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Tuberculosis (TB) is among the leading causes of death worldwide from a single infectious
agent, second only to COVID-19 in 2020. TB is caused by infection with Mycobacterium
tuberculosis (Mtb), that results either in a latent or active form of disease, the latter
associated with Mtb spread. In the absence of an effective vaccine, epidemiologic
modeling suggests that aggressive treatment of individuals with active TB (ATB) may
curb spread. Yet, clinical discrimination between latent (LTB) and ATB remains a
challenge. While antibodies are widely used to diagnose many infections, the utility of
antibody-based tests to diagnose ATB has only regained significant traction recently.
Specifically, recent interest in the humoral immune response to TB has pointed to potential
differences in both targeted antigens and antibody features that can discriminate latent
and active TB. Here we aimed to integrate these observations and broadly profile the
humoral immune response across individuals with LTB or ATB, with and without HIV co-
infection, to define the most discriminatory humoral properties and diagnose TB disease
more easily. Using 209 Mtb antigens, striking differences in antigen-recognition were
observed across latently and actively infected individuals that was modulated by HIV
serostatus. However, ATB and LTB could be discriminated, irrespective of HIV-status,
based on a combination of both antibody levels and Fc receptor-binding characteristics
targeting both well characterized (like lipoarabinomannan, 38 kDa or antigen 85) but also
novel Mtb antigens (including Rv1792, Rv1528, Rv2435C or Rv1508). These data reveal
new Mtb-specific immunologic markers that can improve the classification of ATB
versus LTB.
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INTRODUCTION

Infection with Mycobacterium tuberculosis (Mtb) affects one
quarter of the world’s population (WHO report 2020) and
causes approximately 1.5 million deaths annually (WHO
global TB report). While the majority of infected individuals
control the infection for life, in a state referred to as latent
tuberculosis infection (LTB) (1, 2), approximately 5-10% of the
infected individuals lose control of the bacterial infection.
Consequently, these individuals progress to active tuberculosis
(ATB) disease, and if untreated contribute centrally to
dissemination of the infection and may ultimately succumb to
death (3–5). Moreover, in the setting of HIV co-infection, the
risk of developing ATB is 20 to 30 times higher, and without
treatment the mortality rate of ATB reaches nearly 100% (3).
Thus, diagnostic tools are urgently needed to help guide clinical
care across populations.

Current diagnostic tests include assays of bacteriological
presence (microscopic or genetic), supplemented by the
analysis of symptoms, radiological evidence and tests that
involve the detection of recall-memory to Mtb antigens based
on the tuberculin skin test (TST) or the ex vivo detection of
memory Mtb-specific T-cells based on the interferon-g (IFN-g)
release assay (IGRA) (6, 7). While TST and IGRA clearly capture
Mtb exposure, current diagnostics distinguish ATB and LTB
poorly, rendering clinical management of TB disease a major
challenge in curbing deaths and disease spread. Thus, improved
TB diagnostics are urgently needed to reduce morbidity
and mortality.

Pathogen-specific antibodies represent critical markers of
infection and disease across many infectious disorders (8–10).
Since 1983, antibody responses have been studied for the
serodiagnosis of TB (11–16). In addition, studies on HLA-
linked immune response highlighted association between
sputum smear-positive TB and expression of Class II HLA
genes HLA-DR2, with HLA-DR2 being strongly correlated
with antibody titers against 38-kDa Mtb protein (17), thus
further motivating the identification of antibody-diagnostics to
guide TB clinical care (18, 19). However, like many infectious
diseases, including COVID-19 (20, 21), antibody titers to Mtb
increase with pathogen burden (22–25). Because antigen load
can vary drastically across subjects, antibody magnitude may be
an incomplete marker of disease progression. However,
emerging data strongly suggest that antibodies differ across
ATB and LTB, both with respect to antigen-specificities
targeted selectively across disease states, but also with respect
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to differences in the quality of the Mtb-specific humoral immune
response (isotype, subclass, and Fc-glycosylation) (26–29). Thus
far, studies aiming at developing antibody-based diagnostics for
ATB and LTB have focused on a small number of Mtb antigens
including lipoarabinomannan (LAM), purified protein derivative
(PPD), ESAT6/CFP10, Ag85A/B and MPT64 (26, 27, 30). Even
in the setting of HIV, which is associated with CD4 T cell
suppression and altered humoral immunity (4), humoral
immune responses to Mtb have been shown to discriminate
between ATB and LTB (30). However, whether additional Mtb
antigen specificities and antibody qualities could provide clearer
resolution of LTB and ATB remains unclear. Thus, in this study
we comprehensively profiled the humoral immune response
across 209 Mtb antigens, predicted to be highly enriched in the
lung under hypoxic conditions as would be present in a
granuloma (31, 32). Using a systems serology approach, we
identified novel classes of antigen-specific antibody profiles
able to resolve and discriminate ATB and LTB, independent of
HIV status.
MATERIALS AND METHODS

Study Subjects
Plasma samples from 4 groups of adults were included in this
study: ATB/HIV+ (n = 12), LTB/HIV+ (n = 22), ATB/HIV- (n =
21), and LTB/HIV- (n = 22) (Table 1). All subjects were
recruited from Cape Town, South Africa. LTB was defined as
the absence of TB symptoms, no previous history of TB diagnosis
or treatment and presence of IFN-g based on an IFN-g release
assay (IGRA). ATB was defined as a positive culture for
Mycobacterium tuberculosis (Mtb) growth or positive sputum
smear microscopy. Blood from ATB individuals was obtained
between 0 and 7 days of standard course anti-TB treatment
following South African National Health Guidelines. None of the
patients included in the study were on antiretroviral therapy
(ART) at the time of enrollment. For each participant, whole
blood was collected in sodium heparin Vacutainer tubes (BD
Biosciences). Plasma samples were isolated by centrifugation
under 500g after 5 minutes, within 4 hours of collection. Prior
to the study, a written and informed consent was given by all
study participants. Consents were approved by the Human
Research Ethics Committee of the University of Cape Town
and the Western Cape Department of Health, as well as the study
institutional review board at Massachusetts General Hospital and
Partners Healthcare.
TABLE 1 | Demographic data and HIV-associated parameters.

HIV+/ATB HIV+/LTB HIV-/ATB HIV-/LTB

Total number 12 22 21 22
Mean age (years ± SD) 34,8 ± 7.6 32,8 ± 7.4 40,2 ± 10.5 28,6 ± 8.6
Gender (Females) 6 (50%) 17 (77%) 8 (38%) 9 (41%)
Viral load mean (copies/ml ± SD) 127722,5 ± 280219,9 38225,3 ± 62464,65
CD4+ T cell count mean
(cells/mm3 ± SD)

206,2 ± 183,6 506,8 ± 295,0
A
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Antigens
Two hundred and nine Mtb antigens were used in this project.
Purified LAM was received from BEI Resources and purified
protein derivative (PPD) was obtained from the Statens Serum
Institute. The remaining 207 proteins were recombinantly
expressed Mtb antigens received from Dr. Tom Ottenhoff and
Kees Franken (Table S1), and prepared as described previously
(33, 34). These antigens were selected based on their
immunogenicity and their discriminatory potential for TB
diagnosis (33, 35, 36).
Luminex Beads Coupling and Antigen-
Specific Immunoglobulin Quantification
Antigen-specific antibody subclass and isotype levels present in
the plasma of individuals with TB were measured using a
custom multiplexed Luminex assay, as previously described
(37). This customized Luminex platform has been used
extensively across diseases (38–41). Mtb antigens were coupled
to magnetic carboxylated fluorescent Luminex beads (Luminex
Corporation) by carbodiimide-NHS ester coupling, with one
bead region per antigen. Before the coupling with the antigens,
beads were activated in an activation buffer containing 100 mM
monobasic sodium phosphate (pH 6.2), in addition to 50 mg/ml
N-hydroxysulfosuccinimide (Sulfo-NHS; Pierce) resuspended in
H20 and 1-ethyl-3-[3-dimethlyaminopropyl]carbodiimide-HCl
(EDC; Pierce) resuspended in activation buffer. After a 30-
minute incubation at room temperature (RT), beads were
washed in coupling buffer (50 mM morpholineethanesulfonic
acid (MES; pH 5.0)), then incubated with Mtb antigens for 2
hours at RT. Beads were then blocked during a 30 minute
incubation at RT in phosphate buffered saline (PBS)-TBN
(0.1% bovine serum albumin [BSA], 0.02% Tween 20, and
0.05% azide [pH 7.4]). Finally, beads coupled to proteins were
washed in PBS-Tween (0.05% Tween 20) and stored in PBS with
0.05% sodium azide at 4°C. As LAM is a glycolipid, a
modification by COOH-4-(4,6- dimethoxy[1,3,5]triazin-2-yl)-
4-methyl-morpholinium (DMTMM) was required before the
coupling to Luminex beads, as described previously (42). For
this protocol, 2 ml of DMTMM (200 mg/ml; Sigma-Aldrich) were
used for 25 mg of LAM. After 1 hour of incubation at RT, the
excess of DMTMMwas removed by using Sephadex G-25 PD-10
desalting columns (GE Healthcare). LAM was then added to the
beads and incubated overnight at RT. The next day, LAM-
coupled beads were washed in PBS then stored in PBS with
0.05% sodium azide at 4°C.

Antigen-coupled beads were added to plasma samples from
TB individuals at 1:100 dilution in PBS and incubated at 4°C for
18 hours of shaking. Beads were then washed 3 times with PBS-
Tween (0.05% Tween 20) and incubated with phycoerythrin
(PE)-conjugated mouse anti-human IgG1, IgG3, IgA1 or IgM
(Southern Biotech) at 1.3 mg/ml. After 1 hour of incubation at RT
with shaking at 800 rpm, beads were washed 3 times with PBS-
Tween (0.05% Tween 20) and resuspended in sheath fluid
(Luminex Corporation). Each plasma sample was tested in
duplicate, and PE median fluorescence intensity (MFI) levels
were measured via the iQue screener plus (Intellicyt) analyzer.
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Antigen-Specific Fcg-Receptor Binding
Fcg-receptors (FcgRs) were purchased from Duke Human
Vaccine Institute to study the relative binding levels of Mtb-
specific antibodies to individual FcgRs (43). Avi-tagged
FcgR2AR, FcgR2B, FcgR3AV and FcgR3B were biotinylated
with a BirA biotin-protein ligase (BirA500; Avidity) and the
excess of biotin was removed with Zeba spin desalting columns
(7K MWCO; Thermo Fisher Scientific).

Diluted plasma samples (1:100) were added to antigen-
coupled beads to form immune complexes as described above,
and after 18 hours of incubation at 4°C, beads were washed 3
times with PBS-Tween (0.05% Tween 20). At the end of the
incubation, streptavidin-R-phycoerythrin (ProZyme) was added
to each biotinylated FcgRs in a 4:1 molar ratio during an
incubation time of 20 minutes at RT. Fluorescent labeled FcgRs
(1 mg/ml in 0.1% BSA-PBS) were then added to immune
complexes and incubated for 1 hour at RT. Finally, beads were
washed 3 times with PBS-Tween (0.05% Tween 20), then
resuspended in sheath fluid (Luminex Corporation) and the
median PE intensity was measured via the iQue screener plus
(Intellicyt) system. Samples were tested in duplicate.

Statistical and Computational Analysis
Data analysis was performed using R version 4.0.2 (2020-06-22).
Comparisons between active and latent individuals were
performed using a Mann-Whitney U-test test followed by a
Benjamini-Hochberg (BH) correction for multiple comparisons.

A multivariate approach, combining a least absolute
shrinkage and selection operator (LASSO) for feature selection
and classification using partial least square discriminant analysis
(PLS-DA) with the LASSO-selected features was used to define
feature that discriminated active and latent antibody profiles.
Prior to analysis, mean fluorescence (MFI) values were first log-
transformed and all data were normalized using z-scoring.
Models were built using the R package “ropls” version 1.20.0
(44) and “glmnet” version 4.0.2. Model accuracy was assessed
using five-fold cross-validation. For each test fold, LASSO-based
feature selection was repeated 100 times, features selected at least
90 times out of 100 were identified as selected features. A PLS-
DA classifier was applied to the training set using the selected
features, and a prediction accuracy was recorded. The model was
also validated via permutation testing, where the performance of
the selected model was evaluated against randomly shuffled
active-latent labels. Selected features were ordered according to
their Variable Importance in Projection (VIP) score, and the first
two latent variables (LVs) of the PLS-DA model were used to
visualize the samples.
RESULTS

A Limited Mtb Antigen Panel Highlights
Differences Across ATB and LTB but Does
Not Fully Discriminate Across
Disease Status
To explore humoral responses in individuals with LTB and
ATB, we began by profiling isotype and subclass levels across 8
April 2022 | Volume 13 | Article 856906
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common Mtb antigens (LAM, PPD, ESAT6/CFP10, Ag85A and
85B, groES and PSTS3) in ATB and LTB individuals that were
HIV positive or negative. As previously described, HIV
negative ATB individuals exhibited higher levels of IgG1,
IgG3 and IgA1 responses to particular antigens, including
LAM, PPD, and groES (Figures 1A, B). Conversely, an
opposite profile was observed in HIV positive individuals,
marked by significantly elevated humoral immune responses,
and particularly IgM responses to Ag85A and PSTS3 among
HIV positive LTB (Figures 1A, C). However, these features did
not result in complete discrimination of ATB and LTB patients
across HIV serostatus (Figures 1D, E) (cross-validation
accuracy of 62.8% for HIV-; 67.6% for HIV+), suggesting that
common antigen-specific antibody profiles provide only a
modest level of discrimination across TB infection and
disease states.

An Expanded Mtb Antigen Panel Identifies
Unappreciated Mtb-Specific Antibody
Differences Between ATB and LTB Across
HIV Infection Status
Despite the lack of differences across a limited number of
common Mtb antigens (Figure 1), Mtb can express up to
4000 distinct antigens (45, 46), many of which may serve as
additional antibody targets. Thus, we next elected to deeply
profile the humoral immune response across LAM, PPD as well
as 207 Mtb antigens (Table S1), transcriptionally enriched in
in vitro or in vivo infection models, including lung specimens
Frontiers in Immunology | www.frontiersin.org 4
(36). Specifically, IgG1, IgG3, IgA1 and IgM levels were profiled
across all antigens in ATB and LTB among HIV positive and
HIV negative individuals (Figure 2). The data highlighted
generally expanded IgG1 and IgG3 responses across HIV
negative and positive ATB compared to LTB, with some
sporadic elevated IgG1/IgG3 responses in HIV-positive LTB
(Figure 2A). IgA responses were significantly elevated in HIV
negative ATB compared to LTB, despite expanded IgA
immunity in HIV-positive LTB (Figure 2A). IgM responses
were more diffuse across HIV negative groups, despite the
presence of a few high IgM responses in ATB compared to
HIV negative LTB. Conversely, the IgM response was distinct
in the setting of HIV co-infection, marked by significant
expansions of particular Mtb-specific IgM responses that
were either enriched in ATB or were enriched in LTB
(Figure 2A). Thus, using this expanded antigen set, striking
differences were noted in the evolution of the humoral immune
response across HIV-serostatus, pointing to the presence of
particular antigen-specific humoral immune responses that
may discriminate between TB disease states.

Minimal Sets of Mtb-Specific Antibody
Responses Discriminate Between ATB
and LTB Across HIV Status
To define the minimal set of specific antigens that were
differentially targeted across the groups, we began by
quantifying the number of antigens that were differentially
targeted by each subclass or isotype of antibodies (Table S2).
A

B

D

E

C

FIGURE 1 | Antibody levels against common Mtb antigens differ between ATB and LTB patients. Relative levels of IgG1, IgG3, IgA1 and IgM against 8 common
Mtb antigens (LAM, PPD, ESAT6/CFP10, Ag85A and 85B, groES and PSTS3) were quantified via Luminex in the plasma of ATB (n=21) and LTB (n=22) patients in
the HIV negative group and ATB (n=12) and LTB (n=22) patients in the HIV positive group. (A) For the heatmap, Z-score transformation of the MFI values was
performed, and the median of each group was graphed. Antibody levels that are significantly different between ATB and LTB are graphed separately for all
individuals in the HIV negative (B) and the HIV positive (C) groups. A Mann-Whitney U-test test followed by a Benjamini-Hochberg (BH) correction for multiple
comparisons was used to test for statistically significant differences ATB and LTB. Multivariate analysis using LASSO and PLS-DA model shows antibody levels
comparisons between ATB and LTB in HIV negative (D) and positive (E) populations. Cross-validation accuracy for (D, E) was 62.8% and 67.6%, respectively.
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Specifically, in HIV negative individuals, 79 Mtb antigens were
differentially targeted by IgG1, 5 antigens were differentially
targeted by IgG3, 106 were differentially targeted by IgA1, and
5 antigens were targeted distinctly by IgM (Figure 2B and
Table S2). Conversely, in HIV positive individuals, fewer
statistically significant differences were observed after multiple
correction but included: 34 Mtb antigens that were targeted
statistically differently by IgG1, 30 that were differentially
targeted by IgG3, and 19 antigens were targeted uniquely by
IgM across the two groups (Figure 2B). Interestingly, for most
comparisons, IgG1, IgG3, and IgA1 levels were higher in ATB
individuals, in accordance with published data and likely
reflective of the enhanced inflammatory state and bacterial
burden observed in ATB infection among HIV positive
individuals (22, 23). However, Mtb-specific IgM responses were
targeted differently in HIV positive and negative individuals, with
higher Mtb-specific IgM responses in ATB in the HIV negative
group, but higher Mtb-specific IgM responses in LTB in the HIV
positive population, reflecting a shift in B cell response profiles in
the setting of HIV. Yet, collectively, these data highlight the
striking differences in Mtb-specific humoral immune responses
in the setting of HIV infection, but still associated to the
persistence of differential humoral immune responses across
ATB and LTB.
Frontiers in Immunology | www.frontiersin.org 5
Differential Mtb-Specific Antibody
Binding to Fcg-Receptors Across Mtb
Disease States
Beyond overall changes in antibody subclass and isotype
responses to Mtb, emerging data point to significant
differences in the inflammatory state of Mtb-specific
antibodies across disease states (26, 29). These changes are
induced by alterations in antibody-Fc-glycosylation, aimed at
deploying antibody effector functions required for enhanced
clearance and control of the pathogen (47). Because these Fc-
glycosylation changes result in altered binding to Fcg-
receptors (FcR), we next examined whether Mtb-specific
FcR binding differences (FcgR2AR, FcgR2B, FcgR3AV, and
FcgR3B) existed against LAM, PPD and 207 Mtb antigens
(Table S1) in HIV positive and negative individuals with ATB
or LTB (Figure 3).

Thirty-nine Mtb antigens were differentially recognized by
FcgR2AR binding antibodies in HIV negative LTB populations
compared to ATB (Figure 3B). Moreover, 54, 31 and 50 Mtb
antigens were differentially recognized by FcgR2B, FcgR3AV
and FcgR3B-binding antibodies, respectively, with higher
binding observed in ATB (Figures 3A, B and Table S2).
Conversely, FcR binding antibodies were globally shifted in
HIV positive individuals, marked by disproportionately higher
A

B

FIGURE 2 | Mtb-specific antibody levels differ between ATB and LTB in HIV negative and HIV positive populations. Relative levels of IgG1, IgG3, IgA1 and IgM
against 209 Mtb antigens were quantified via Luminex in the plasma of ATB (n=21) and LTB (n=22) patients in the HIV negative group and ATB (n=12) and LTB
(n=22) patients in the HIV positive group. (A) Heatmaps illustrate the median of Z-scored MFI data for each group indicated. (B) The volcano plots characterize the
magnitude (log2 fold change of ATB/LTB) and the significance (p values) of antibody levels between ATB and LTB. Values above black dashed lines are statistically
different between ATB and LTB (p < 0.05). For adjusted p values, significant data are shown in red, non-significant differences are in black.
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levels of FcgR2AR, FcgR2B, FcgR3AV and FcgR3B binding
antibodies in HIV+ ATB compared to LTB (Figure 3).
Specifically, 145, 183, 162 and 148-Mtb-antigens were
targeted more robustly by FcgR2AR, FcgR2B, FcgR3AV and
FcgR3B binding antibodies, respectively, in ATB compared to
LTB (Table S2). Thus, beyond alterations in overall antibody
subclass/isotype binding profiles across TB disease status,
alterations are observed with FcR binding, that are amplified
in the setting of HIV co-infection, again pointing to the
possibility for antibody-based discrimination across LTB and
ATB across HIV status.

A Minimal Set of Antibody Biomarkers Can
Discriminate LTB and ATB Irrespective of
HIV Status
Given the significant differences in isotype, subclass, and FcR
binding differences across LTB and ATB in both HIV positive
and negative individuals, we next aimed to identify a minimal set
of potential candidate antigens that could be used to discriminate
between ATB and LTB. A computational analysis that combined
LASSO feature down-selection and PLS-DA classification was
conducted in the HIV negative (Figures 4A–D) and positive
(Figures 4E–H) groups. Out of the 1680 antigen-specific
antibody features included in the analysis, only 4 features were
Frontiers in Immunology | www.frontiersin.org 6
sufficient to separate HIV negative ATB and LTB (Figures 4A,
B): RV2034-specific FcgR2AR binding, which was higher in LTB,
as well as LAM-specific FcgR3A binding antibodies, RV1528-
specific FcgR2B binding antibodies, and RV2435c IgG1 levels
that were enriched in ATB (Figure 4B). Three of the LASSO
selected features were significantly differentially targeted across
the groups, including RV2034-specific FcgR2AR binding, LAM-
FcgR3A binding and RV1528-specific FcgR2B binding antibodies
(Figure 4C). Given that LASSO selects a minimal set of features
that account for the greatest variance across the groups, the
LASSO-selected features may represent groups of correlated
antibody features that diverge across TB groups. Thus, to gain
enhanced insights into the global changes across groups, a co-
correlate analysis was built on the LASSO-selected features
highlighting the presence of a large, expanded FcgR2B network
in ATB, as well as two smaller networks of LAM-biomarkers and
FcgR2AR binding biomarkers enriched in HIV negative ATB
individuals (Figure 4D).

Similar to the HIV negative LTB/ATB individuals, as few as 3
of the 1680 analyzed features were sufficient to separate LTB and
ATB individuals with HIV (Figures 4E, F). Specifically, RV3583
FcgR2AR binding was enriched in ATB individuals, and RV1508
and Ag85A IgM levels were enriched among LTB (Figures 4E,
F). All features were significantly different across the groups
A

B

FIGURE 3 | Mtb-specific FcR binding distinguishes ATB from LTB among HIV negative and positive individuals. The ability of antibodies to bind to FcgR2AR,
FcgR2B, FcgR3AV and FcgR3B was measured in the plasma of ATB (n=21) and LTB (n=22) patients without HIV infection as well as ATB (n=12) and LTB (n=22)
patients with HIV. (A) Heatmaps show median values of FcR binding after Z-score transformation to each of the 209 Mtb antigens. (B) Fold change between FcR
binding in ATB and LTB as well as the significance (p values) of differences are plotted the volcano plots. Values above black dashed lines are statistically different
between ATB and LTB (p < 0.05). For adjusted p values, significant data are shown in red, non-significant differences are in black.
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(Figure 4G). Interestingly, co-correlates analysis revealed that
the single ATB feature was tightly linked to nearly all IgG/FcR
binding levels that were globally expanded in ATB (Figure 4H).
Additionally, a smaller network of IgM features emerged,
marking the unique expansion of IgM responses among HIV
positive LTB.

Finally, we aimed to estimate the classification accuracy of the
LASSO-selected antibody features across ATB and LTB. An area
under the receiver operating characteristic (ROC) curve (AUC) was
calculated for each feature (Figures 5A, B). Importantly, the
combination of the selected antibody features gave an AUC close
to 1 (AUC = 0.98 for HIV-; AUC = 0.92 for HIV+). However, even
using individual antibody features, classification accuracies of 0.96,
0.8, 0.71 and 0.74 were observed with Rv2034-specific binding to
FcgR2AR, LAM-specific binding to FcgR3AV, Rv1528-specific
binding to FcgR2B and Rv2435C-specific IgG1 levels, respectively,
among HIV negative individuals (Figure 5A). Similarly, in HIV
positive individuals, individual feature AUCs reached 0.81, 0.86 and
0.84 for Rv1508-specific IgM levels, binding of Rv3583-specific
antibodies to FcgR2AR and Ag85A-specific IgM levels, respectively
(Figure 5B). Our results showed that 4 parameters were
systematically enriched in ATB compared to LTB among HIV
negative and positive populations, which are IgG1 levels against
Rv2435.C, as well as Rv3583-, Rv1528- and LAM-binding to
FcgRAR, FcgR2B and FcgR3AV, respectively (Figure 5C). Thus, a
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minimal set of largely novel Mtb-specific humoral biomarkers may
provide a unique opportunity to help discriminate between LTB
and ATB. Given the ease of generation of rapid point-of-care
antibody-based diagnostics, these data point to a simple
opportunity to develop rapid point-of-care tests for the diagnosis
of Mtb disease state.
DISCUSSION

The lack of rapid and specific point-of care diagnostic tools has
impeded the control of tuberculosis, particularly among HIV
positive individuals (WHO report 2020; (4, 48, 49). Serum
antibody-based tests represent promising alternatives to the
current medically intensive diagnostic approaches associated to
sputum collection for culture or non-specific tests like TST or
IGRA to diagnose active TB. However, previous work with strict
quantitative measurements of canonical antigen-specific
antibody levels has failed, in the past, to identify Mtb-specific
humoral biomarkers able to discriminate ATB and LTB (50). We
thus aimed to broaden the scope of biomarker discovery,
integrating both qualitative differences in humoral immune
profiles as well as the breadth of antigen-specific antibody
responses across individuals with/without TB among HIV
positive and negative adults. In addition to the 8 common Mtb
1
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FIGURE 4 | Individuals with ATB and LTB exhibit distinct humoral profile against Mtb antigens regardless of HIV infection. Multivariate analysis comparing antibody
response in ATB and LTB among HIV negative (A, B) and HIV positive (E, F) populations. (A, E) PLS-DA models showing dot plots of nearly non-overlapping antibody
features in ATB (blue) and LTB (yellow) from HIV negative (A) and positive (E) groups. Ellipses show 95% confidence intervals. PLDS-DA models were trained using
LASSO-selected features that are plotted on VIP plots for HIV negative (B) and positive (F) patients. Cross-validation accuracy for (A, E) was 74.2% and 79.1%,
respectively. Antibody features showing significant differences between ATB and LTB are graphed for the HIV negative (C) and HIV positive (G) cohorts. A Mann-Whitney
U-test test followed by a Benjamini-Hochberg (BH) correction for multiple comparisons was used to test for statistically significant differences ATB and LTB. Network
correlations depicting the additional non-LASSO-selected features that were correlated with the LASSO-selected parameters statistically different between ATB and LTB
in the HIV negative (D) and positive (H) groups. Data on antibody levels are in purple, features related to FcgR binding are in green.
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antigens (LAM, PPD, ESAT6/CFP10, Ag85A and 85B, groES and
PSTS3), 201 additional novel Mtb antigens were included,
collectively providing significant resolution of ATB and LTB in
HIV negative populations, including higher levels of IgG1
against LAM and PPD in ATB individuals, as well as increased
groES-specific IgG3 and PPD-specific IgA1 levels (Figures 1, 2).
Conversely, while HIV positive ATB/LTB were also resolvable,
the antigen-specific antibody profiles used to discriminate these
groups shifted to include higher 85A- and PSTS3-specific IgM
response in LTB due to expected HIV induced alterations in
immunity. This immune dysregulation in ATB patients with
HIV might in part be attributable to lower CD4+ T cell counts
and higher viral loads, resulting in altered B cell responses and
elevated inflammation (Table 1). However, collectively, a set of
antigen-specific antibody profiles were defined in both HIV
negative and positive populations that provide antigen-specific
resolution that could guide TB diagnostic development,
providing a unique opportunity to build point-of-care
diagnostic tools that would improve TB medical care.

Increased IgG and IgA responses have been previously observed
in ATB individuals (22, 24, 30). Studies have shown that high titers
are correlated with bacillary load in patient sputum (51).
Interestingly, only a weak separation was observed between ATB
and LTB when using a limited list of common Mtb antigens
(accuracy: 62.8%) (Figure 1). Similarly, other studies have shown
that antibodies targeting known antigens including Ag85, ESAT6,
and CFP10 have limited diagnostic accuracy. Moreover, conflicting
reports have demonstrated that the sensitivity of Ag85-specific IgG
levels reaches 67.5% for the diagnosis of ATB (50), while others
suggested that Ag85-specific IgG levels can provide up to 84.1%
(52). Conversely, here the expansion of antigens to additional
targets that may be expressed more abundantly in the lung
Frontiers in Immunology | www.frontiersin.org 8
during Mtb infection (36), improved diagnostic accuracy to 98%
in HIV negative individuals and 92% in HIV positive subjects
(Figure 5). Whether these antigen-specific antibodies contribute to
the immune response to Mtb remains unclear but may reflect the
presence of a more robust host (antibody) response to highly
expressed antigens, that may more sensitively resolve individuals
with differential control of Mtb.

Surprisingly, HIV co-infection abrogated the differences in IgG
and IgA observed in ATB compared to LTB among HIV negative
individuals. In accordance with our observations, data published
previously reported that total amounts of LAM IgG were higher in
ATB/HIV- compared to ATB/HIV+ individuals (30). Also, the loss
of IgM observed in ATB individuals with HIV points to a significant
shift in the humoral immune response upon co-infection (53).
Moreover, given our emerging appreciation for the importance of
IgM in Mtb control (54), it is plausible that the loss of IgM may
compromise anti-microbial control in HIV/Mtb co-infection,
contributing to disease progression. IgM is known for its
antimicrobial function, inducing opsonophagocytosis,
complement deposition and agglutination (55). Studies in mice
have highlighted the main role that IgM plays in the control of Mtb
infection by regulating immune response inside granulomas,
leading to improved survival of infected mice during the chronic
phase of the disease (56, 57). Here we observed that HIV positive
individuals with LTB had higher IgM levels against particular Mtb
antigens compared to individuals with ATB, including responses
against Ag85A and PSTS3, potentially pointing to specific IgM
targets that may represent critical Mtb therapeutic targets
(Figures 1, 2).

In addition to isotype differences across ATB/LTB, Mtb-specific
FcR binding profiles were significantly differentiated across the
groups, both in HIV positive and negative populations (Figure 3).
A

B

C

FIGURE 5 | Discriminatory features between ATB and LTB. ROC curves showing the sensitivity and the specificity of potential biomarkers discriminating ATB and
LTB in HIV negative (A) and positive (B) populations. (C) Loading plot showing LASSO-selected features enriched in ATB, both among HIV negative and HIV positive
individuals (upper right quadrant) versus those enriched in LTB among HIV negative and HIV positive groups (low-left quadrant). Features in the upper left quadrant
are increased in ATB compared to LTB among HIV+ but are enriched in LTB among HIV-. Features in the low right quadrant are enriched in LTB compared to ATB
among HIV+ but are higher in ATB among HIV-.
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Changes in FcR binding are attributable to both alterations in
subclass distribution and Fc-glycosylation (58, 59), both of which
shift rapidly in response to inflammatory cues that arise during
infection. Thus, FcRs may act as sensitive markers of inflammatory
changes in antibodies (47). Similarly, previous studies have
highlighted striking differences in Fc-glycosylation across HIV
negative LTB and ATB (26, 29). Moreover, despite the robust
general Fc-inflammatory changes associated with HIV (60, 61),
Fc-glycosylation changes still likely occur in the setting of HIV co-
infection, marked by striking, and previously unappreciated highly
significant increases in all FcR binding in the setting of ATB
infection across most Mtb antigens (Figure 3). Interestingly, while
the differences are not as pronounced in HIV negative ATB/LTB,
Mtb-specific FcR measurements were still key to resolving the
groups. FcR binding differences are likely attributed to significant
changes in Fc-glycosylation, that can be detected using Mass-
spectrometry, but may be more readily quantified, in a simpler
point-of-care approach using FcR detection.

Specific antigen-dependent antibody responses were key to
discriminating ATB and LTB. In HIV negative individuals, IgG1
levels against Rv2435.C as well as FcgR2AR, FcgR3AV and
FcgR2B binding associated with Rv2034, LAM and Rv1528
respectively were sufficient for the separation of the groups
(Figure 4B). In coinfected individuals, only 3 parameters were
enough for ATB versus LTB discrimination: Rv3583-specific
binding to FcgR2AR in addition to Rv1508- and Ag85A-
specific IgM levels (Figure 4F). Other than LAM and Ag85A,
the additional targets are less well defined. Rv2034 has been
described as a transcriptional regulator form the ArsR family
(62) and shown to be expressed during pulmonary infection,
inducing a strong T cell response (63), and clearly - now - also a
robust antibody response. Little is known about Rv1529 and
Rv2435.C, the former thought to be a polyketide-associated
acyltransferase involved in lipid metabolism (64), and
Rv2435.C has been defined as an adenylyl cyclase essential for
Mtb survival (65, 66). In HIV positive individuals, antibodies to
Rv3583, a transcriptional regulator (67), were among the most
discriminatory Mtb responses. Finally, IgM responses to Ag85A
and Rv1508, the latter involved in cell surface structures and
transport (68), were highly discriminatory. Interestingly, 4
features were similarly enriched in ATB compared to LTB in
both HIV positive and negative groups, including RV2435c IgG1
levels as well as Rv3583-, Rv1528- and LAM-binding antibodies
to FcgRAR, FcgR2B and FcgR3AV, respectively (Figure 5C).
While it remains unclear how BCG-vaccination alters these
antibody responses across populations, these data suggest that
by including a set of 7 antigens and 3 Fc-readouts in a
multiplexed diagnostic test, it may be possible to develop a
single set of antigens and Fc-detectors to distinguish LTB and
ATB across HIV positive and negative populations.

Collectively, this work identifies a number of novel antibody
targets in ATB and LTB that may help guide diagnostic
development. Specifically, these data point to novel
combinations of Mtb antigen specificities and antibody Fc-
qualities in discriminating between ATB/LTB. Indeed, in
addition to LAM, RV2435c, Rv3583 and Rv1528 were also
Frontiers in Immunology | www.frontiersin.org 9
essential for the discrimination of ATB and LTB regardless of
HIV status. While several combinations of inflammatory cytokine
or transcriptomic biomarkers have been proposed as new
exploratory approaches to help discriminate between ATB and
LTB, the development of a simple Mtb-antigen-specific antibody
point of care diagnostic would provide simplicity and ease of
diagnosis. Moreover, while a single Mtb-antigen antibody Fc
feature that could discriminate across ATB/LTB in both HIV
negative and positive individuals would be desirable, a single
solution may not be possible. However, with the advent of novel,
simple lateral flow diagnostics that can multiplex antigen and
detectors, the combination of the 7 antigens with unique detectors
could be easily developed, providing a simple diagnostic to rapidly
determine ATB/LTB status in any particular population. Whether
additional antigen-specificities, not probed here, could add
additional resolution is possible, and warrants additional
analysis. Moreover, further discriminatory antibody profile
discovery in IGRA-negative individuals living in TB-endemic
areas, among BCG-vaccinated individuals living outside of
endemic regions, and analysis of LTB and ATB from disparate
geographical regions will provide a better insight into the
robustness of these antibody signatures. Additionally, future
functional and Fc-glycosylation profiling may reveal whether
these unique humoral signatures also track with differential
control of the infection, which might lead to the identification
of features in LTB individuals that are associated with high risk of
progression to ATB. While the ultimate development of a TB
diagnostic will require extensive validation across multiple
populations globally, overall, our data expand the current
knowledge of Mtb antigen-specific humoral immunity and
highlights the need to deeply understand how humoral changes
may be leveraged both in vaccine and diagnostic development.
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