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Xenotransplantation is very attractive strategy for addressing the shortage of donors. While
hyper acute rejection (HAR) caused by natural antibodies and complement has been well
defined, this is not the case for innate cellular xenogeneic rejection. An increasing body of
evidence suggests that innate cellular immune responses contribute to xenogeneic rejection.
Various molecular incompatibilities between receptors and their ligands across different
species typically have an impact on graft outcome. NK cells are activated by direct interaction
as well as by antigen dependent cellular cytotoxicity (ADCC) mechanisms. Macrophages are
activated through various mechanisms in xenogeneic conditions. Macrophages recognize
CD47 as a “marker of self” through binding to SIRPa. A number of studies have shown that
incompatibility of porcine CD47 against human SIRPa contributes to the rejection of
xenogeneic target cells by macrophages. Neutrophils are an early responder cell that
infiltrates xenogeneic grafts. It has also been reported that neutrophil extracellular traps
(NETs) activate macrophages as damage-associated pattern molecules (DAMPs). In this
review, we summarize recent insights into innate cellular xenogeneic rejection.

Keywords: xenotransplantation, macrophage-mediated xenogeneic rejection, innate cellular response,
NETosis, ITIMs
THE PIVOTAL ROLE OF INNATE IMMUNITY IN XENOGENEIC
REJECTION

While the main cells that infiltrate allograft rejections are cytotoxic T lymphocytes (CTL);
xenografts induce the infiltration of NK cells, macrophages and neutrophils (1).

Neutrophils are the most abundant circulating leukocytes and a cell population that responds
early to infiltrate cellular and solid organ xenografts following transplantation (2, 3). These cells are
subsequently replaced by macrophages and T cells (2, 3).

Neutrophils induce tissue damage under xenogeneic conditions in both antibody-dependent and
antibody-independent manners (4–6). In the response to inflammatory stimuli, neutrophils induce a
unique typeof cell deathprocess that is referred toas “NETosis”. They releasenetwork structures that are
referred to as neutrophil extracellular traps (NETs), and contains serine proteases and antibacterial
peptides. NETs themselves induce tissue damage through the generation of reactive oxygen species
org March 2022 | Volume 13 | Article 8586041
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(ROS) (7–10) and the release of digestive enzymes (11, 12).
Moreover, NETs are recognized by macrophages as damage-
associated molecular patterns (DAMPs) which triggers
inflammatory signals and IL-1beta production in macrophages
(12). It has also been reported that the IL-1beta produced by
macrophages enhances NET formation in neutrophils (13).
Because macrophages are also activated under xenogeneic
conditions and directly reject a xenograft (14, 15), inhibiting this
negative chain reaction by inhibiting the action of neutrophils
leads to the suppression of innate cellular rejection in a
xenograft (Figure 1).

Macrophages are activated via various mechanisms under
xenogeneic conditions through various mechanisms. As an
antibody-dependent mechanism, immunocomplexes of porcine
cells with xenogeneic antigen-specific antibodies such as anti-
a1,3Gal natural antibodies bind to FcgR and induce the production
of an activation signal (16, 17). As an antibody-independent
mechanism, the binding of galectin-3 to a1,3Gal on porcine cells
has been reported to function as an activation signal inmacrophages
(18–20). Macrophages are also activated by interactions with
neutrophils, NK cells and Th1 cells (21, 22). DAMPs arising from
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damaged porcine cells also contribute to macrophage-mediated
rejection (23). Activated macrophages induce tissue damage in
grafts via the secretion of various proinflammatory cytokines,
reactive oxygen and nitrogen species, and complement factors (24).

NK cells rapidly infiltrate porcine xenografts that have been
perfused ex vivo with human blood and reject xenogeneic cells by
direct interaction or by antibody dependent cellular cytotoxicity
(ADCC)mechanisms. NK cells which are activated in an antibody-
independent manner, induce cytotoxicity mainly by the release of
perforin and granzymes (25–27). The direct cytotoxicity ofNKcells
is regulatedby the balance between the activation and the inhibition
of signal pathways that are mediated by various NK receptors (28).
The activating NK receptors NKG2D (29) and pULBP-1 (30) bind
to the porcine ligand NKp44 and an unidentified molecule,
respectively, resulting in the release of lytic granules. However,
the inhibitory receptors on humanNK cells, KIR, ILT2, and CD94/
NKG2A, do not efficiently identify swine leukocyte antigen I (SLAI,
swine MHC class I), leading to invalidating inhibitory signals for
NK cell activation (31, 32). The deposits of natural and elicited
antibodies on the graft endothelial cells are recognized by the Fc-
receptors (FcRs) on NK cells. Interaction between FcRs and
FIGURE 1 | Crosstalk between macrophages and other innate immune cells in xenograft. The immunocomplex of porcine cells and natural antibodies against porcine
antigens binds to Fc receptors (FcRs) on macrophages and NK cell. Activated NK cell and macrophage induce antibody-dependent cellular cytotoxicity (ADCC) against
porcine cells. Furthermore, incompatibility between SLA1 and NK receptors (NKRs) causes macrophage and NK cell activation because of lack of inhibitory signals.
Macrophages were activated by the binding of DAMPs from dead cells to toll-like receptors (TLRs), receptor for advanced glycation end-products (RAGE) and macrophage-
inducible C-type lectin (Mincle). Activation signals were induced and various pro-inflammatory cytokines are released from macrophages. These cytokines activate
neutrophils and promote NETosis. Especially, IL-8 contributes to the neutrophil recruitment and IL-1b enhances NETosis formation in neutrophils. In addition, NETs
from neutrophils also activate macrophages as DAMPs. Macrophages can activate NK cells and IFN-g from activated NK cells was known to activates both macrophage
and neutrophil. CD11a and CD11b on neutrophils bind to iC3b deposits on porcine cells, suggesting that neutrophils can recognize porcine target cells via binding of
CD11a,b and iC3b. CD154 on NK cells enhances NK cytotoxicity to CD40 positive target cells.
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immunocomplex of porcine cell and antibody causes the release of
perforin and granzymes from NK cells and, in turn, triggers target
cell apoptosis (33). In addition to xenoantibodies that are bound on
the endothelial cells, the anti-swine leukocyte antigen class I (anti-
SLA classI) antibodies also induce antibody-dependent cellular
cytotoxicity (ADCC) (28, 34).

INHIBITION OF NK CELL-MEDIATED
XENOGRAFT REJECTION

NK cells are activated in antibody-dependent and -independent
manners under xenogeneic conditions. The knock out of
alpha1,3-galactosyltoransferase (aGalT) is known to suppress
NK-mediated ADCC but not antibody independent cytotoxicity
(35, 36). NK cells are known to be regulated by the balance
between activation signals and inhibitory signals and receive
inhibitory signals from MHC class I molecules. In the case of
xenografts between humans and pigs, the inhibitory receptors on
NK cells fail to deliver inhibitory signals due to the lack of human
leukocyte antigens (HLA) on target cells. To protect porcine
target cells from being killed by human NK cells, classical and
non-classical human MHC class I molecules were forcibly
expressed in porcine cells and, in a number of studies, have
been reported to suppress NK xenocytotoxicity (37–40). HLA-G1

is recognized by CD158d and immunoglobulin-like transcripts
(ILT) -2,4. It is known that HLA-E functions as a ligand for the
CD94/NKG2A inhibitory receptor and the CD94/NKG2C
activation receptor. These receptors have inhibitory
immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in
their cytoplasmic tail and induce inhibitory signal in NK cells.
Therefore, the modification of HLA-G1 and HLA-E cDNA for
transfection for it to only bind to inhibitory receptors would be
expected to improve the efficacy of non-classical HLA strategies.

An anti-CD154 monoclonal antibody, a co-stimulation
blockade agent, has recently been reported to be effective in
xenogeneic rejections (41, 42). IL-2-activated human NK cells
express CD154 (the CD40 ligand, CD40L) and the crosslinking
of CD154 on NK cells enhances the NK cytotoxicity to CD40
positive target cells (43). NK cells also contribute to antibody-
mediated rejection by interaction with marginal zone B cells in
the spleen via the CD40-CD154 pathway and the production of
T cell-mediated aGal-independent antibodies (44). These
findings indicate that anti-CD154 mAb may also suppress NK-
mediated xenogeneic rejection. We recently demonstrated that
prenylated quinolinecarboxylic acid (PQA)-18, a p21-activated
kinase 2 (PAK2) inhibitor, suppresses the expression of CD40 on
macrophages (45). A combination therapy of anti-CD154mAb
and PQA-18 would therefore be expected to induce a greater
suppression in xenogeneic rejection.

INHIBITION OF MACROPHAGE-
MEDIATED XENOGRAFT REJECTION

CD47-SIRPa has been reported to play a critical role in signaling
by virtue of its ability to prevent phagocytosis (46–48). CD47
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binds to SIRPa and prevents the clearance of cells by the immune
system. SIRP-a is expressed by macrophages and neutrophils and
recognizes CD47 as a marker of self. The cytoplasmic domain of
SIRP-a contains ITIMs that function to regulate their
immunological function by recruiting the tyrosine phosphatase
Src homology 2 domain-containing protein tyrosine phosphatase-
1 (SHP-1). CD47-SIRPa signaling acts as a “do not eat me” signal
and reduces the macrophage-mediated phagocytosis of opsonized
cells. In addition, a large number of studies have shown that pig to
human molecular incompatibility of SIRPa-CD47 interactions
contribute to the rejection of xenogeneic cells by macrophages
(49–53). The ectopic expression of human CD47 on swine
endothelial cells has been reported to lead to significant
reduction of the human macrophage-mediated phagocytosis of
xenogeneic cells. However, a recent study by Chen et al. reported
that thrombospondin (TSP)-1-CD47 signaling may stimulate
vascularized allograft rejection (54). TSP-1 also binds to CD47
and inhibits the binding of SIRP-a to CD47 in macrophages. TSP-
1 blocks hCD47- SIRP-a signaling and increases phagocytosis in
macrophages. Moreover, TSP-1 contributes to platelet aggregation
(55) and up-regulates the expression of TSP-1 in ischemic tissues
and damaged allografts, resulting in vasculopathy and rejection
(56–58). The strong and week points of CD47 in xenografts will
likely be revealed in future studies.

Human inflammatory monocyte-derived macrophages that
are generated from peripheral blood monocytes express CD94/
NKG2A and ILT-2,4, which are inhibitory NK receptors for
HLA-E and G1 (59, 60). The expression of both transgenic HLA-
E and HLA-G1 on porcine cells significantly suppresses
macrophage-mediated xenogeneic cytotoxicity. Furthermore,
both HLA-E and G1 were reported to suppress the production
of proinflammatory cytokines by macrophages. Because non-
classical MHC class I molecules suppress both macrophage and
NK rejection, generating HLA-E and G1 transgenic pigs would be
an excellent strategy for inhibiting innate cellular rejection.

It was recently reported that the overexpression of human
CD200 on porcine cells suppresses xenogeneic macrophage-
mediated cytotoxicity and phagocytosis (61, 62). CD200 and its
receptor, CD200R, are both members of the immunoglobulin
superfamily. CD200 induces immunosuppression via binding to
CD200R, which contains inhibitory NPXY signaling motifs in the
cytoplasmic region. The suppression of allogeneic graft rejection by
CD200-CD200R signaling has been reported in animal models (63,
64). CD200 on porcine cells not only suppresses macrophage-
mediated phagocytosis and cytotoxicity, but also suppresses the
release of proinflammatory cytokines from macrophages under
xenogeneic conditions. It has been reported that the recombinant
fusion protein CD200-Ig (OX2) functions to prolong allograft
survival (65). The function of OX2 is expected to be confirmed in
a xenogeneic model.

The surfactant proteins (SP)-A and SP-D are members of a
family of molecules that induce innate immune responce as
pathogen-associated molecular patterns (PAMPs) (66, 67). On
the contrary, it has also been reported that SP-A and -D have
anti-inflammatory properties (68, 69). While the ligation of the
N-terminal collagen domains of SP-A and -D with the calreticulin/
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CD91 receptor complex induce inflammation, the binding of the
C-terminal heads to SIRPa induces an inhibitory signal in innate
immune responses (70, 71). We recently demonstrated that the
forcible expression of carbohydrate recognition (CRD) of SP-D on
porcine endothelial cells significantly suppresses macrophage-
mediated cytotoxicity and the production of proinflammatory
cytokine from macrophages (72). Because SP-A and D also bind
to SIRPa on neutrophils, SP-A and D may also suppress
neutrophil-mediated xenogeneic rejection.

Cellular xenografts are rejected predominantly by cellular
immune responses. This response is initiated by CD4+ T cells
(73–76) and macrophages have been reported to be the most
important effector cells that are involved in this response (77). The
JAKs inhibitor, Tofacitinib, has been reported to inhibit the
production of macrophage-mediated inflammatory cytokines
(78, 79). In addition, Kim et al. reported that Tofacitinib
suppress allogenic rejection in islet transplantation (80). We
recently reported that both PQA-18, a PAK2 inhibitor, and
Tofacitinib suppress both the differentiation of macrophages and
xenogeneic macrophage-mediated cytotoxicity (45). Furthermore,
both PQA-18 and Tofacitinib suppress the induction of
xenogeneic cytotoxic T lymphocytes (CTLs) to a considerable
Frontiers in Immunology | www.frontiersin.org 4
extent in mixed lymphocyte reactions (MLR). These findings
suggest that PQA-18 and Tofacitinib suppress not only innate
immunity but also acquired immunity under xenogeneic
conditions and may be effective in both cellular and organ
xenograft rejection.
INHIBITION OF NEUTROPHIL-MEDIATED
XENOGENEIC REJECTION

A number of studies dealing with human neutrophil migration
and adherence to pig endothelial cells have been reported (81–
83). al-Mohanna et al. reported that the binding of neutrophils to
xenogeneic cells is dependent on the interaction between CD11a
and Mac-1 (CD11b/CD18, an iC3b receptor) and their ligands
for CD11a and CD11b/CD18 suppress neutrophil adhesion in
vitro (84). MacNally et al. It is known that activated neutrophils
are attached to foreign surfaces through the interaction of
CD11b/CD18 with surface-bound iC3b (85), suggesting that
neutrophils are able to recognize xenogeneic cells via the
binding iC3b to CD11b/CD18 on neutrophils. A recent study
FIGURE 2 | Strategies for innate cellular xenogeneic rejection. Both HLA-E and G1 on porcine endothelial cells suppress NK and macrophage-mediated xenogeneic
rejection. The transgenic expression of human CD47, SP-D and CD200 on porcine cells results in the suppression of macrophage-mediated cytotoxicity and
inflammation. Human CD31 inhibits NETosis in neutrophils via the homophilic binding to CD31 on neutrophils. Both Tofacitinib (JAK inhibitor) and PQA-18 (PAK2
inhibitor) have been reported to suppress macrophage-mediated cytotoxicity and differentiation of macrophages. Anti-CD154 Ab suppress NK cytotoxicity against
CD40+ target cells. Cp40 (C3 inhibitor) suppress CD11b expression, resulting in suppression of neutrophil adhesion to porcine cell. Y shows an inhibitory intracellular
signaling motif of inhibitory receptors.
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by Bastian et al. supported this finding. They found that, when
decellularized porcine heart valveswere incubated in plasma,
iC3b was deposited and a significant adhesion of neutrophils
was observed (86). CD82, one of the tetraspanins, was also
reported to contribute to the adhesion of human neutrophils
to porcine cells (87). Saleh et al. reported that CD82 contributes
to the Gala1,3-Gal-independent adhesion of neutrophils to
porcine endothelial cells. Indeed, the compstatin analogue
Cp40, a potent complement C3 inhibitor, was found to
suppress CD11b expression on neutrophils and neutrophil
adhesion to xenogeneic target cells (88).

Wang et al. recently reported that the ectopic expression of
human CD31 on porcine cells suppress xenogeneic neutrophil
NETosis and cytotoxicity (89). CD31 (PECAM-1) is well known
as an adhesion molecule and is ubiquitously expressed by various
inflammatory cells (90). CD31 homophilic ligation induces
signal transduction via its immunoreceptor tyrosine-based
inhibition motif (ITIMs) to attenuate tyrosine kinase-mediated
signaling pathways (91–93). Because CD31 has been reported to
be incompatible between human and pig (94, 95), human CD31
may be a good candidate for suppressing neutrophil-mediated
xenogeneic rejection.
CONCLUSION

The infiltration of various inflammatory leukocytes into a1,3-
galactosyltransferase knockout (aGalTKO) neonatal porcine
islets (96), which suggests that suppressing antibody dependent
rejection is not sufficient to prevent xenogeneic cellular innate
immunity. Therefore, a strategy that involves the suppression of
direct recognition by innate immune cells is essential for clinical
applications of xenografts. A variety of strategies for suppressing
NK and macrophage-mediated rejection have been proposed,
but there appears to be quite a bit of room for improvement.
Neutrophils contribute, not only to the induction of
inflammation but also to the resolution of inflammation. The
phagocytosis of apoptotic cells by macrophages plays a pivotal
role in the resolution of an inflammatory response and apoptotic
Frontiers in Immunology | www.frontiersin.org 5
neutrophils themselves exert anti-inflammatory effects (97, 98).
The Bcl-2 homologue, Mcl-1, which functions to prevent
intrinsic apoptosis, is central to the ability of neutrophils to
undergo rapid apoptosis (99). Hence the induction of a Bcl-2
proapoptotic homologue such as Bax in important in terms of
inducing apoptosis of neutrophils. The death receptor ligand,
TRAIL, has been reported to induce apoptosis in neutrophils
(100). A leucine zipper-tagged form of TRAIL may therefore be a
good strategy for induce the resolution of inflammation.

In conclusion, significant advances have been made in the
field of xenogeneic cellular immune responses in the past 20-30
years (101). Various transgenic and knockout pigs were
generated to suppress the xenogeneic rejection. The strategies
against innate cellular xenogeneic rejection were summarized in
Figure 2. Further improvements will be needed if better effects
are to be achieved in the future.
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