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Common variable immunodeficiency (CVID) is the most common symptomatic form of
primary immunodeficiency. More than 50% of patients in some series suffer from
autoimmune or inflammatory complications (the “CVID+” phenotype), and these are not
adequately addressed by current treatments. Despite major advancements in genetics,
the pathogenesis of the CVID+ phenotype has remained unexplained for most patients,
necessitating the need for relevant biomarkers in both the clinic and research settings. In
the clinics, reduced isotype-switched memory B cells (≤ 0.55% of B cells) and reduced T
cells (CD4) can be utilized to identify those with increased complication risks. Additionally,
condition-specific markers have also been suggested for lymphoma (normal or elevated
IgM) and progressive interstitial lung disease (increased BAFF, normal or elevated IgM).
Additional biomarkers have provided insights into disease pathogenesis, demonstrating
wider systemic inflammation (increased LBP, sCD14, and sCD25; expanded ILC3),
mucosal defects (increased zonulin, I-FABP), and perhaps reduced anti-inflammatory
capability (reduced HDL) in CVID. Most recently, efforts have revealed elevated circulating
bioactive bacterial DNA levels – marking microbial translocation and potentially linking the
causation of multiple inflammatory changes previously observed in CVID. The
implementation of high throughput profiling techniques may accelerate the search of
relevant biomarker profiles in CVID and lead to better clinical risk stratification, revealing
disease insights, and identifying potential therapeutic targets.

Keywords: common variable immunodeficiency, primary immunodeficiency, biomarkers, complications,
pathogenesis, genes, environment
INTRODUCTION

Common variable immunodeficiency (CVID) is one of the most common symptomatic primary
immunodeficiency disorders, with an estimated prevalence of 1:50,000 to 1:25,000 (1–3). While
most subjects are adults at the time of diagnosis, diagnostic delay of many years is prevalent. After
establishing the diagnosis, the immune defects require various and lifelong therapies. Due to the loss
of antibody function, most patients experience intermittent infections. With the emergence of
immune globulin therapy as the mainstay of treatment in the past 3 decades, infection frequencies
and related hospitalizations have been reduced (4). However, it has also become clear that CVID has
two distinct phenotypes: one group with recurrent infections that can be addressed by adequate
immunoglobulin replacement, and a second group with additional autoimmune/inflammatory
org March 2022 | Volume 13 | Article 8570501
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complications (“CVID+”) as the main manifestation (2). These
non-infectious complications are usually evident at initial
presentations, though they may also appear subsequently. They
include progressive interstitial lung diseases, autoimmunity,
gastrointestinal inflammatory diseases, granulomas, liver
diseases, excessive lymphoid hyperplasia, and the development
of cancers, especially lymphoma (2, 5). These manifestations of
immune dysregulations have become the major challenge since
they are not ameliorated by standard immune globulin
replacement therapy and the pathogenesis remains poorly
understood (2, 6).

Cohort and registry data have provided insights to the clinical
determinants of health outcomes in CVID, as well as the CVID+
phenotype. Data from the Mount Sinai cohort showed that non-
infectious complications led to both increased morbidity and
mortality in CVID (2). ESID Registry data for 2700 patients
demonstrated that increased mortality was additionally
associated with older age at diagnosis, later onset of symptoms,
diagnostic delay, and parental consanguinity, but notably, not
immunoglobulin replacement dosage (7). USIDNET Registry
data for 990 patients showed that while some CVID+ patients
may only have one non-infectious manifestation, the vast
majority in this group suffered from multiple inflammatory
complications concurrently (8). For instance, lymphoproliferative
disease and granulomas were significantly associated with
hematologic autoimmunity, interstitial lung disease, and hepatic/
gastrointestinal diseases. This insight demonstrated the burden of
disease for patients and additionally suggested a shared
pathogenesis underlying these varied conditions.

With the large-scale application of genetic sequencing in
CVID, it was widely hoped that the rapid identification of
specific genes responsible for the CVID+ phenotype would
drive our understanding of the disease, and to an extent, this
has occurred. In 10-30% of CVID patients, pathologic
monogenic defects can be identified (9–11). These defects are
broadly categorized into 1) genes implicated in various stages of
B cell activation, survival, or maturation to the plasma cell stage
and 2) immune-regulatory genes, with autoimmunity and
inflammation (CVID+) being more characteristic of the latter
group. In a study of 571 CVID patients from three cohorts (New
York, Sweden, and Iran), genes considered causative were
identified in 31% (New York), 36% (Sweden), and 54% (Iran)
of participants (11). For CVID+ patients, the yield of genetic
sequencing was somewhat higher (35-36.9% in New York and
Sweden). However, the majority of CVID patients, including
those with numerous complications, did not have an identified
causative genetic mutation (63.1-65% of CVID+ patients in New
York and Sweden; Table 1). Another relevant question is
whether the clinical conditions suggest which mutations might
be present. When examining patients with mutations in the same
gene in the more similar New York and Swedish cohorts, it was
clear that clinical conditions would not necessarily be a useful
indicator of the underlying genetic defect. Overall, genetic causes
of at least ~70% of CVID patients remain unidentified to date,
including those with complications. Presently, it is clear that
other genetic changes are likely operative, and much more work
remains to be done through a genetic approach.
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While genetic research efforts continue, and will certainly lead
to additional discoveries, dissecting the CVID phenotype,
especially the autoimmune/inflammatory conditions, continues
to be the focus of major research activities. In particular, there
have been considerable efforts to find pertinent biomarkers that
may be useful to 1) identify CVID patients at particular risk for
developing complications, 2) provide clues to the shared
pathogenic pathways, and 3) potentially offer insights to new
therapeutic approaches. Here, we distill and tabulate the
evolution of these biological markers in the past few decades
and discuss current work on the identification of relevant
biomarkers in CVID (Table 2).
CIRCULATING BIOMARKERS

B and T Cell Phenotypes
Circulating lymphocyte markers were the first extensively studied
biomarkers in CVID, and they were quite successful in identifying
patients at particular risks for developing non-infectious
manifestations. Overall, patients with severely reduced
peripheral isotype-switched memory B cells, increased CD21low

B cells, and reduced T cells (especially naïve and regulatory T cells)
were more likely to have these complications (12–15). In the B cell
compartment, switched memory B cell phenotypes have been the
most widely utilized markers. In particular, decreased switched
memory B cells (cut-off: ≤ 0.55% of B cells) was an independent
risk factor for granulomas, splenomegaly, and autoimmunity (15).
Similarly, a cut-off of <2% switched memory B cells was identified
as a risk factor for granulomas and splenomegaly in another study
(12). On the other hand, the expansion of CD21low B cells (>10%)
had been linked to splenomegaly and autoimmune cytopenia (12,
16). Lastly, the expansion of transitional B cells (>9%) was linked
to lymphadenopathy (12). Interesting, we had also observed an
association between sex and distinct B cell profiles (15).
Specifically, female CVID patients had significantly more
switched memory B cells and higher serum IgM levels than
males. At present time, however, it is not known whether this B
cell differential is linked to the higher incidence of B cell
lymphoma observed in female CVID patients (2, 5). In the T
cell compartment, reduced peripheral T cells have been observed
in CVID+ cases in most cohorts. In rare cases, severe CD4 T cell
TABLE 1 | Monogenic defects identified in 3 CVID cohorts by phenotype
(infections only vs. complications) (11).

Gene identified, n (%) No gene identified, n (%)

United States, n = 234
Infections only, n = 91 23 (25) 68 (75)
Complications,* n = 143 50 (35) 93 (65)
Sweden, n =113
Infections only, n = 40 11 (27.5) 29 (72.5)
Complications,* n = 73 27 (36.9) 46 (63)
Iran, n = 188
Infections only, n = 80 43 (53.7) 37 (46.2)
Complications,* n = 108 62 (57) 46 (42.5)
March 2022 |
*CVID complications include lymphocytic and/or granulomatous infi ltrations,
lymphadenopathy, splenomegaly, autoimmunity, and noninfectious enteropathy.
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lymphopenia (<200 cu/mm) is observed, and it is linked to risk for
opportunistic infections (14). These cellular biomarkers are now
commonly utilized at early encounters to allow better initial
classifications and provide some level of risk assessment.

Cytokines
Many research studies over the years have also examined
cytokine markers in CVID, with the goals of illuminating the
immune defect and providing additional measures in following
complex cases. Studies of cytokines have been reviewed in-depth
previously (17). However, results between studies can be difficult
to interpret due to differences in patient selection, cell types
examined, and experimental conditions. One of the first cytokine
abnormalities noted was a lack of IL-2, potentially related to the
observed T cell defects (18, 19). This had led to clinical trials of
IL-2 in CVID and resulted in some correction of T cell
proliferation defects (20). Studies also suggested increased
TNF-a, both in serum and in peripheral blood mononuclear
cell (PBMC) stimulation studies (21). Additionally, a
polymorphism in TNF (the TNF+488A allele) had been noted
in a CVID subset characterized by granulomas, splenomegaly,
lymphopenia, reduced CD4+CD45RA+ T cells, and expanded
CD8+CD57+ lymphocytes (22). Due to these suggestions, anti-
TNF-a therapies was utilized in case reports of severe
enteropathy and granulomatous disease, suggesting potential
utility in specific complications (23, 24). However, evidence
remains at the case report level and careful consideration of
secondary infection risks with anti-TNF-a therapies is required.
IFN-g abnormalities in CVID had differed between cell types and
patient subgroups (25, 26). However, in a larger cohort, we had
found abundant serum IFN-g in CVID+ patients, along with an
Frontiers in Immunology | www.frontiersin.org 3
IFN mRNA signature that distinguished CVID+ from CVID
patients and healthy volunteers (further discussed below) (27,
28). A number of other cytokines had also been examined in
CVID, though the results often varied between studies: IL-4
(elevated serum levels in most studies, but reduced in some) (29,
30), IL-5 (potentially reduced) (31), IL-6 (increased production
in some studies) (32, 33), IL-7 (varied) (34), IL-10 (varied) (35,
36), and IL-12 (varied) (37, 38).

B Cell-Activating Factor, A Proliferation
Inducing Ligand, B Cell Maturation Antigen
Both BAFF and APRIL belong to the TNF family and are clearly
elevated in CVID serum (39). BAFF is known to drive immature
B cells, and elevated BAFF/APRIL system is associated with
systemic autoimmune disease, such as systemic lupus
erythematosus (40). Thus, there has been substantial interest in
their roles in the CVID+ phenotype. Among CVID patients,
serum BAFF levels are inversed related to peripheral B cell
numbers (41) and switched memory B cells (unpublished
observation), suggesting a role in driving B cell production and
maturation in this condition. In our initial studies (n=77), we did
not find a clear relationship between BAFF/APRIL and clinical
parameters (autoimmunity, lymphadenopathy, splenomegaly) or
TACI mutations (39). However, we subsequently found that
elevated serum BAFF marked CVID patients with progressive
interstitial lung disease (ILD) from those with stable ILD, other
CVID patients, and healthy volunteers (42). In addition, we
detected a relative abundance of BAFF in the lung tissues of
progressive vs. stable CVID ILD. Together, these results indicate
that elevated BAFF (in blood and lungs) could be a biomarker
that distinguishes CVID patients with progressive ILD.
TABLE 2 | Relevant clinical and laboratory biomarkers in CVID.

Clinical risk markers Laboratory Biomarkers Laboratory Biomarkers Notes

Older age at presentation Very low isotype switched memory
B cells

≤ 0.55% of B cells: risk factor for granulomas, splenomegaly and autoimmunity

Later diagnosis of CVID Increased CD21low anergic B cells Linked to splenomegaly and autoimmune cytopenia
Diagnostic delay Increased transitional B cells Linked to lymphadenopathy
Consanguinity Normal or increased serum IgM Association with lymphoma and progressive ILD
Selected inflammatory complications Low serum soluble BCMA Distinct in CVID when compared to IgG deficiency and selective IgA deficiency
Lymphoma Interferon mRNA signature Distinguish CVID+ from other CVID patients and non-CVID healthy controls
Granulomatous and/or lymphocytic
lung disease

Expanded innate lymphoid cells Potential source of IFN-g in CVID+, most prominent in those with autoimmunity and/or
lymphoproliferation

Splenomegaly Increased sCD14 in blood Highest levels in CVID+
Autoimmunity Increased sCD25 in blood Highest levels in CVID+

Increased serum BAFF and APRIL Serum BAFF is inversely related to isotype switched memory B cells; may mark patients
with progressive ILD.

Increased LBP Associated with increased sCD14 in blood, may be an indirect biomarker for microbial
translocation in CVID.

Low serum HDL Reduced HDL levels and impaired function linked to systemic immune activation in CVID
Increased serum TMAO Correlated with selective inflammatory cytokines in CVID
Low or absent IgA Linked to gastrointestinal inflammation and intraepithelial lymphocytosis
Increased serum I-FABP Widely present in CVID regardless of overt enteropathy
Increased serum zonulin Widely present in CVID regardless of overt enteropathy
High serum levels of gut commensal
bacterial DNA

Marked the CVID+ phenotype and those with low isotype-switched memory B cells (<2%
of total B cells); high levels marked higher serum IFN-g; bioactive in ex vivo studies of CVID
circulating cells.
APRIL, a proliferation inducing ligand; BAFF, B cell activating factor; BCMA, B cell maturation antigen; I-FABP, intestinal fatty-acid binding protein; ILD, interstitial lung disease; HDL, high-
density lipoprotein; LBP, lipopolysaccharide-binding protein; sCD14, soluble CD14; sCD25, soluble CD25; TMAO, trimethylamine N-oxide.
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In contrast, serum B cell maturation antigen (BCMA), a TNF
receptor expressed largely on the surface of plasma cells and
plasmablasts and promotes survival of these cells, appears to be
reduced in CVID (43). In this study, we found that serum soluble
BCMA was significantly reduced in CVID when compared to
those with milder forms of antibody defects, including IgG
deficiency and selective IgA deficiency. Serum soluble BCMA
levels positively correlated with plasma cell counts in the
gastrointestinal mucosa.

Serum IgM
The relative abundance of serum IgM is another interesting
biomarker in two specific CVID-associated complications –
namely, lymphoma and ILD. The connection to lymphoma
was first suggested in a landmark study from the ESID registry,
where CVID patients who developed lymphoma were found to
have higher baseline serum IgM compared to other CVID
patients (44). This was also recently validated in our study of
45 lymphoma cases (B cell type: n=44) amongst a total of 647
CVID patients (45). Here, we found that patients with
lymphoma had a median baseline serum IgM of 74.5 mg/dL
(range 4-830), significantly higher than the rest of the cohort
(median 32.2 mg/dL, range 0-645, P=0.009). In a separate study
examining CVID-associated ILD, we had found that the
retention or increase of serum IgM was associated with
progressive lung disease (42). This observation paralleled
BAFF-driven B cell hyperplasia, and was associated with
increased lymphoid infiltrates and germinal center formation
in the lung tissues, and suggested serum IgM as a relevant non-
invasive biomarker in CVID patients with ILD.

LPS Binding Protein, Soluble CD14,
Soluble CD25, and HDL
While much of the research efforts in CVID have focused on
adaptive immune abnormalities, there has also been an increased
appreciation of a wider systemic immune activation in CVID.
Both LBP and sCD14 are considered to be acute phase proteins,
typically released by hepatocytes/intestinal cells and monocytes/
macrophages, respectively, in response to microbial stimuli (46–
48). Multiple studies had previously reported elevated circulating
LBP and sCD14 in CVID compared to healthy controls (49, 50).
This was also confirmed in a larger CVID cohort (n=76), where
we found that the highest sCD14 levels were amongst CVID+
patients, supporting innate immune activation as an important
hallmark of CVID, especially for those with non-infectious
manifestations (28). Here, we also observed a positive trend
between serum sCD14 and LBP(Spearman r = 0.21, P = 0.0735).
Others had additionally reported a positive correlation between
sCD14 and sCD25, typically produced by activated T cells
(though not exclusively), in CVID, with the highest levels of
both markers observed in CVID+ (50, 51). Another quite
original and potentially relevant biomarker in CVID is high-
density lipoprotein (HDL). This was examined due to its known
anti-inflammatory properties, for instance, in reducing toll-like
receptor (TLR)-induced inflammation in macrophages (52). In a
large CVID cohort (n=102), plasma HDL was reduced compared
to healthy controls, especially in those with non-infectious
Frontiers in Immunology | www.frontiersin.org 4
complications (53). In addition, plasma HDL was inverse
correlated with inflammatory markers CRP and sCD25 in this
cohort, suggesting a link between impaired HDL levels/function
and immune activation in CVID.
SYSTEMS PROFILING

mRNA Transcriptional Profiling and
Mass Cytometry
In recent years, high throughput molecular and cellular profiling
techniques have been increasingly utilized to identify biomarkers
in complex and heterogeneous disorders. Taking this open-
ended approach, we had first conducted whole blood mRNA
profiling in a large CVID cohort (n=91) (54). Here, we found a
marked up-regulation of IFN responsive genes that distinguished
CVID+ patients from other CVID patients and control
participants. In parallel, we also found a pronounced down-
regulation of transcripts related to the B cell, plasma cell, and T
cell modules that characterized CVID+ patients. Further
investigation identified type II IFN (IFN-g) signature as a
heightened cytokine pathway in CVID+. To trace the cellular
origin of IFN-g in CVID, we subsequently employed mass
cytometry and found that the circulating IFN-g+ cells had
markers of innate lymphoid cell type 3 (ILC3; lineage negative,
CD127+, CD161+, T-bet+, and retinoid acid-related protein
receptor-g+) (27). These IFN-g+ ILCs were also positive for IL-
17A and IL22. They were not only expanded in the peripheral
blood of CVID+ patients (mean 3.7% of PBMCs) but were also
found in the end organs of disease (gastrointestinal and lung
tissues). In support of this finding, increased ILC3 cells were
similarly identified in another CVID cohort, most prominently
in those with autoimmune and/or lymphoproliferative
complications – this was accompanied by a relative loss of
ILC2 cells in this study (55).

Serum Proteomics
While earlier studies have focused on measuring individual
cytokines in the circulation and in experimental settings, the
availability of new protein multiplex platforms have provided
another open-ended approach to profile immune-related protein
biomarkers in CVID. In a recent study that combined a serum
proximity extension assay and machine learning, three main
proteins were found to be associated with the CVID+ phenotype:
IL-10, IL-12 receptor subunit beta 1 (IL12RB1), and CD83 (56).
Additionally, mast cell immunoglobulin-like receptor 1 (MILR1)
and leukocyte immunoglobulin-like receptor subfamily B
member 4 (LILRB4) also distinguished the CVID+ patients in
the machine learning training cohort (though not replicated in a
separate testing cohort). Confirming prior studies, dysregulated
IFN-g responsive chemokines, CXCL9, 10, and 11 were also
noted in CVID+, again confirming a Th1 skewing in
these patients.

Spectrochemical Analysis of Blood
Another open-ended approach is the application of Fourier-
transform infrared (FTIR) spectroscopy, a high-resolution
March 2022 | Volume 13 | Article 857050
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spectroscopy method, to detect discriminatory molecular and
structural changes in CVID (57). In a proof-of-concept study,
this technique was capable of segregating CVID patients from
healthy participants based on serum or plasma samples with high
sensitivity and specificity. In addition, the plasma ‘fingerprint’
derived was able to segregate CVID+ from other CVID patients
with high specificity, albeit with much lower sensitivity. Here,
biomarker analysis between CVID and healthy participants
revealed discriminating signals in regions associated with
nucleic acid and collagens. The authors suggested that the
nucleic acid-associated signal may be related to gene activation
in the setting of chronic immune activation, while the collagen
signal may be related to its turnover in the setting of respiratory
damage. Biomarker analysis between CVID subgroups revealed
decreased intensity in wavenumbers 1528 cm−1 in CVID+
patients, though the implication of this signal requires
further investigation.
MARKERS OF HOST-MICROBIAL
DYSREGULATION

Mucosal Immunity and Microbiota
Immunoglobulins contribute to mucosal immunity and host-
commensal interactions (58, 59). With the loss of antibodies, a
potential role of host-commensal disruption and microbial
products in inciting inflammatory disease in CVID has been
the subject of a number of investigations. The initial
consideration was whether there was a link between altered gut
microbiota composition and inflammatory manifestations in
CVID. Studies to date indicated that there was reduced gut
bacterial diversity (alpha diversity) in CVID, especially in those
with the CVID+ phenotype (51, 60). While the levels of various
bacterial taxa had been reported to be altered in CVID, there has
been no consistent taxa marking those with complications.
Additionally, intermittent antibiotic use in many CVID
patients remained a major confounder of concern for such
an approach.

Other works have focused on the host factors that may affect
this mucosal interface. One study suggested that the greater loss
of mucosal IgA could be connected to gastrointestinal
inflammation and intraepithelial lymphocytosis, with the
activation of IFN-g and IL-12 in this location (61). These
findings were compatible with our observation of IFNg+ ILC3
expansion in these mucosal tissues (27). In our recent study, we
also sought evidence of a dysfunctional mucosal barrier in CVID
by examining two biomarkers in the serum: zonulin and
intestinal fatty-acid binding protein (I-FABP) (28). Zonulin is
a modulator of intercellular tight junctions between epithelial
cells and elevated serum zonulin levels have been linked to
increased intestinal wall permeability (62). We found that
serum zonulin levels were markedly elevated in CVID
compared to healthy controls (mean 18.71 vs. 6.99 ng/mL,
respectively, P=0.0003). I-FABP is an intestinal epithelium-
specific protein that can leak into the circulation in the setting
of gut barrier dysfunction, and these levels were also significantly
Frontiers in Immunology | www.frontiersin.org 5
elevated in CVID patients compared to healthy controls as well
(mean 3,346 vs. 1,992 pg/mL, respectively, P=0.0006) (63). In
this study, we found that serum zonulin and I-FABP levels were
significantly elevated irrespective of overt enteropathy. These
markers suggest that gut barrier dysfunction is frequently present
in CVID – even in patients without overt gastrointestinal
symptoms, and may play a role in dysregulated host-
commensal balance in CVID.

With regards to the roles of microbial-derived products, early
studies have focused on endotoxin as a biomarker and potential
source of commensal-driven inflammation. Circulating
endotoxin was reported in some studies (64, 65), but was not
detected when we examined a large cohort (28) or in other
publications (50, 51). In one study, circulating endotoxin was
linked to reduced proliferation capacity of bacteria-specific CD4
T cells and higher expression of programmed death 1 (PD-1) on
CD4+ T cells, suggesting an “exhausted” phenotype (64).
However, as endotoxin was noted in CVID patients who had
low serum IgG at the time of study, this marker/immune-
activator may not be relevant for the majority of CVID
patients who are consistently maintained on adequate
immunoglobulin replacement. Other microbial products,
namely their metabolites, have also been examined. Gut
microbiota-derived trimethylamine N-oxide (TMAO) has
previously been linked to systemic inflammation in HIV and
cardiovascular diseases (66, 67). With altered gut commensals,
one study found higher plasma TMAO concentration and
positive correlations with select inflammatory cytokines in
CVID patients (68). While neither diet nor a two-week course
of rifaximin impacted plasma TMAO levels in this study, the
idea of gut microbiota manipulation remains an area of
active research.

Microbial Translocation
Taking a direct approach, we recently measured bacterial 16S
rDNA levels in serum samples from 92 CVID patients (28). We
found that bacterial 16S rDNA was significantly elevated in
CVID patients (mean 19.15, range 0.4-237.4 copies/ml)
compared to healthy controls (mean 5.99, range 1.2-18.88
copies/ml, P<0.0001). High circulating bacterial DNA levels
marked patients with the CVID+ phenotype and those with
very few isotype-switched memory B cells (<2% of peripheral
CD19+ B cells). We did not find microbial translocation to be a
function of overt enteropathy or specific monogenetic defects.
Bacterial DNA levels also were not correlated with serum IgG,
IgA, and IgM levels – though most participants had severely
reduced IgA and/or IgM in this study. 16S bacterial profiling of
serum samples from 25 CVID patients revealed that the
translocated bacterial rDNA predominantly belonged to
various gut-associated taxa (at the phylum level: Firmicutes,
Bacteroidetes, Actinobacteria, and Proteobacteria; at the family
level: Lachnospiraceae, Ruminococcaceae, Erysipelotrichaceae,
Bacteroidaceae, and Comamonadaceae).

Further investigation revealed that serum bacterial rDNA was
closely associated with multiple disease biomarkers previously
reported in CVID (28). These include a positive association with
markers of monocyte activation in CVID (sCD14, as discussed
March 2022 | Volume 13 | Article 857050
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above; Spearman r = 0.28, P = 0.0166). In addition, CVID
patients with high serum bacterial rDNA had significantly
higher serum IFN-g levels as compared to those with low
bacterial rDNA, suggesting that bacterial translocation may be
a specific source of the IFN signature long observed in CVID+
(54). We further showed that circulating bacterial DNA was
bioactive as it could induce significant IFN-g secretion from the
peripheral blood mononuclear cells of CVID patients,
particularly those with known inflammatory conditions
(P<0.0001, compared to CVID patients without inflammatory
diseases). These new discoveries tie together a number of known
features of immune dysregulation in CVID+ and hopefully lead
to additional understanding of the pathogenesis of this
complex phenotype.
CONCLUSION

While CVID is traditionally classified among B-cell immune
deficiencies, immunologic and genetic studies over the years have
shown that it is, in many ways, a combined immune defect with
additional innate and adaptive abnormalities. This has become
obvious as the spectrum of autoimmune/inflammatory
complications is increasing described in a major portion of the
patients. As shown here, the ongoing investigations of relevant
biomarkers have been useful in understanding this heterogeneous
disorder and revealing its pathogenic complexity. In addition, select
markers can be utilized in the clinics to identify patients at risk for
additional complications and following complex conditions. Many
recent works are focusing on commensal bacteria as a potential
source of immune stimulation in CVID, and the presence of
Frontiers in Immunology | www.frontiersin.org 6
microbial translocation, as directly probed via circulating bacteria
DNA, may provide a common thread among the known
abnormalities of mucosal barriers, innate immunity, and adaptive
immunity that marked CVID. The ongoing search of relevant
biomarkers in CVID will likely reveal further shared and
heterogeneous features of this disorder, and provide additional
insights for clinical management, pathogenesis, and potentially
new therapeutics.
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