore, the modification of Cit-H3
might be crucial for epigenetic therapy of COVID-19.
CONCLUDING REMARKS

Over the past two decades, the understanding of histone
modifications in the pathogenesis of inflammatory diseases has
been largely extended. In this review, we present an illustrative
but not comprehensive overview of the key role of histone
modifications in regulating the progression of inflammatory
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diseases. In this regard, we showed involvements of histone
PTMs in AS, T2D, AD, psoriasis, asthma, COPD, CF-lung
disease, inflammatory bowel disease, and virus-associated
diseases, but it is not limited to the diseases mentioned here;
there are still more inflammatory diseases related to histone
modifications, such as periodontitis, spondyloarthritis, many
types of cardiometabolic diseases, chronic kidney disease,
colorectal cancer, and most common neurodegenerative
diseases as well as demyelinating disorders. Numerous studies
focusing on histone PTM-related molecular mechanisms using
multi-omics methods combined with cell-based systems and
experimental animal models have profoundly contributed to
the current knowledge on this topic.

Accumulating data have shown that distinct histone
modifications are enriched in inflammatory organisms suffering
from chronic inflammatory diseases or virus-associated
inflammatory diseases. The imbalance of activating and repressing
histone modifications stimulates the development of a wide range of
diseases ranging from autoimmunity, cardiovascular pathology,
viscera injury, neurodegenerative disorder to cancer.

On the basis of salient cognition of these mechanisms,
therapeutic applications of the histone modifications targeting
for inflammatory diseases are expected to expand: HDAC
inhibitors as clinical drugs; new generations of vaccines that
alter histone PTMs levels; enzymes modulating histone PTMs;
and development of inducers of distinct histone proteins for the
treatment of inflammation paralysis in inflammatory diseases. In
fact, epigenetic drugs nowadays attract particular interest to the
clinic owing to their characteristic reversible and transient effects.
Only continuous research on the mechanisms of histone
modifications will be able to achieve these aims and fulfill the
potentials through the comprehending of the role of histones
post-translational modifications in inflammatory diseases.
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