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Immune rejection is the major limitation for porcine xenograft survival in primate recipients.
Proinflammatory cytokines play important roles in immune rejection and have been found to
mediate the pathological effects in various clinical and experimental transplantation trials. IL-17
and TNF-a play critical pathological roles in immune disorders, such as psoriasis and
rheumatoid arthritis. However, the pathological roles of human IL-17 (hIL-17) and human
TNF-a (hTNF-a) in xenotransplantation remain unclear. Here we found that hIL-17 and hTNF-
a additively or synergistically regulate the expression of 697 genes in porcine aortic endothelial
cells (PAECs). Overall, 415 genes were found to be synergistically regulated, while 282 genes
were found to be additively regulated. Among these, 315 genes were upregulated and 382
genes were downregulated in PAECs. Furthermore, we found that hIL-17 and hTNF-a
additively or synergistically induced the expression of various proinflammatory cytokines and
chemokines (e.g., IL1a, IL6, and CXCL8) and decreased the expression of certain anti-
inflammatory genes (e.g., IL10). Moreover, hIL-17 plus hTNF-a increased the expression of
IL1R1 and IL6ST, receptors for IL1 and IL6, respectively, and decreased anti-inflammatory
gene receptor expression (IL10R). hIL-17 and hTNF-a synergistically or additively induced
CXCL8 and CCL2 expression and consequently promoted primary human neutrophil and
human leukemia monocytic cell migration, respectively. In addition, hIL-17 and hTNF-a
induced pro-coagulation gene (SERPINB2 and F3) expression and decreased anti-
coagulation gene (TFPI, THBS1, and THBD) expression. Additionally, hIL-17 and hTNF-a
synergistically decreased occludin expression and consequently promoted human antibody-
mediated complement-dependent cytotoxicity. Interestingly, hTNF-a increased swine
leukocyte antigen (SLA) class I expression; however, hIL-17 decreased TNF-a-mediated
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SLA-I upregulation. We concluded that hIL-17 and hTNF-a likely promote the inflammatory
response, coagulation cascade, and xenoantibody-mediated cell injury. Thus, blockade of
hIL-17 and hTNF-a together might be beneficial for xenograft survival in recipients.
Keywords: xenotransplantation, immune rejection, cytokines, IL-17, TNF-a, PAECs, inflammation, coagulation
INTRODUCTION

Organ transplantation is an effective way of end-stage
organ failure therapy. However, the shortage of human donors
is a major limitation that prevents clinical application.
Xenotransplantation is a promising way to solve this problem
(1). Pigs are considered to be the most suitable organ donor
animal (2, 3), and gene-modified pigs lead to increased xenograft
survival; however, immune rejection is still a major hurdle in the
survival of xenografts in primate recipients (4–10).

In pig-to-human organ transplantation, porcine vascular
endothelial cells (ECs), which are the first cells to interact with
the human immune system, play a critical role in the immune
rejection of xenografts (11). Porcine ECs are activated by human-
derived cytokines or chemokines and attacked by the human
immune system in pig-to-human xenotransplantation (12). EC
injury and dysfunction are critical for the inflammation and
coagulation response, which will decrease pig organ survival in
human recipients (13).

Cytokines play critical roles in inflammatory responses. In
xenotransplantation, many proinflammatory cytokines are
produced, including IL-17 and TNF-a (14). We previously
found that human IL-6, IL-17, IL-1b, and TNF-a obviously
activated porcine ECs, whereas human IFN-g did not activate
porcine ECs (12). Human TNF-a largely activates the NF-kB
and mitogen-activated protein kinase (MAPK) pathways and
induces downstream proinflammatory and procoagulation gene
expression in porcine aortic endothelial cells (PAECs) (12).
Human IL-17 also activates the NF-kB and MAPK pathways
in PAECs (12). Several studies have reported that IL-17 and
TNF-a additively or synergistically induce the expression of
many genes to promote the development of various diseases,
such as psoriasis and rheumatoid arthritis (15, 16). We also
found that hIL-17 and hTNF-a additively or synergistically
induce E-selectin, ICAM-1, IL-6, CXCL8, and CCL2 expression
in PAECs (12). However, whether human IL-17 and TNF-a
additively or synergistically induce the expression of certain
genes to promote immune rejection in xenotransplantation
remains unclear.

To answer this question, we stimulated PAECs with hIL-17,
hTNF-a, or hIL-17 plus hTNF-a in vitro. We checked the
mRNA levels in hIL-17- or hTNF-a-treated PAECs via
transcriptome sequencing and analyzed the data using
bioinformatics tools. We found that hIL-17 and hTNF-a
additively or synergistically regulate the expression of
hundreds of genes in PAECs. Many cytokines and chemokines
(and some receptors for these genes) are regulated by IL-17 plus
TNF-a. IL-17 plus TNF-a synergistically and additively induced
CXCL8 and CCL2 expression and consequently promoted
org 2
human neutrophil and THP-1 cell migration, respectively.
Moreover, hIL-17 and hTNF-a additively or synergistically
induced procoagulation gene (SERPINB2 and F3) expression
and decreased anti-coagulation gene (TFPI, THBS1, and THBD)
expression. Human IL-17 and hTNF-a also decreased occludin
expression and consequently promoted human antibody-
mediated complement-dependent cell injury. Here we
demonstrate that hIL-17 and hTNF-a likely promote xenograft
rejection in xenotransplantation.
MATERIALS AND METHODS

Reagents
Recombinant human IL-17, recombinant human TNFa, and
recombinant porcine IFN-g were purchased from R&D Systems
(Minneapolis, MN, USA). Anti-actin antibody was purchased
from Cell Signaling Technology (Boston, MA, USA), anti-
occludin antibody was obtained from Thermo Fisher Scientific
(Rockford, IL, USA), anti-FITC-labeled SLA class I antibody
(SLA-I) was obtained from Bio-Rad (Hercules, CA, USA), and
Cell Counting Kit-8 (CCK8) was purchased from Dojindo
Laboratories (Kumamoto, Japan). The CCR2 (CCL2 receptor)-
specific inhibitor RS504393 was from MedChemExpress
(Shanghai, China).

Preparation of Porcine Aortic
Endothelial Cells
PAECs were isolated from wild-type or GGTA1/CMAH double-
knockout (DKO) Chinese domestic miniature Wuzhishan pig
arteries as previously described (17). In brief, freshly harvested
porcine arteries were treated with 0.05% collagenase B (Roche
Applied Science, Indianapolis, IN, USA). We collected the cells
and washed them with washing medium [RPMI 1640 containing
10% heat-inactivated fetal bovine serum (FBS)]. The isolated
PAECs were cultured with endothelial cell medium containing
10% (vol/vol) FBS (cat. no. 0025), 1% (vol/vol) penicillin/
streptomycin solution (P/S, cat. no. 0503), and 1% (vol/vol)
endothelial cell growth supplement (ECGS, cat. no. 1052) at 37°C
with 5% CO2. The culture medium was purchased from Sciencell
(San Diego, CA, USA).

Western Blotting
PAECs were harvested after washing with ice-cold phosphate-
buffered saline (PBS), lysed for 30 min in ice-cold RIPA lysis
buffer supplemented with 10 mM NaF, 1 mM Na3VO4, 1 mM
phenylmethylsulfonyl fluoride, and protease inhibitor cocktail
(Roche, Indianapolis, IN, USA), and separated via 10% SDS–
PAGE. After transfer onto polyvinylidene fluoride (PVDF)
June 2022 | Volume 13 | Article 857311
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membranes (Millipore, Billerica, MA, USA), the proteins on the
PVDF membranes were blocked using 5% non-fat dried milk
dissolved in TBST (20 mM Tris-HCl, 150 mM NaCl, pH 7.6)
buffer supplemented with 0.1% (vol/vol) Tween 20 at room
temperature for 1 h. After washing, the PVDF membranes were
incubated with primary antibody overnight at 4°C and then washed
with TBST. After incubation with secondary antibody for 1 h at
room temperature, the blots were visualized with enhanced
chemiluminescence detection reagents (Millipore).

Real-Time PCR
The procedure for real-time PCR has been reported previously
(18). Briefly, total RNA was extracted from cells or tissues with
TRIzol® Reagent (Invitrogen, Shanghai, China). cDNA samples
were synthesized with PrimeScript™ RT Master Mix (Takara
Bio, Dalian, LN, China). The levels of the genes of interest were
quantified using TB Green® Premix Ex Taq™ (Tli RNaseH Plus)
(Takara Bio). The expression level of the genes was calculated
using the 2-DDCt method and normalized to the rpl13a expression
level. cDNA amplification was performed using a ViiA 7 Real-
Time PCR system (Applied Biosystems, Foster City, CA, USA),
and the oligonucleotide primer sequences are shown in
Supplementary Table S1.

Flow Cytometry Analysis
SLA-I binding was assessed using flow cytometry as previously
reported (12). Porcine aortic endothelial cells were collected and
washed once with PBS, and 1 × 106 cells were resuspended in 100
ml PBS containing 1% BSA and then stained with FITC-labeled
SLA-I antibody. Isotype-matched antibody was used as a
negative control. After incubation for 30 min at 4°C in the
dark, the cells were washed once with PBS, resuspended in 100 ml
PBS containing 1% BSA and detected with a BD FACS Aria II
flow cytometer (Franklin Lakes, NJ, USA). The extent of SLA-I
binding to PAECs was evaluated by geometric mean fluorescence
intensity (Gmean).

Human Antibody-Mediated Complement-
Dependent Cytotoxicity
The protocol for human antibody-mediated complement-
dependent cytotoxicity assessment has been previously
reported (11). In brief, PAECs (4 × 103) were seeded into 96-
well plates and treated with medium (as a negative control), hIL-
17 (100 ng/ml), hTNF-a (2 ng/ml), or hIL-17 plus hTNF-a for
48 h. The supernatant was removed and replaced with RPMI-
1640 medium containing 20% pooled human serum
[experimental group—the serum was pooled from several
healthy volunteers (n = 20), including all ABO blood types] or
20% heat-inactivated human serum (control group) for 2 h. After
2 h, CCK8 assays were used to assess the viability of PAECs. The
supernatant was removed and replaced with RPMI-1640
medium containing 10% CCK8 reagent for 2 h. At 2 h later,
the absorbance values of the wells at OD450 were measured
using a multiscan GO spectrophotometer (Thermo Fisher,
Vantaa, Finland). The percentage of cell death (cytotoxicity)
was calculated according to the following formula:
Frontiers in Immunology | www.frontiersin.org 3
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=   OD of control group  −  OD of experimental groupð Þ
=OD of control group  �  100
Transwell Assay
The chemotaxis assay procedure has been reported previously
(19). In brief, isolation of human neutrophils using a human
neutrophil isolation kit was performed according to the
manufacturer’s instructions. The chemotaxis assay was
performed in 24-well plates using 6.5 mm (for THP‐1) or 3 mm
(for human neutrophils) transwell inserts with 5-mm pore
polycarbonate membranes (Corning). The PAECs were treated
with hIL-17 (100 ng/ml), hTNF-a (2 ng/ml), or hIL-17 plus
hTNF-a for 48 h, the supernatant was collected and then added
to the lower transwell chamber, and 25 × 104 THP-1 or human
neutrophils were seeded in the upper chamber. The
transmigration assay was performed for 2 h at 37°C. For CCR2
inhibitor assay, THP-1 cells were treated with 10 mM RS504393
for 1 h and then seeded in the upper chamber. The membranes
containing the migrated cells were carefully excised. Images were
obtained with a microscope, and the migrated cells were counted.
The migration data are presented as the number of migrating
cells/field.
Transcriptome Sequencing
PAECs were treated with rhIL-17 (100 ng/ml), rhTNF-a (2 ng/
ml), or rhIL-17 plus rhTNF-a for 0 or 6 h. RNA was extracted
from the treated PAECs using TRIzol reagent (Invitrogen) and
was utilized to construct the final library. The sequencing library
was generated using the VAHTS mRNA-seq v2 Library Prep Kit
for Illumina® (Vazyme, NR601, Nanjing, JS, China) following
the manufacturer’s recommendation. Library concentration was
measured using a Qubit® RNA Assay Kit and Qubit® 3.0 for
preliminary quantification. Insert size was assessed using an
Agilent Bioanalyzer 2100 system, and after the insert size was
consistent with expectations, the qualified insert size was
accurately quantified via qPCR using a Step One Plus Real-
Time PCR system (Applied Biosystems). Clustering of the index-
coded samples was performed on a cBot Cluster Generation
System (Illumina, San Diego, CA, USA) according to the
manufacturer’s instructions. After cluster generation, the
library preparations of a total of 12 samples were sequenced on
an Illumina HiSeq X Ten platform using a 150-bp paired-
end module.

Whole-transcriptome sequencing data were filtered and
mapped to the porcine genome. The differentially expressed
gene-seq method was based on a Poisson distribution (fold
change >1.5 and adjusted P-value <0.05). Additive genes and
synergistic genes (ASGs) were screened according to the
definition. The whole-transcriptome sequencing data can be
found in NCBI (https://dataview.ncbi.nlm.nih.gov/object/
PRJNA779585?reviewer=3areeogpjo6vkvlr0i3hhb1s64) under
accession number PRJNA779585.
June 2022 | Volume 13 | Article 857311
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According to the Kyoto Encyclopedia for Genes and
Genomes (KEGG) annotation results and the official
classification, we separately classified the functional and
biological pathways of the differentially expressed genes and
used R software for enrichment analysis. Bubble charts, heat
maps, and volcano maps were generated to visualize the
differentially expressed genes on the basis of log-normalized
expression values of significant genes using v3 R software.

Definition of Additive or Synergistic Genes
The additive genes and synergistic genes were defined according
to a previous report (15). A gene was considered to be
synergistically induced by IL-17/TNF-a when the combined
effect was greater than the sum of the separate effects. A gene
was considered to be additive when the combined effect was
greater than the two individual effects but lower than the sum of
the separate effects. In brief, we defined (x) to represent the log2-
FCH (fold change) induced in hIL-17-treated PAECs (y) to
represent the log2-FCH induced by hTNF-a and (x + y) to
represent the log2-FCH induced by the combination of hIL-17
and hTNF-a in treated PAECs. Two tests were then used to
define whether a gene was synergistic or additive, and the gene
was excluded if it was antagonistic and induced by hIL-17 and
hTNF-a. The flow chart was shown in Supplementary
Figure S1. First, we used hypothesis testing to test whether the
effect regulated by the two cytokines together was different than
the sum of the individual effects, i.e.:

Test 1 :  Ho : x + yð Þ = xð Þ + yð Þ vs :  Ha : x + yð Þ ≠ xð Þ + yð Þ
Then, we tested whether the combined effect was different

than both individual effects, i.e,:

Test 2 : Ho : x + yð Þ = xð Þ vs :  Ha : x + yð Þ ≠ xð Þ and Ho : x + yð Þ
= yð Þ vs :  Ha : x + yð Þ ≠ yð Þ

Synergistic Genes
A gene was considered synergistic if it passed test 1 and |(x + y)| > |
(x) + (y)|. A synergistic increase is the difference |(x + y)| - |(x) + (y)|.
Synergism can be either positive (if the synergist increase is positive)
or negative.

Additive Genes
A gene was considered additive (if it is not synergistic) if the
combined effect was greater than both individual effects, i.e., the
gene passes test 2 for both x and y.

The synergistic genes are highlighted in red, and the additive
genes are shown in black in Supplementary Tables S2, S3 (Ho:
the null hypothesis; Ha: the alternative hypothesis).

Statistical Analysis
Experimental data are presented as mean ± SEM. GraphPad
Prism 5 software is used to perform statistical analysis and graph
development. Statistical significance between the groups was
calculated using two-tailed Student’s t-test using Microsoft
Office Excel software. p-values <0.05 were considered significant.
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RESULTS

Human IL-17 and TNF-a Synergistically
Regulated the Expression of Various
Immune-Related Genes in PAECs
Human IL-17 plus hTNF-a additively or synergistically
regulated the expression of 697 genes in PAECs (Figure 1A,
Supplementary Tables S2, S3). A total of 315 genes were
upregulated in PAECs, 166 of which were synergistically
induced, while another 149 genes were additively induced
(Supplementary Table S2). A total of 382 genes were
downregulated in PAECs, 249 of which were synergistically
regulated, while 133 other genes were additively regulated
(Supplementary Table S3). These ASGs were subjected
to KEGG pathway enrichment analysis and annotation. Many
immune-related signaling pathways, such as the TNF-a, IL-17,
MAPK, and Toll-like receptor signaling pathways, were
obviously enriched (Figure 1B). In addition to these
pathways, the cytokine–cytokine receptor interaction was also
enriched (Figure 1B). The KEGG pathway annotation analysis
demonstrated that 159 genes were related to signal transduction
(Supplementary Figure S2). Among the organismal systems, the
immune system represented the top enrichment, involving 86
genes (Supplementary Figure S2), suggesting that hIL-17 plus
hTNF-a primarily activated immune-related genes in PAECs.
Cytokines and chemokines play critical roles in xenograft
rejection, and we found that various proinflammatory
cytokines, such as IL1a and IL6, and chemokines, including
CCL2, CCL11, CXCL8, and CXCL2, were upregulated
(Figure 1C). In contrast, the anti-inflammatory gene IL10 was
downregulated (Figure 1C). The ligand–receptor analysis
identified that CCL11, IL1a, IL6, IL11, and their receptors
were upregulated, while IL-10-IL10RB and KITLG-KIT were
obviously downregulated (Figure 1D). We used RT-PCR to
validate the expression of several cytokines and chemokines
and found that CCL20, CSF3, IL11, and CXCL2 were slightly
induced by IL-17 or TNF-a alone but dramatically induced by
IL-17 plus TNF-a , suggesting that these genes were
synergistically induced (Figure 2). CCL11 and IL1a were
additively induced by IL-17 plus TNF-a (Figure 2). These
results were consistent with the transcriptome sequencing
data (Supplementary Table S2). Collectively, the data
suggest that hIL-17 and hTNF-a synergistically induce
proinflammatory cytokine and chemokine expression to
amplify the inflammatory response.

Due to several gene-modified pigs used for xenotransplantation,
we asked whether human IL-17 and TNF-a could synergistically or
additively induce proinflammatory cytokine and chemokine
expression in PAECs from gene-modified pigs. We isolated
PAECs from a1,3-galactosyltransferase (GGTA1) and cytidine
monophosphate-N-acetylneuraminic acid hydroxylase (CMAH)
gene double-deficient pigs. The two genes are responsible for the
synthesis of Gala-1,3-Gal (Gal) and N-glycolylneuraminic acid
(Neu5Gc), two carbohydrate xenoantigens that are respectively
important for xenotransplantation, and the GGTA1/CMAH DKO
pigs could largely reduce immune rejection in xenotransplantation.
June 2022 | Volume 13 | Article 857311
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We treated the GGTA1/CMAH DKO PAECs with hIL-17, hTNF-
a, or hIL-17 plus hTNF-a and found that IL-17 plus TNF-a
synergistically induced the expression of CCL20, CSF3, and CXCL2
and additively induced the expression of CCL11, IL1a, and CXCL8
(Supplementary Figure S3). The data suggest that human IL-17
and TNF-a synergistically or additively induce proinflammatory
cytokine or chemokine expression not only in wild-type PAECs but
also in GGTA1/CMAH DKO PAECs. Thus, IL-17 and TNF-a
likely promote the rejection of GGTA1/CMAH DKO xenograft
in xenotransplantation.

We also found that IL-17 and TNF-a additively or
synergistically regulate the expression of 65 cell surface
proteins (Supplementary Figure S4): 29 genes were
upregulated, and 36 genes were downregulated. The regulated
genes included several receptors, adhesion molecules, and tight
junction genes, such as IL1R1, ICAM1, and occludin (OCLN).
Frontiers in Immunology | www.frontiersin.org 5
These genes might increase proinflammatory signaling, promote
immune cell migration, and enhance xenoantibody-mediated
complement-dependent cytotoxicity (CDC). Moreover, some of
these regulated cell surface genes might be xenoantigens, which
will be investigated in the future.

IL-17 Plus TNF-a Increased Neutrophil and
Monocyte Chemotaxis
The transcriptome sequencing data and our previous study
showed that hIL-17 and hTNF-a synergistically induce CXCL8
expression and additively induce CCL2 expression in PAECs
(Figure 1C and Supplementary Table S2) (12). We also
validated their expression levels via RT-PCR analysis
(Figure 3A). The chemokines CXCL8 and CCL2 have
neutrophil and monocyte chemotactic activity, respectively;
thus, we asked whether the supernatant of hIL-17- or hTNF-a-
A B

DC

FIGURE 1 | Human IL-17 and TNF-a additively or synergistically induced the expression of hundreds of genes in porcine aortic endothelial cells. (A) Heat map
of additive or synergistic genes (ASGs) in the control group, IL-17 group, TNF-a group, and IL-17 plus TNF-a group. (B) Top 20 enriched Kyoto Encyclopedia
for Genes and Genome pathways of ASGs between the control group and the IL-17 plus TNF-a group. (C) Heat map of regulated cytokine or chemokine gene
expression levels in the control group, IL-17 group, TNF-a group, and IL-17 plus TNF-a group. (D) Ligand and receptor analysis of ASGs in the control group,
IL-17 group, TNF-a group, and IL-17 plus TNF-a group.
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treated PAECs had monocyte and neutrophil chemotactic
activity. We found that the supernatant of hIL-17- or hTNF-a-
treated PAECs alone increased human neutrophil migration and
that the supernatant of hIL-17 plus hTNF-a-treated PAECs had
greater chemotactic activity than the supernatant of IL-17- or
TNF-a-treated PAECs alone (Figures 3B, C). In a THP-1 (a
human leukemia monocytic cell line) cell migration assay, the
results were similar to those of human neutrophil migration
(Figures 3B, C). In order to investigate whether IL-17 or TNF-a
directly mediated THP-1 cell migration, we collected the
supernatant from PAECs without IL-17 or TNF-a treatment
and then added IL-17 plus TNF-a to the supernatant for THP-1
cell migration assay. We found that the supernatant with IL-17
plus TNF-a did not enhance THP-1 cell migration, suggesting
that IL-17 or TNF-a cannot directly mediate THP-1 cell
migration (Supplementary Figure S5). To confirm whether
IL-17 plus TNF-a increased THP-1 cell migration through
inducing CCL2 expression, we used RS504393, a specific
inhibitor of CCR2 which is the receptor for CCL2, treated
THP-1 cells, and found that RS504393 almost completely
blocked THP-1 cell migration, which suggest that IL-17 plus
TNF-a increases THP-1 cell chemotaxis through enhancing
CCL2 expression (Supplementary Figure S5). Collectively,
these data suggest that hIL-17 plus hTNF-a increases human
neutrophil or monocyte chemotaxis and that the increased
chemotaxis is likely due to increased CXCL8 or CCL2
production by PAECs.

IL-17 Plus TNF-a Regulated Coagulation-
Related Gene Expression in PAECs
Previously, we found that hIL-17 plus hTNF-a increased the
mRNA level of F3, a procoagulation gene, in PAECs (12). In the
present study, we found that F3 was induced in PAECs treated
Frontiers in Immunology | www.frontiersin.org 6
with hIL-17 plus hTNF-a (Figure 4A). In addition to F3, we
found that the mRNA level of another pro-coagulation gene
(SERPINB2) was upregulated, while the mRNA levels of three
anti-coagulation genes (TFPI, THBS1, and THBD) were
downregulated in PAECs treated with hIL-17 plus hTNF-a
(Figures 4A, B). To validate the data, we measured the mRNA
levels of these genes in PAECs treated with hIL-17 or hTNF-a
and found that SERPINB2 was increased, while TFPI, THBS1,
and THBD were downregulated in PAECs treated with hIL-17
plus hTNF-a (Figure 4C). The mRNA levels of THBS1 and
THBD were slightly downregulated by IL-17 or TNF-a alone
and largely reduced by IL-17 plus TNF-a. Collectively, these data
suggest that hIL-17 and hTNF-a amplify the coagulation
reaction in response to xenografts through additive or
synergistic effects.

IL-17 Plus TNF-a Promoted Human
Antibody-Mediated Complement-
Dependent Cytotoxicity in PAECs
Tight junction genes play an important role in xenoantibody-
mediated CDC (20, 21). In the present study, we found that
OCLN, ESAM, CLDN6, and CDH5 were downregulated and
that JAM2, CLMP, BVES, and CLDN1 were upregulated in
PAECs treated with hIL-17 plus hTNF-a (Figure 5A).
Moreover, we found that hTNF-a alone decreased OCLN
expression in PAECs and that the mRNA and protein levels of
occludin were much lower in PAECs treated with hIL-17 plus
hTNF-a than in PAECs treated with TNF-a alone (Figures 5B,
C). We previously found that hTNF-a promoted human
antibody-mediated CDC in porcine ECs by downregulating
occludin expression; thus, we asked whether hIL-17 plus
hTNF-a had stronger PAEC cytotoxicity in a human-mediated
CDC model. We found that TNF-a alone exerted increased
FIGURE 2 | IL-17 and TNF-a additively or synergistically induced chemokine or cytokine expression in porcine aortic endothelial cells (PAECs). PAECs were
treated with rhIL-17 (100 ng/ml), rhTNF-a (2 ng/ml), or rhIL-17 plus rhTNF-a for 0 or 6 h. The induction of CCL11, IL1a, CCL20, CSF3, IL11, and CXCL2 mRNA
was measured via real-time PCR. Data are representative of at least three independent experiments (mean ± SEM). *p < 0.05, **p < 0.01, ***p < 0.001, determined by
Student’s t-test.
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PAEC cytotoxicity, while hIL-17 plus hTNF-a led to more PAEC
death than TNF-a alone (Figure 5D). To exclude the direct
cytotoxicity of hIL-17 or hTNF-a to PAECs, we treated PAECs
with or without hIL-17, hTNF-a, or hIL-17 plus hTNF-a for
48 h and assess the viability of PAECs with CCK8. We found that
the OD450 of the negative control group was almost equal to
hIL-17, hTNF-a, or hIL-17 plus the hTNF-a treated group,
suggesting that hIL-17 or hTNF-a does not directly affect the
viability of PAECs (Supplementary Figure S6). These data
suggest that hIL-17 and hTNF-a likely increase xenoantibody-
mediated CDC, which leads to xenograft injury.

IL-17 Decreased TNF-a-Mediated SLA-I
Upregulation in PAECs
We previously found that hTNF-a could induce SLA-I
expression; therefore, we asked whether hIL-17 plus hTNF-a
Frontiers in Immunology | www.frontiersin.org 7
could additively or synergistically increase SLA-I expression (12).
Surprisingly, we found that hTNF-a significantly induced SLA-I
expression; however, hIL-17 almost completely blocked hTNF-
a-mediated SLA-I upregulation (Figure 6A). We also found that
hIL-1b increased SLA-I expression and that hIL-17 slightly
reduced hIL-1b-mediated SLA-I upregulation (Figure 6B).
Moreover, porcine IFN-g (pIFN-g) increased SLA-I expression,
but IL-17 did not decrease IFN-g-mediated SLA-I expression
(Figure 6C). These data suggest that IL-17 has a suppressive
effect on TNF-a- or IL-1b-mediated SLA-I upregulation.

IL-17 and IL-1b or IFN-g Had Additive or
Synergistic Effects in PAECs
Human IL-17 and hTNF-a additively or synergistically regulated
the expression of various genes in PAECs, and we wondered
whether hIL-17, in combination with hIL-1b or pIFN-g, had
A

B

C

FIGURE 3 | The combination of IL-17 with TNF-a largely increased the chemotaxis of THP-1 cells and human neutrophils. (A) Porcine aortic endothelial cells
(PAECs) were treated with rhIL-17 (100 ng/ml), rhTNF-a (2 ng/ml), or rhIL-17 plus rhTNF-a for 0 or 6 h. The induction of CXCL8 or CCL2 mRNA was measured via
real-time PCR. (B) The PAECs were treated with IL-17, TNF-a, or IL-17 plus TNF-a for 48 h, and the supernatant was collected for chemotaxis assays. Human
neutrophils or THP‐1 cells were used to assess cell migration. (C) The number of migrating cells per field was determined as in (B). Data are representative of at
least three independent experiments (mean ± SEM). *p < 0.05, **p < 0.01, ***p < 0.001, determined by Student’s t-test.
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additive or synergistic effects in PAECs. We found that hIL-17
and hIL-1b synergistically induced IL6 expression and additively
induced E-selectin, ICAM-1, VCAM-1, CXCL8, CCL2, and
CXCL2 expression (Figure 7A). Human IL-17 and pIFN-g also
synergistically induced IL6 expression and additively induced E-
selectin, ICAM-1, VCAM-1, and CCL2 expression (Figure 7B).
However, human IL-17 and pIFN-g did not additively or
synergistically induce CXCL8 or CXCL2 expression
(Figure 7B). These data suggest that hIL-17 and hIL-1b or
pIFN-g can additively or synergistically induce the expression
of specific proinflammatory cytokines, chemokines, and
adhesion genes in PAECs.
DISCUSSION

We previously found that hIL-17 and hTNF-a can activate
PAECs and induce downstream gene expression in PAECs
(12). However, the pathological role of hIL-17 and hTNF-a in
xenotransplantation is less well investigated. Here we found that
Frontiers in Immunology | www.frontiersin.org 8
hIL-17 and hTNF-a additively and synergistically regulate the
expression of 697 genes in PAECs: 415 genes were synergistically
regulated, and 282 genes were additively regulated. We found
that hIL-17 plus hTNF-a increased the expression of many
proinflammatory cytokines and chemokines and reduced the
expression of specific anti-inflammatory genes. Moreover, we
found that hIL-17 plus hTNF-a promoted human neutrophil
and THP-1 migration by inducing CXCL8 and CCL2 expression.
Human IL-17 plus hTNF-a increased procoagulation gene
expression and decreased anti-coagulation gene expression.
Human IL-17 plus hTNF-a increased human antibody-
mediated CDC in PAECs. Based on our observations, we
speculate that hIL-17 and hTNF-a have important
pathological roles in promoting inflammation, the coagulation
response, and xenoantibody-mediated cell injury in pig-to-
primate xenotransplantation.

Several studies have reported that IL-17 and TNF-a have
additive and synergistic effects in mouse and human systems
(15, 16, 22, 23). The synergistic effect has been reported to
promote the development of immune-related diseases, such as
A

B

C

FIGURE 4 | IL-17 and TNF-a regulated coagulation-related gene expression in porcine aortic endothelial cells (PAECs). (A) Heat map showing regulated coagulation-
related additive or synergistic genes (ASGs) in the control group, IL-17 group, TNF-a group, and IL-17 plus TNF-a group. (B) Volcano plots displaying regulated
coagulation-related ASGs between the control group and the IL-17 plus TNF-a group. (C) The PAECs were treated with rhIL-17 (100 ng/ml), rhTNF-a (2 ng/ml), or rhIL-
17 plus rhTNF-a for 0 or 6 h. The induction of SERPINB2, TFPI, THBS1, and THBD mRNA was measured via real-time PCR. Data are representative of at least three
independent experiments (mean ± SEM). *p < 0.05, **p < 0.01, ***p < 0.001, determined by Student’s t-test.
June 2022 | Volume 13 | Article 857311

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Role of hIL-17 and hTNF-a in Xenotransplantation
psoriasis and rheumatoid arthritis (15, 16). Here we found that
hIL-17 and hTNF-a synergistically regulate the expression of
415 genes in PAECs. The KEGG pathway annotation suggested
that most of these genes are associated with the immune system.
Human IL-17 and hTNF-a synergistically increased
proinflammatory gene (such as CCL20, IL11, IL6, CXCL2, and
CXCL8) expression and reduced anti-inflammatory gene (such
as IL10) expression. Moreover, some receptors for these genes
were also additively or synergistically regulated. The expression
of IL6ST (receptor for IL11 or IL6) or F3 (receptor for IL6) was
induced, while the expression of IL10RB (receptor for IL10) was
decreased in PAECs treated with hIL-17 plus hTNF-a. These
data suggest that hIL-17 and hTNF-amight amplify the immune
response by synergistically increasing proinflammatory gene
expression and decreasing anti-inflammatory gene expression
in pig-to-human xenotransplantation.

The chemokines CXCL8 and CCL2 can recruit neutrophils
and monocytes to the inflammatory site, respectively (24–27).
The present study found that hIL-17 and hTNF-a synergistically
increased CXCL8 expression and additively induced CCL2
expression in PAECs. The supernatant from hIL-17 plus
hTNF-a-treated PAECs had much more chemotactic activity
(to recruit human neutrophils and THP-1 cells) than the
supernatant from hIL-17- or hTNF-a-treated PAECs. Thus,
our study suggests that hIL-17 plus hTNF-a has the potential
Frontiers in Immunology | www.frontiersin.org 9
ability to recruit neutrophils and monocytes to inflammatory
response sites to amplify the immune reaction.

The coagulation cascade is a tightly regulated process (28). In
pig-to-primate xenotransplantation, the coagulation cascade is
dysregulated, and this dysregulation of the coagulation cascade
is a major obstacle for xenograft survival (29). F3 promotes the
conversion of prothrombin to thrombin to initiate the extrinsic
coagulation cascade (30). Previously, we found that hIL-17 plus
hTNF-a increases F3 expression (12). In the present study, we
found that hIL-17 plus hTNF-a significantly increased the
expression of two procoagulation factors (SERPINB2 and F3)
and decreased the expression of three anticoagulation
factors (TFPI, THBS1, and THBD). Based on these data, we
speculate that hIL-17 and hTNF-a likely promote the
coagulation cascade and consequently decrease xenograft
survival in xenotransplantation. To confirm the role of hIL-17
and hTNF-a in the coagulation response in xenotransplantation,
we intend to design experiments to answer this question in the
near future.

Xenoantibody-mediated complement-dependent cell killing is
another limiting factor in xenograft survival. Human antibody-
mediated CDC is a suitable in vitro model to mimic the process.
The barrier function of porcine ECs is important for the protection
of ECs in human antibody-mediated CDC. Tight junction genes
are critical for barrier integrity (31). Dalmasso et al. reported that
A

B D

C

FIGURE 5 | IL-17 increased TNF-a-mediated cytotoxicity toward porcine aortic endothelial cells (PAECs) in a human antibody-mediated complement-dependent
cytotoxicity model. (A) Heat map showing tight junction genes among the additive or synergistic genes in the control group, IL-17 group, TNF-a group, and IL-17
plus TNF-a group. (B) The PAECs were treated with rhIL-17 (100 ng/ml), rhTNF-a (2 ng/ml), or rhIL-17 plus rhTNF-a for 0, 2, or 6 h. The mRNA level of occludin
was measured via real-time PCR. (C) The PAECs were treated with rhIL-17 (100 ng/ml), rhTNF-a (2 ng/ml), or rhIL-17 plus rhTNF-a for 24 h. The lysates were
analyzed by western blotting with antibodies against occludin and actin. (D) The PAECs were treated with rhIL-17 (100 ng/ml), rhTNF-a (2 ng/ml), or rhIL-17 plus
rhTNF-a for 24 h and then exposed to human serum to induce antibody-mediated CDC. Data are representative of at least three independent experiments (mean ±
SEM). *p < 0.05, **p < 0.01, ***p < 0.001, determined by Student’s t-test.
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IL-4 protected porcine ECs from human antibody-mediated CDC
by partially increasing claudin 5 expression (20). We previously
found that TNF-a promoted porcine EC killing by decreasing
occludin expression (21). Moreover, claudin 2 protected porcine
ECs from human antibody-mediated CDC (21). The present study
found that hIL-17 plus hTNF-a decreased the expression of four
tight junction genes and increased the expression of four tight
junction genes. We also found that hIL-17 plus hTNF-a obviously
decreased the mRNA and protein levels of occludin. As expected,
hIL-17 plus hTNF-a increased the cytotoxicity toward PAECs in
Frontiers in Immunology | www.frontiersin.org 10
human antibody-mediated CDC. In addition to occludin, whether
other regulated tight junction genes contribute to IL-17 plus TNF-
a-mediated cytotoxicity promotion in human antibody-mediated
CDC needs to be investigated.

T-cell response is important for the cellular immune response
to a xenograft (32). SLA-I is primarily responsible for CD8+ T-cell
activation. Previously, we found that TNF-a and IL-1b increased
the expression of SLA-I in PAECs (12). In the present study, we
found similar results. Interestingly, we found that hIL-17 almost
completely blocked hTNF-a-mediated SLA-I upregulation.
A

B

C

FIGURE 6 | IL-17 decreased TNF-a- or IL-1b-induced SLA-I expression in porcine aortic endothelial cells (PAECs). (A) The PAECs were untreated or treated with
rhIL-17 (100 ng/ml), rhTNF-a (2 ng/ml) or rhIL-17 plus rhTNF-a for 24 h, and the expression of SLA-I was measured via flow cytometry. (B) The PAECs were
untreated or treated with rhIL-17 (100 ng/ml), rhIL-1b (20 ng/ml) or rhIL-17 plus rhIL-1b for 24 h, and the expression of SLA-I (A) was measured via flow cytometry.
(C) The PAECs were untreated or treated with rhIL-17 (100 ng/ml), rpIFN-g (40 ng/ml) or rhIL-17 plus rpIFN-g for 24 h, and the expression of SLA-I was measured
via flow cytometry. The degree of SLA-I binding to PAECs was evaluated by determining the geometric mean fluorescence intensity (Gmean). Data are representative
of at least three independent experiments (mean ± SEM). *p < 0.05, ***p < 0.001, determined by Student’s t-test.
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Human IL-17 also partially inhibited hIL1b-mediated SLA-I
expression. However, hIL-17 did not suppress porcine IFN-g-
induced SLA-I expression. The data suggest that hIL-17
differentially regulates TNF-a-, IL-1b-, or IFN-g-induced SLA-I
expression, and the detailed molecular mechanism needs to be
investigated in the future. Human IL-17 might suppress CD8+ T-
cell-mediated cell killing in xenotransplantation. In addition to IL-
17 and TNF-a, IL-17 and IL-1b or IFN-g also had additive or
synergetic effects, and whether IL-17 and IL-1b or IFN-g also play
pathological roles in xenotransplantation needs to be investigated.

Regarding the additive or synergistic effect of hIL-17 and
hTNF-a, the combined inhibition of IL-17 and TNF-a has
additive or synergistic effects in the therapy of certain diseases.
Frontiers in Immunology | www.frontiersin.org 11
In rheumatoid arthritis, a previous report found that the
combined inhibition of IL-17 and TNF-a was effective in
blocking tissue destruction associated with arthritis (16, 33).
Moreover, the combined blockade of IL-17 and IL-1b showed
beneficial synergistic effects to prevent joint inflammation,
cartilage destruction, and bone damage in a collagen-induced
arthritis mouse model (34). These studies suggest that the
combined blockade of hIL-17 and hTNF-a might have
superior efficacy over anti-IL-17 or anti-TNF-a blockade alone.

In conclusion, in the present study, we found that (i) hIL-17
and hTNF-a synergistically induced the expression of
hundreds of genes in PAECs, (ii) hIL-17 and hTNF-a
additively or synergistically induced the expression of various
A

B

FIGURE 7 | IL-17 and IL-1b or IFN-g additively or synergistically induced the expression of certain proinflammatory genes in porcine aortic endothelial cells (PAECs).
(A) The PAECs were treated with rhIL-17 (50 ng/ml), rhIL-1b (10 ng/ml), or rhIL-17 plus rhIL-1b for 0, 2, or 6 h. The induction of E-selectin, VCAM-1, ICAM-1, IL-6,
IL-8, MCP-1, or CXCL2 mRNA was measured using real-time PCR. (B) The PAECs were treated with rhIL-17 (50 ng/ml), rpIFN-g (40 ng/ml), or rhIL-17 plus rpIFN-g
for 0, 2, or 6 h. The induction of E-selectin, VCAM-1, ICAM-1, IL-6, IL-8, MCP-1, or CXCL2 mRNA was measured using real-time PCR. Data are representative of at
least three independent experiments (mean ± SEM). *p < 0.05, **p < 0.01, ***p < 0.001, determined by Student’s t-test.
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proinflammatory genes and certain anti-inflammatory factors, and
(iii) hIL-17 plus hTNF-a promoted immune cell migration and
human antibody-mediated CDC, increased procoagulation gene
expression, and inhibited anticoagulation gene expression. Further
in vivo experiments are needed to confirm these pathological roles
in xenotransplantation. Overall, coblockade of IL-17 and TNF-a
might be a promising way to increase xenograft survival.
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