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In recent years, with the current access in techniques, studies have significantly

advanced the knowledge on meningeal immunity, revealing that the central

nervous system (CNS) border acts as an immune landscape. The latest concept

of meningeal immune system is a tertiary structure, which is a comprehensive

overview of the meningeal immune system from macro to micro. We

comprehensively reviewed recent advances in meningeal immunity,

particularly the new understanding of the dural sinus and meningeal

lymphatics. Moreover, based on the clues from the meningeal immunity,

new insights were proposed into the dural arteriovenous fistula (DAVF)

pathology, aiming to provide novel ideas for DAVF understanding.

KEYWORDS
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1. Brain and its immune protection

The central nervous system (CNS) of humans has evolved in an extremely complex

way, which enables it to become an intelligent organ to receive multiple input sensory

and then integrate these signals and feedback appropriate outputs, achieving precise

control of the overall behavior activities (1, 2). For decades, the understanding from “The

brain is an immune-privileged organ” to “The meningeal immune system plays critical

roles in maintaining brain function” continues to be refined (3, 4). It is not surprising that

the most complex organ of the human body is constantly exposed in the antigen contexts.

Due to the extraordinary strength of the protection of the meningeal immune system

(MIS), which maintains the physical cushion and immune protection against injurious

impacts, various physiological activities of the CNS can proceed normally without

interference (5). Meanwhile, accumulating evidence reminds us that meningeal

immunity may represent origins for numerous neurological disorders (3, 6, 7).
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2. Meningeal immune system

For centuries, the only functional significance of the

elaborate barrier system was considered to physically protect

the CNS, and the brain was once thought to be an immunity-

privileged organ (8, 9). In recent decades, researchers in this field

have made great contributions to reveal that the roles of immune

surveillance and response could also be performed by the

meningeal barrier system (4). On the macro level, the MIS

consisted of meninges (a multiple-layer membrane including

the dura, arachnoid, and pia mater), meningeal vasculature

(meningeal arteries, venous sinuses, and lymphatic vessels),

and meningeal nerve branches (10–13). From the micro space,

the neuro-immune cell unit is the basis of the system, running

the interaction between the CNS and the immune system (14–

17). Cytokines and related immune molecules are the major

executives to steer and generate immunoregulatory responses

(18, 19). The following descriptions will highlight the important

functions of each component.
2.1 The meningeal barrier

Diverse innate and adaptive immune mechanisms in CNS

borders have been described recently (13, 20, 21). Interestingly,

the meninges are ideal options to explore the CNS immune

surveillance. Collectively known as the meninges, the

membranous structures on the surface of the brain are made

up of three layers of cellular-layered membranes.

The outermost layer adjacent to the skull is the dura mater,

which could be distinguished into the periosteal layer and the

meningeal layer (8). The dura mater could perform efficient
Frontiers in Immunology 02
immune surveillance by driving immune cell circulation and

maintaining infiltration homeostasis (22, 23). The dural sinus is

the characteristic structure of the dural vascular architecture.

Notably, potent evidence revealed it could be a neuroimmune

interface, which enables CNS immune surveillance. In the

presence of neuroinflammatory infiltration, the immune

niche will be altered, leading to the appearance of related

pathological features.

The innermost layer adhered tightly to the surface of the

cerebral and spinal parenchyma is the transparent pia mater.

This layer is semipermeable to the cerebrospinal fluid (CSF) that

flows into perivascular spaces. Previous evidence demonstrated

that the pial meninges might be the entry point for peripherally

immune cells entering into the CNS (4, 8). The middle layer is

the peculiar spiderweb-like membrane, which is a tight

arachnoid barrier, regulating the transportation of molecules

by tight junction-like structures. Anatomically, it separates the

dura layer from the CNS parenchyma. Collectively, the pial

membrane and arachnoid are called leptomeninges (8).

Housed between pial and arachnoid meninges, the CSF flows

smoothly, ensuring the normal circulation of necessary substances

and the metabolism of various accumulation. Meanwhile, the

buoyancy provided by the fluid is an artful force to respond to

impact or squeeze from its own mass or movement. The three

meninges are separated but cooperate together, participating in the

CNS immune surveillance (Figure 1).
2.2 The meningeal vasculature

The meninges are highly vascularized, and the structure and

function of the vascular architecture are complex. In this part,
FIGURE 1

Illustration of the meningeal immune system.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.858924
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tu et al. 10.3389/fimmu.2022.858924
the emphasis is placed on the description of meningeal

lymphatics and dural vessels and sinuses to fully understand

their structure and newly recognized functions.

2.2.1 Meningeal lymphatic vessels: From the
past to the updated view

Centuries ago, the Italian anatomist Paolo Mascagni

described the anatomical discoveries of meningeal lymphatic

vessels (MLVs) exactly. However, controversies about the lack of

lymphatic circulation in the cerebra ensued (24). After nearly

200 years of debate, the advanced imaging techniques provide

definitive structural and functional characterization of MLVs

(12, 25–29). More importantly, since CNS interaction with

peripheral immunity has been firmly established due to MLV

linkage, the concept of immune privilege in the CNS is

completely broken (3–5).

In most species, such as fish, rodents (rats and mice),

nonhuman primates, and even humans, meningeal lymphatics

are found to be evolutionarily conserved (29–32). Previous

findings reported that MLVs were paralleled to the dural

venous structures. Recent publications refreshed the findings:

the meningeal lymphatics at the lateral and basal skull creep with

the cranial nerves’ track and then pass through the skull and

drain to cervical lymph nodes (CLNs) (30, 33). Although the

exact transportation line of materials from the parenchyma and

CSF is still in debate, some results suggested that these vessels

could directly connect the CNS to the peripheral immune system

via draining immune molecules and cells into the deep

CLNs (26).

The existence of the meningeal lymphatics is a landmark

discovery that opened the way to current research of meningeal

immunity. Recent works supplied comprehensive insights about

the meningeal lymphatics’ function during homeostasis, aging,

and even in CNS disorders (26, 28, 34–36). The CSF, the

interstitial fluid (ISF), and the lymphatic fluid are important

media for the circulation of immune cells and molecules. The

application of tracers allows us to visualize the immune

trajectories, which is a complex process related to numerous

impact factors including arterial pulsation and the fluid pressure

of each part (33, 37). The currently accepted path is as follows:

endogenous antigens (metabolites and proteins) from the

cerebral parenchyma are presented into the ISF, subsequently

entering the subarachnoid space, then drained by lymphatic

vessels to the CLNs. Future observations will present convincing

arguments that meningeal lymphatics are important outflows of

CSF molecules.

Recent works of Chen et al. (38–40) are groundbreaking. In

2019, they showed that after cerebrovascular injury, the

meningeal lymphatics could grow into the damaged brain. As

a response of repair, the ISF would be drained by ingrown

lymphatics to relieve cerebral edema (38). Meanwhile, as

“growth tracks,” neovascularization can be “guided” by the

lymphatic vessels to complete reconstruction, and then the
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ingrown lymphatic vessels will disappear in the form of

apoptosis (38). Two years later (in 2021), a further study

added brilliance to the present splendor. The results showed

that by direct transdifferentiation of ingrown lymphatic vessels,

acute cerebrovascular regeneration could also be achieved (39).

Furthermore, according to their latest study (in 2022), the

molecular mechanism about how the vessel directionality of

cerebrovascular regeneration was revealed, which was closely

related to the Cxcl12b/Cxcr4a signal pathway (40). These

findings highlighted the involvement of meningeal lymphatics

in the regeneration or neovascularization after vascular injury,

which undoubtedly opened up a new world for the research of

cerebrovascular diseases. In line with the above evidence, it is

reasonable to reconsider whether the pathogenesis of the dural

arteriovenous fistula (DAVF) formation is related to MLVs.
2.2.2 Dural sinus “newly discovered“: More
than just a drainage channel

Normally, the main blood supply to the dura comes from the

external carotid artery (ECA) system, and venous blood is

collected through the sinus and enters the venous system. The

fenestrated vasculature is a characteristic of the dural vascular

architecture (8, 11, 22). Recent findings challenged the

traditional concept: dural sinus is more than just a drainage

channel but may serve as a neuroimmune interface (23). Briefly,

these breakthroughs could be described as follows: 1) The CNS-

derived antigens in the CSF are found to accumulate at dural

sinuses. 2) Captured by dural sinus-associated antigen-

presenting cells (APCs), these antigens would be presented to

patrolling T cells. 3) T cell trafficking could be orchestrated by

the dural sinus stroma. In turn, by recognizing antigens from the

CSF, T cells could also enhance the phenotype and effector

function of tissues in the dura mater.

Similarly, accumulative works revealed that immune cells

such as T cells and APCs are present in these immune synapses

to perform immune surveillance (41–43). More importantly,

although disease outcomes vary, the initial process of triggering

an immune response may be consistent, taking the activation of

APC–T cell interaction as an example (23, 41–43). Fitzpatrick

et al. (20) added to the knowledge of dural sinus from meningeal

humoral immunity. Adjacent to dural venous sinuses, the IgA-

secreting plasma cells were observed on the meninges during

homeostasis. In the condition of aging and neuroinflammation,

it is also proven that this vulnerable venous barrier surface is

essential for defending the CNS. Thus, exploring the relationship

between the dural sinus immune function and the (patho)

physiological process of neurological diseases is promising.
2.2.3 The vasculature-associated barriers:
Special shield for CNS parenchyma

The vasculature-associated barriers are of significance to the

traditional concept of CNS immunity. In addition to the physical
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protection of meninges, the vasculature-associated barriers,

involving the blood–brain barrier (BBB) and blood–meninge

barrier (BMB), also provide special protection for the CNS

parenchyma. BBB is a specialized vasculature barrier with

selective impermeability, which allows for partially blood-

derived products to enter the parenchyma (44–46). Similarly,

the BMB is also a specialized selective impermeability barrier,

preventing the entrance of blood components from the

leptomeningeal vasculature into the CNS (4, 47). Under

pathological conditions, the previously impermeable blood-

derived factors may enter the brain parenchyma, causing a

cascade of reactions including immune responses (45, 46).

Notably, nonselective leakage of blood components from the

CNS vasculature, which is the main result of the BBB damage, is

frequently observed in diverse acute or chronic neurological

disorders (48, 49). The primary and/or secondary immune

responses and associated inflammation are increasingly

recognized mediators of diverse cerebral anomalies. Immune

and inflammation responses precipitate in the BBB breakdown,

dysregulated transport, and immune trafficking, aggravating

endothelial dysfunction. Importantly, these events also happen

to link immune interactions with cerebrovascular dysfunction.

In addition, the localized vascular anomalies, such as the DAVF,

exactly occurred in meningeal vasculature. Consequently, it is

reasonable to believe that the pathological processes including

the formation and development of DAVF are closely related to

meningeal immunity.
2.3 The meningeal innervation

The meninges are highly innervated by various nerve fibers,

involving sympathetic and parasympathetic nerves, as well as

sensory fibers (50–53). Many pioneers have contributed to the

description of the meningeal innervation, revealing that there are

significant differences in innervation between the pachymeninx

and the leptomeninx of the cranial cavity and spine (4, 54).

The leptomeninx innervation is mainly focused on the

cerebral arteries. Fricke et al. (55) researched the localization

of nerve fibers in the ventral leptomeningeal connective tissue

compartment and described the nerve fibers within the pia that

appear to be the primary termination. It must be noted that

differentiated innervation patterns of the leptomeninx were also

presented in their work in 1997 (55).

Andres et al. (56) reported that the innervation of the dura

mater is also extensive, and the vascular and nonvascular

regulation targets are both related to the dural fibers. Various

segments of the meningeal vessels and venous sinuses are the

main location (56).

In addition, the vasoconstrictor and the associated blood

flow could be regulated by neuropeptides (50, 57–60). Peripheral

nerve fibers could also project to the meninges (60, 61). For

providing important sensory feedback, sensory fibers that
Frontiers in Immunology 04
control changes in temperature, pH, and mechanical pressure

extend within the meninges (62, 63). Most importantly, like the

skin barrier and gastrointestinal mucosa, numerous immune

hotspots and messages could also be found around dural sinuses

(4, 64, 65). The above evidence feasibly intrigued our interests to

investigate the roles of meningeal innervation in maintaining

meningeal immunity homeostasis.
2.4 The meningeal cells, molecules, and
immunity function

Immune cells and related characteristic cytokines are the

primary guardians of immune homeostasis, which actually

execute all immune regulation instructions. Cellular immunity

and humoral immunity are essential for the protection of the

CNS parenchyma. For decades, the spectrum of these

microscopic molecules’ roles in physiological and pathological

conditions gradually becomes clear.

2.4.1 The meningeal cellular immunity
So far, accumulated evidence built the intact framework of

the meningeal cellular immune system, and main studies were

focused on T cells and macrophages (26, 64, 66–69). The

meningeal T cell always acts as the immune surveillance guard

and immunohomeostasis maintainer (12, 26, 43, 68–72). As the

latest findings we mentioned above, the CNS-derived antigens

accumulated around the dural sinuses could be captured by

APCs and then be presented to patrolling T cells through the

CSF pathway (23). Activated T cells would promote meninges to

initiate antigen processing. In the research field of multiple

sclerosis (MS), studies on meningeal T cells provided a new

consideration of neuroimmunology and the MS pathology. As

MS is believed to be mediated by myelin-specific T cells, the

potential mechanisms of how T cells acquire their

encephalitogenic phenotype and initiate inflammation have

been demonstrated (26, 43, 68, 69). In addition, when

searching for the pathway of how the T cells reach the CSF

and get into and out of the meninges, the functional lymphatic

vessels lining the dural sinuses were discovered (12, 71). The T

cells were also shown to have the potential to support memory

and learning, which may shed light on immune-based therapy

exploration for cognitive decline (72). In the experimental

models of autism and aggregation behavior, meningeal gd17 T

cells were suggested to promote behavioral changes (70). These

findings suggested that meningeal T cells are potent executors of

meningeal immune function.

Specialized macrophage populations at the CNS borders

perform critical roles in health and disease conditions (64). As

the most abundant cell population in healthy meninges,

macrophages were reported to form the origin to the

phenotype turnover (73, 74). The meninge-associated
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macrophages could be divided into three populations:

leptomeningeal macrophages, perivascular macrophages, and

choroid plexus macrophages (64, 73). To date, all of these

categories are thought to guard the meningeal barriers and to

control the antigens and metabolite drainage (64, 73, 74). In the

MS research field, activated macrophages are found abundantly

accumulated before clinical symptoms caused by inflammatory

infiltration (75, 76). In neurodegenerative diseases, meningeal

macrophages are reported to have dual roles (31, 35, 77, 78). By

removing insoluble amyloid-b, macrophages could help in

delaying or salvaging cerebral amyloid angiopathy (79).

However, once overburdened, dysfunctional macrophages

would act as internal hostile molecules to exacerbate

Alzheimer’s disease (AD) pathology processes (79, 80).

Notably, the brain borders are inundated with highly

populated immune cells, and multiple immune cell subsets

coordinate with each other to maintain normal immune

function (81).
2.4.2 The meningeal humoral immunity
In recent years, one of the major breakthroughs in the research

field of the MIS is undoubtedly the supplementation of meningeal

humoral immunity knowledge (16, 17, 20). Given that studies in

recent decades are mainly focused on meningeal cellular immunity,

a detailed generalization of meningeal humoral immunity is not

available. In this part, we summarized the contents of meningeal

humoral immunity comprehensively, providing a new perspective

for further research.

B cells have previously been shown to be located near the

dural sinus regions with slow blood flow. Once there is

fenestration, these blood-borne pathogens could be permitted

to access the CNS parenchyma (82). Traditionally, circulating

antibodies were not thought to be present in the CNS of healthy

individuals. However, in the disease state, antibodies involving

IgA and IgG can be found in the CSF (83–85). These pieces of

evidence are the location basis for the occurrence of humoral

immune events.

In the work of Fitzpatrick et al. (20), they showed that the

IgA-secreting plasma cells infiltrated the meninges of humans

and mice during homeostasis. With age and disruption of the

intestinal barrier, peri-sinus IgA plasma cells increase (20). In

addition, meningeal IgA was shown to be essential for defending

the vulnerable barrier surface of the CNS in their work (20).

Several other outstanding works have clearly described the

origin and migration of meningeal B cells (16, 17). The latest

findings revealed the following: 1) The meninges host a

substantial myeloid cell pool in the brain border, which would

mediate immune surveillance. Meanwhile, meninges also harbor

a specific lymphopoietic niche for the CNS borders. 2) Under

homeostasis, the meningeal immune cells could be supplied by
Frontiers in Immunology 05
the bone marrow niches adjacent to the brain and spinal cord. 3)

Migration of meningeal myeloid cells through the meningeal

barrier to parenchyma is the next step in the microenvironment

of CNS injury and inflammation (16, 17, 20). Interestingly,

through B-cell receptor sequencing, it was also confirmed that

the gastrointestinal barrier is an important source of meningeal

B cells (20, 86). To understand the origin and the physiological

and pathological function of humoral immune cells at the brain

border is an essential step in revisiting meningeal immunity,

which also encourages the rethinking of therapeutic approaches.
2.5 The meninge vessels/innervation
cells/molecular units and
immunity function

From what has been reviewed above, we propose the concept

of a complete MIS for the first time. The MIS is a tertiary

structure. The primary structure is a barrier structure composed

of three layers of tangible membrane, involving the dura mater,

arachnoid, and pia mater (from outside to inside). The

secondary structure is the vasculature and meningeal

innervation. The meningeal lymphatics often run parallel to

blood vessels, and the dural sinuses are important

immunosurveillance sites. The meningeal nerve covers a wide

range of areas and plays an important role in regulating vascular

function. The third structure is the direct executor of meningeal

immune function, including immune cells, and related immune

molecules and cytokines, which play ultimate roles both in

humoral and cellular immunity. For the function of the MIS,

we also clearly summarize it into three aspects: 1) immune

surveillance, 2) drainage and clearance, 3) and repair and

regeneration (Figure 2).
3. Meningeal immune system
response to central neural system
diseases' pathogenesis

The meninges are strategically located in the CNS. In the

case of infectious and non-infectious stress, the MIS perceives

unbalanced homeostasis earlier and then actively forms an

inflammatory response and activates clearance mechanisms

before pathogens reach the parenchyma. Abundant pioneering

works have repeatedly highlighted the powerful immune

function of the meninges (87). In this part, we will briefly

summarize the MIS with these diseases characterized by

neuroinflammation, then restrict ourselves to discuss the

potential possibility of the pathogenesis of DAVF with the

meningeal immunity.
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3.1 General description of the MIS and
CNS diseases

In recent years, a vast body of studies has found that the MIS

is related to the occurrence, progression, or prognosis of more

CNS diseases to varying degrees. For example, the MIS is

believed to play important roles in the pathogenesis of

multiple sclerosis (26, 88–90), Alzheimer’s disease (35, 91–93),

and Parkinson’s disease (78, 94, 95). Meanwhile, the regulation

of the MIS about the immune surveillance and lymphatic vessel

drainage to the brain tumor is also demonstrated (96–98). Stroke

associated with hemorrhage or ischemia is one of the recent

research hotspots. Much meaningful work has described the

importance of the MIS in cerebral stroke, including

subarachnoid hemorrhage (99, 100), intracerebral hemorrhage

(101), or ischemic stroke (102, 103). In the brain injury studies,

meningeal lymphatic drainage is reported to be associated with

prognosis (104, 105). Recently, researchers also found that the

MIS has a cross-era function, which is directly or indirectly

involved in the repair of cerebrovascular injury (38–40).

Naturally, the MIS is linked to the immune responses of

infectious diseases, including bacterial meningitis (73) or

parasitic infections (69, 106, 107), as well as viral infections

(108, 109). In other diseases, such as migraines (110–113),

glaucoma (114, 115), and even in the aging process (20, 23,

35), evidence of active immunomodulation and surveillance of

the MIS can also be found. Given that this is not the focus of this

work, here we summarize these studies related to the MIS in a

graph (Figure 3).

Of particular note is that the neuroinflammatory condition

is an overlapping pathologic process during these disorders,
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and this happens to be a trigger point for the meningeal

immune response (4, 87). These works contributed to prove

that the MIS supports normal CNS development and function

and governs the pathological process dominated by

neuroinflammation (87). It seems that during both

noninfectious and infectious microenvironments, neurological

dysfunction is often a consequence of meningeal inflammation.

Thus, from the view of CNS immune regulation, therapeutic

strategies to alleviate these debilitating neurological conditions

could be attractive.
3.2 New insights into the
DAVF pathology

Over the years, researchers have tried to figure out the

formation process of vascular abnormalities (116–119).

However, it is impossible to know the dynamic formation

process because the entity of the lesion is already formed when

the patient is presented and diagnosed. Current views tend to

define DAVF as an acquired disease, which is closely related to

the inflammatory microenvironment after venous hypertension

and hypoxia (120–123). Cytokines related to neovascularization

are the main pathologic findings. In a 1996 report, researchers

examined the angiogenic stimulants in human DAVF sinuses

and revealed that the basic fibroblast growth factor (bFGF) levels

in the sinus of patients with DAVF were higher when compared

with those in the normal group, even in normal dural sinuses

(124). Notably, none of the enrolled patients had a history of

sinus thrombosis or head injury. Another study confirmed the

same results and added that vascular endothelial growth factor
FIGURE 2

Summary of the MIS functions. BVs, blood vessels; iLVs , ingrown lymphatic vessels.
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(VEGF) was not expressed in normal specimens but was

observed in the DAVF group (125).

Certainly, some possible causes as traumatic brain injury

(TBI) and sinus thrombosis are thought to be the culprits. It

would be reasonable because these injuries could lead to a

common pathologic condition—neuroinflammation (122, 126–

129). The work of Hamada et al. (130) targeted to discuss this

problem. In their research, a comparison was made among five

control cases and nine DAVF cases, six of which angiographically

showed sinus occlusion. At least in some cases, the venous sinus

occlusion might be the cause of hypertension to force the

abnormal connections between arteries and veins to open,

leading to the formation of DAVFs. At this point, we have

reason to postulate that in the inflammatory microenvironment

caused by sinus hypertension, the MIS is also responding

positively, and the formation of DAVF might be a result of the

repair process.

Conclusions drawn in animal models also echoed this (131–

140), and one of the outstanding contributions would be

attributed to the work of Yang et al. (141). In the context of

venous hypertension, the hypoxia and inflammation cascaded,

then the infiltration of various angiogenic factors leads to the

tendency of abnormal vascular anastomosis. The benign result of

venous pressure regress might be related to the formation of

compensatory draining veins. Otherwise, development of DAVF

and venous hypertension would be the ultimate possible vicious

circle. Some of these animal model studies are progressive, while

we noticed that the current models do not perfectly reflect the

pathophysiology of the disease. Thus, the establishment of stable

animal models is urgently needed as well as conducting a series

of basic studies to test these hypotheses.

Taken together, either as a starting agent or as a result of a

vicious cycle, the inflammatory microenvironment is always the

background for the occurrence and development of DAVF. The

meninges are unlikely to ignore the lesions that occur within
Frontiers in Immunology 07
themselves. Surely, how this immune reaction works is

something fascinating that deserves further study (Figure 4).
4. Evidence-based assumptions
and perspectives

Based on the abundant evidence above, we propose several

scientific hypotheses that may open up new directions for future

research. Firstly, in the case that the state of the epidural in situ or

remote site in the CNS is unsteady for a long time, the abnormal

vascular anastomoses might be compensatory products of

immune surveillance and regulation by the MIS. There are

many reasons for this steady-state imbalance, such as trauma,

surgery, or infection that can be recorded and observed clearly,

while other meningeal immune activation pathways that may

have been overlooked, such as a peripheral infection that may

communicate with the CNS, are also important mining sites.

Secondly, as MLVs have been shown to be involved in the repair

and reconstruction of cerebrovascular injury (38, 39), the

assumption that the formation of DAVF might be closely

related to meningeal lymphatics is quite reasonable. It is not

ruled out, and even very likely, that a fistula is one of the imperfect

products of the repair process. Thirdly, given the fact that DAVF

already exists, the immune monitoring and maintenance

functions of the MIS have apparently been activated. A recent

work has also discussed cerebrovascular diseases including DAVF

from the perspective of CNS immunity, which is undoubtedly a

strong support for our assumptions (119). Thus, though it can be

challenging, promising alternative therapeutic targets could be

explored from the viewpoint of the MIS immune modulation.

Excitingly, with the current access as imaging techniques (with

tracer agents), gene-edited mice, and high-throughput

sequencing, we would be allowed to achieve an unprecedented

description of the MIS.
FIGURE 3

Summary of studies related to the MIS.
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Some of the other insights for treatment strategies are also

interesting, although there are still some limitations because

there is no direct evidence to support immunotherapy. At

present, interventional embolization and surgery are the main

treatments for DAVF, and some studies on stereotactic

radiotherapy are also being carried out (142). However, there

are still some lesions that cannot be obliterated due to

anatomical reasons and material limitations. Meanwhile, the

occurrence of de novo DAVF after treatment is also common

(143–145). Furthermore, in addition to the elimination of

lesions on imaging, the long-term prognosis of patients is

also worthy of our attention. Therefore, innovative

treatments are urgently needed. It is clear that the venous

pressure, hypoxia, and inflammatory microenvironment do

exist in the context of the lesion. As studies have shown,

immunosuppressive therapy has potential in the treatment of

CNS diseases (146). Factors of immunity may also be related to

the prognosis of patients with this type of cerebrospinal

vascular disease. As we found in our recent work,

Complement component 4 binding protein alpha (C4BPA)

and Complement Component 1, Q Subcomponent, A Chain

(C1QA) are potential biomarkers for the diagnosis of spinal

dural arteriovenous fistulas (SDAVFs), revealing that

complement pathway activation might be one of the

molecular mechanisms for venous hypertension myelopathy

(147). Some clinical clues are worth pondering. There are many

reports of confusion between SDAVF cases and myelitis cases

(148). It is well known that steroids have good anti-

inflammatory effects. However, hormonal shock therapy can

lead to rapid deterioration of the patients’ symptoms. Notably,

the use of hormones after surgery may be worth trying, which

may improve patients’ prognosis. Importantly, given that

immune factors play important roles in the overall disease

process, it is really worth exploring whether boosting the
Frontiers in Immunology 08
beneficial immune factors or suppressing the detrimental

immune factors can improve the problem.
5. Conclusion

In this review, we defined the MIS as a tertiary structure.

Recent advances in meningeal immunity of healthy and diseased

brains were reviewed. Moreover, by gaining clues from the

immunity, we proposed new insights into the DAVF

pathology, which may provide new ideas for understanding

DAVF and looking for novel therapeutic targets. In

conclusion, great breakthroughs have been made in the

exploration of the potential functions of meninges, while there

is still so much to be explored in this area that motivates

our curiosity.
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