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Pathogenic role of monocytes/
macrophages in large
vessel vasculitis

Ryu Watanabe* and Motomu Hashimoto

Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine,
Osaka, Japan
Vasculitis is an autoimmune vascular inflammation with an unknown etiology

and causes vessel wall destruction. Depending on the size of the blood vessels,

it is classified as large, medium, and small vessel vasculitis. A wide variety of

immune cells are involved in the pathogenesis of vasculitis. Among these

immune cells, monocytes and macrophages are functionally characterized

by their capacity for phagocytosis, antigen presentation, and cytokine/

chemokine production. After a long debate, recent technological advances

have revealed the cellular origin of tissuemacrophages in the vessel wall. Tissue

macrophages are mainly derived from embryonic progenitor cells under

homeostatic conditions, whereas bone marrow-derived circulating

monocytes are recruited under inflammatory conditions, and then

differentiate into macrophages in the arterial wall. Such macrophages

infiltrate into an otherwise immunoprotected vascular site, digest tissue

matrix with abundant proteolytic enzymes, and further recruit inflammatory

cells through cytokine/chemokine production. In this way, macrophages

amplify the inflammatory cascade and eventually cause tissue destruction.

Recent studies have also demonstrated that monocytes/macrophages can be

divided into several subpopulations based on the cell surface markers and gene

expression. In this review, the subpopulations of circulating monocytes and the

ontogeny of tissue macrophages in the artery are discussed. We also update

the immunopathology of large vessel vasculitis, with a special focus on giant

cell arteritis, and outline how monocytes/macrophages participate in the

disease process of vascular inflammation. Finally, we discuss limitations of

the current research and provide future research perspectives, particularly in

humans. Through these processes, we explore the possibility of therapeutic

strategies targeting monocytes/macrophages in vasculitis.
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1 Introduction

Monocytes are circulating blood leukocytes that play

important roles in the inflammatory response, and represent

10% of leukocytes in human blood (1). Monocytes are

functionally characterized by their capacity for phagocytosis,

antigen presentation, and cytokine/chemokine production, and

originate in the bone marrow from a hematopoietic precursor

which is common for several subsets of macrophages and

dendritic cells (DCs). These cells are not only part of the

innate immune system, but also the monocytic lineage that

support the activation of the adaptive immune system by

antigen presentation (2). Monocytes/macrophages are deeply

involved in vascular inflammation including atherosclerosis and

vasculitis as well.

Vasculitis is an autoimmune and/or autoinflammatory

vascular inflammation and causes breakdown of the blood

vessel walls. Based on the distribution of vessel involvement, it

is classified as large, medium, and small vessel vasculitis (3).

Large vessel vasculitis affects the aorta and its major branches

and include giant cell arteritis (GCA) and Takayasu arteritis

(TAK). The hallmark of the two diseases is granulomatous

inflammation, which is primarily composed of CD4+ T cells

and macrophages (4, 5). In GCA, name-giving multinucleated

giant cells are often observed in the vascular tissue (Figure 1) and

formed by Toll-like receptor (TLR) 2-induced fusion of

macrophages (6). Thus, it is obvious that monocytes/

macrophages are key players in the pathomechanisms of large

vessel vasculitis. Since we have been working on the

pathogenesis of GCA, this review will mainly focus on GCA.

The currently available treatments for GCA include

glucocorticoids and tocilizumab (TCZ), an IL-6 receptor

inhibitor. Even with the adequate use of glucocorticoids,

inflammation of the temporal artery remains in about half of
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the patients after one year (7). Macrophages and giant cells also

remain in one in four patients. On the other hand, TCZ reduces

vascular inflammation detected by fluorodeoxyglucose-positron

emission tomography (8) and flare-up of GCA (9). However, it is

difficult to cure the disease, as shown by the flare-up after

discontinuation of TCZ in most cases (8). Therefore, clinical

unmet needs exist with the current therapies.

This review first summarizes the current knowledge of

monocytes/macrophages subsets and the origin of tissue

macrophages, particularly in the vascular tissue. Then, the

pathogenic roles of monocytes/macrophages in the

pathogenesis of large vessel vasculitis are presented. Finally, we

discuss future perspectives for therapeutic options targeting

monocytes/macrophages in large vessel vasculitis.
2 Monocytes/macrophages
homeostasis under steady-state and
inflammatory conditions

2.1 Circulating monocyte subsets

Monocytes differentiated from progenitor cells in the bone

marrow reach the circulation. Currently, human circulating

monocytes are divided into three subsets based on the

expression of superficial CD14 (a cell co-receptor for

lipopolysaccharide [LPS]) and CD16 (the low-affinity IgG

receptor); “classical” CD14++CD16− monocytes (≥90%),

“intermediate” CD14++CD16+ monocytes, and “non-classical”

CD14+ CD16++ monocytes (10). These subsets are characterized

by different levels of cell surface markers and chemokine

receptors, but there appears to be a developmental relationship

between these cells (from classical by intermediate to non-

classical) (10). The classical monocytes are involved in a variety
BA

FIGURE 1

Microscopic image of giant cell arteritis. (A) Left temporal artery biopsy from 65-year-old woman with giant cell arteritis (Hematoxylin and eosin
staining, x10). Lymphocytes and macrophages form granulomatous inflammation, and intimal hyperplasia causes narrowing of the blood lumen.
(B) High power field image of the biopsy (Hematoxylin and eosin staining, x40). Red arrows show multinucleated giant cells.
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of immune response such as inflammation and tissue repair. The

intermediate monocytes are characterized by the highest TLR2,

TLR4, and human leukocyte antigen-D related expression among

monocyte subsets, and have the highest antigen presenting ability.

They have superior reactive oxygen species production and have a

role in angiogenesis. The non-classical monocytes are called

“patrolling” monocytes and have high ability to stimulate CD4+

T cells (11). The use of additional markers, such as C-C

Chemokine Receptor 2 (CCR2) which is a key mediator of

monocyte migration, for better delineation of monocyte subsets

has been proposed (12), but its usefulness needs further study.

Conflicting data on cytokine production by the distinct

monocyte subsets exist. We have previously reported that the

intermediate monocytes treated with LPS produced the most IL-

1b, IL-6, and TNFa (13). Wong et al. reported that non-classical

monocytes produced the highest IL-1b and TNFa in response to

LPS, but that equivalent amounts of IL-6 were secreted by the three

subsets. (14). These inconsistencies are probably due to the different

isolation methods used to purify the monocyte subsets (11).

An expansion of intermediate monocytes has been implicated

in various inflammatory diseases and vascular diseases such as

atherosclerosis (15), coronary artery disease (13), and

antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis

(16). It has been suggested that the ability of intermediate

monocytes to present antigens and produce proinflammatory

cytokines may be involved in the pathogenesis of such diseases.
2.2 Tissue macrophage ontogeny

Tissue macrophages are derived from embryonic or adult

hematopoietic stem cell (HSC) progenitor cells under homeostatic

conditions (17). Representatives of tissue macrophages are

alveolar macrophages (lung), Kupffer cells (liver), osteoclast

(bone), microglia (central nervous system), and so on. They are

remarkably heterogenous in terms of their surface markers,

transcriptome, and epigenomes (18). Monocyte-derived cells

also contribute to the macrophage population in the tissues but

are mostly associated with a response to inflammatory conditions.

It seems more likely that local environmental imprinting is the

critical determinant for macrophage identity and function,

irrespective of their origin (18).

Recently, the ontogeny of arterial macrophages has been

revealed by an elegant method combining the fate-mapping

analysis and single-cell RNA sequencing (19). Yolk sac erythro-

myeloid progenitors (EMPs) migrate to the arterial adventitia

and give rise to adventitial macrophages. Surprisingly, with

aging, these adventitial macrophages decline in numbers, and

are not replenished by bone marrow-derived monocytes. During

vascular inflammation, bone marrow-derived monocytes are

recruited to the vascular site and differentiate into adventitial

macrophages, while EMP-derived macrophages show self-

renewal and contribute to tissue regeneration (19). It has been
Frontiers in Immunology 03
reported that, during infection, monocytes are educated to be

tissue-specific in the bone marrow by signals produced at the site

of inflammation (20), but it remains unclear whether this is the

case during vascular inflammation.
2.3 Macrophage activation and
polarization

The most well-described paradigm of macrophage

polarization is the M1/M2 polarization axis. M1 and M2

macrophages are also referred to as classically or alternatively

activated macrophages, respectively (21). M1 macrophages are

activated by the microbial products and proinflammatory

cytokines (IFN-g and/or LPS or TNFa) and characterized by

an excess production of proinflammatory cytokines (IL-1b, IL-6,
IL-12, IL-23), chemokines, nitric oxide, and reactive oxygen

intermediates. In contrast, M2 macrophages are activated by IL-

4, IL-10, IL-13, and express mannose receptor (CD206),

scavenger receptor A (CD204), and chemokine receptors. High

levels of IL-10 are produced by M2 macrophages (22). M2

macrophages are further classified into M2a (IL4/IL-13-

induced), M2b (LPS/immune complexes-induced), M2c (IL-

10/TGFb/glucocorticoids-induced), and M2d (tumor-

associated factors-induced) macrophages (23, 24).

However, macrophage activation is not that simple. It should be

noted that M1 and M2 macrophages are not completely distinct

subsets, but they are often overlapping; for example, in

atherosclerotic plaque, macrophages expressing both M1 and M2

markers do exist (25). Thus, consensus on how to define

macrophage activation in vitro and in vivo has not yet been fully

established. In this context, a group of scientists proposed the

updated nomenclature for macrophage activation and polarization

(26). In this proposal, they described a set of standards

encompassing three principles—the source of macrophages,

definition of the activators, and markers to describe macrophage

activation—with the goal of unifying experimental standards (26).

Technological advances, such as single cell RNA sequencing, may

reveal further new macrophage subsets in the future (27).
3 Pathogenic role of monocytes/
macrophages in large
vessel vasculitis

3.1 Giant cell arteritis (GCA)

3.1.1 Circulating monocyte population in GCA
An increased number of monocytes (monocytosis) is

observed in the peripheral blood of active patients with GCA,

and monocyte counts positively correlates with the C-reactive

protein (CRP) levels (28). This observation is in line with the
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report that monocyte-derived macrophages are dominant

among tissue macrophages during vascular inflammation (19).

Subpopulation analysis using flow cytometry demonstrated that

monocytosis in the peripheral blood was attributable to classical

monocytes and slightly intermediate monocytes (29).

Interestingly, treatment with corticosteroids suppress the

numbers of intermediate and non-classical monocytes, but the

number of classical monocytes is unaffected (29). It has been

reported that glucocorticoid-induced depletion of non-classical

monocytes is mediated by caspase-dependent apoptosis (30).

Although monocytes can differentiate into DCs, it has been

reported that the number of circulating DCs were comparable

between GCA patients and healthy individuals (31). Most

quiescent tissues contain resident DC population, but during

inflammation, monocyte-derived DCs compensate resident

population in the tissue (32). However, it remains elusive

whether this is the case in GCA.

3.1.2 Proinflammatory cytokines
It is no doubt that research on monocytes/macrophages in

GCA has dramatically progressed since the discovery of IL-6

(33). IL-6 acts on hepatocytes to produce acute phase proteins

such as CRP and serum amyloid A (34). It was found that

plasma IL-6 levels reflect the disease activity of GCA (35).

Although 60–80% of circulating monocytes in patients with

GCA can produce IL-6, the major source of IL-6 production

was activated macrophages in the vascular lesion (36). Tissue

macrophages are activated by IFN-g released from CD4+ T cells

(4), and IL-6 shifts naïve CD4+ T cell differentiation towards

Th17 cells, while inhibiting regulatory T cell (Treg)

differentiation (37). Other proinflammatory cytokines,

including IL-1b and TNFa, were also localized to tissue

macrophages and giant cells (38).

Treatment with corticosteroids diminish IL-1b and

IL-6 production from tissue macrophages (39). In contrast, IL-

6 receptor inhibitor tocilizumab (TCZ) increases plasma IL-6

levels in patients with GCA (40). TCZ may have little direct

effect on suppressing macrophage activation in the vascular

tissue and/or block clearance of released IL-6 through IL-6

receptor. However, TCZ reduces relapse and has a steroid-

tapering effect on GCA (9) maybe because it restores not only

the number of Tregs but also the function of these cells (41–43).

Thus, TCZ is widely recommended in the treatment guidelines

(44, 45).

IL-12, which is produced by M1 macrophages, is a

heterodimeric proinflammatory cytokine that favours the

differentiation of Th1 cells (46). Recently, it has been reported

that IL-12 promotes conversion from Th17 cells into IFN-g-
producing Th1-like cells, called “non-classic Th1 cells” (47, 48).

This transformation is governed by the transcription factor

Eomes (49). Indeed, IL-12 is highly enriched in the biopsy-

positive temporal arteries (50); therefore, IFN-g found in the
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vascular tissues may be derived from Th1 or non-classic Th1

cells. However, ustekinumab, an IL-12 and IL-23 inhibitor, failed

to show its efficacy in the treatment of GCA (51).

3.1.3 Proteolytic enzymes and proteinases
Monocytes/macrophages and giant cells not only produce

proinflammatory cytokines, but also contribute to tissue

destruction. They produce excess proteolytic enzymes and

proteinases such as collagenases, cathepsins, and matrix

metalloproteinase (MMP)-2 and MMP-9, disrupt external and

internal elastic membranes and cause vessel wall destruction

(52). Our recent work has revealed that MMP-9-producing

macrophages/giant cells are mainly located at the intima-

media border and monocyte-derived macrophages from

patients with GCA outperformed producing MMP-2 and

MMP-9 compared with those from healthy donors (53). Since

MMP-2 cleaves the propeptide from the pro-MMP-9 to release

enzymatically active MMP-9, this combination of MMPs allows

vascular lesions as an active MMP-9-rich environment. We

further demonstrated that, using an artificial basement

membrane system composed of collagen I and collage IV,

MMP-9 released from the circulating monocytes degrades

basement membrane and enables CD4+ T cell to invade into

blood vessel. This study also showed that, using an experimental

animal model of vasculitis, blocking MMP-9 was highly effective

to protect vascular structure and homeostasis, suggesting that it

may serve as a novel therapeutic option for large vessel

vasculitis (53).

3.1.4 Colony-stimulating factors
A recent report showed that most of the MMP-9-producing

macrophages were CD206 positive and induced by granulocyte

macrophage-colony stimulating factor (GM-CSF) (54).

Generally, GM-CSF is considered to induce M1 phenotype in

macrophages (55, 56), but it may induce M1 plus M2

phenotypes in GCA macrophages. GM-CSF, which is

produced by macrophages, T cells, myofibroblasts, and

endothelial cells in GCA-affected arteries (57), is expected to

be a promising therapeutic target in GCA in recent years.

Indeed, treatment of ex vivo cultured GCA arteries with the

anti-GM-CSF receptor antagonist mavrilimumab successfully

ameliorated vascular inflammation through reducing T cell

and macrophage infiltration and neoangiogenesis (57). Among

T cells, mavrilimumab specifically reduced Th1 cells, but not

Th17 cells. In addition, in a phase 2, randomised, double-blind,

placebo-controlled trial, mavrilimumab showed superiority to

placebo in the analyses of time to flare and sustained remission

for patients with GCA (58). Therefore, GM-CSF is not only a

macrophage differentiation factor, but is also fundamentally

involved in vascular inflammation.

In contrast, macrophage-colony stimulating factor (M-CSF),

which is generally considered to induce M2 phenotype in
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macrophages (59, 60), is shown to skew macrophages into

different phenotypes, namely folate receptor b (FRb)-positive
macrophages (54). M-CSF is mainly produced by CD206+/

MMP-9+ macrophages at the intima-media borders.

Collectively, it has been proposed that, at the initial stage of

GCA, infiltrated monocytes from the vasa vasorum are primed

by local GM-CSF and differentiate into CD206+/MMP-9+

macrophages. They migrate to media and media-intima

junction and promote tissue destruction, while stimulating

angiogenesis through IL-13Ra2 signaling (61). At the late

stage of GCA, CD206+/MMP-9+ macrophages often fuse to

form multinucleated giant cells and release M-CSF at the

intima-media borders. Multiple cytokines (TNF, IL-6, IFN-g,
IL-4, etc) and TLR2 are thought to be involved in the formation

of multinucleated giant cells, but the precise mechanism remains

unclear (6). M-CSF-skewed FRb+ macrophages produce high

concentrations of growth factors that activate myofibroblasts,

leading to luminal occlusion (54, 62) (Figure 2). Anti-M-CSF

antibodies have not been tested in patients with GCA so far.

3.1.5 Growth factors
Tissue macrophages produce growth factors such as

transforming growth factor b1 (TGFb1), platelet-derived

growth factors (PDGF), and fibroblast growth factors (FGF)

(63, 64). These growth factors are considered to induce an
Frontiers in Immunology 05
excessive fibroproliferative response leading to luminal

occlusion. TGFb1-expressing macrophages coproduce IL-1b
and IL-6 and exhibit a strong preference for localization in the

adventitia. Although not clearly proven, given the cytokine

profile and localization of TGFb1-producing macrophages, it

is likely that they emerge at the initial disease stage and are

activated by IFN-g released from Th1 cells (62) (Figure 2). In

contrast, FRb+ macrophages at the media-intima junction

emerge at the late disease stage, and produce PDGF, which is

closely associated with concentric intimal hyperplasia (54).

In addition, the number of newly formed blood vessel in the

adventitia is associated with the production of vascular

endothelial growth factor (VEGF), which is localized to tissue

macrophages at the media-intima junction (65). VEGF

production is augmented by IL-6 (66) and upregulates a

NOTCH ligand, Jagged1, on the innermost microvascular

endothelial cells. Jagged1 in turn stimulates NOTCH1 receptor

on CD4+ T cell, skewing CD4+ T cell differentiation toward Th1

and Th17 (67). Therefore, anti-VEGF therapy may help to

inhibit not only neoangiogenesis but also maldifferentiation of

CD4+ T cells (68).

3.1.6 Chemokines and chemokine receptors
Alteration in systemic and local chemokine production and

chemokine receptor expression has been reported (Figure 3).
B C DA

FIGURE 2

Functionally heterogenous macrophages in giant cell arteritis. Vascular lesion of giant cell arteritis contains a variety of macrophage subsets,
each with a characteristic distribution. (A) In non-inflamed artery, vascular dendritic cells (vasDCs) reside in the media-adventitial border. (B) In
the initial phase, vasDCs initiate inflammatory cascade, and recruits T cells and monocytes through chemokines. Infiltrated monocytes are
differentiated into CD206+MMP-9+ macrophages by GM-CSF released from activated T cells. TGFb1-producing macrophages are also present
in the adventitia. (C) In the early phase, CD206+MMP-9+ macrophages migrate to the media and the media-intima border. Adventitial
inflammation is increased. (D) In the late phase, CD206+MMP-9+ macrophages often fuse to form multinucleated giant cells and produce M-
CSF, which gives rise to FRb+ PDGF-producing macrophages at the media-intima border. Multiple cytokines and TLR2 are thought to be
involved in the formation of multinucleated giant cells. VEGF-producing macrophages are preferentially located in the tunica media and intima.
It should be noted that these macrophage subsets are not completely distinct. FRb, folate receptor b; GM-CSF, granulocyte macrophage-colony
stimulating factor; IFN, interferon; M-CSF, macrophage-colony stimulating factor; MMP, matrix metalloproteinase; PDGF, platelet-derived
growth factor; TGFb1, transforming growth factor b1; VEGF, vascular endothelial growth factor.
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Among them, C-X-C motif Chemokine Ligand 9 (CXCL9),

CXCL10, and CXCL11 levels are elevated in the serum of

GCA patients (69). These chemokines are produced by tissue

macrophages in response to IFN-g (70) and recruit Th1 cells

through C-X-C Motif Chemokine Receptor 3 (CXCR3). C-C

motif Chemokine Ligand 3 (CCL3), CCL4, and CCL5 are also

overproduced from macrophages and recruit T cells through

CCR5 (71). Not only T cells but also monocytes are recruited by

chemokines. For example, classical monocytes are recruited into

vascular tissue by the CCL2-CCR2 axis (72), while non-classical

monocytes depend on the CX3CL1-CX3CR1 axis (29). These

observations suggest that tissue macrophages attract T cells,

particularly Th1 cells, and monocytes/macrophages through

multiple chemokines, amplifying vascular inflammation. In

addition, a recent report has demonstrated that CXCL9

attracts CXCR3+ memory B cells, and CXCL13 recruits

CXCR5+ memory B cells into vascular tissue, respectively (73).

Notably, not only tissue macrophages but also vascular DCs

produce chemokines such as CCL19 and CCL21, rendering

vascular tissue as a chemokine-rich microenvironment (74).

Further study is needed to test whether blocking the

chemokines and chemokine receptors could have a

therapeutic potential.

3.1.7 Costimulatory and coinhibitory
ligand expression

Not only costimulatory molecules like CD28, but also

coinhibitory molecules, such as programmed death 1 (PD-1),
Frontiers in Immunology 06
are expressed on T cell surface, and the clinical significance of

blocking the PD-1/programmed death ligand 1 (PD-L1)

interaction has become clear in cancer immunotherapy.

Surprisingly, vascular DCs residing at the media-adventitial

boarder have defective PD-L1 expression, which is critically

involved in the pathomechanisms of GCA (75). PD-L1-

deficient DCs have an increased potential to activate T cells

and polarize naïve CD4+ T cell differentiation into Th1, Th17,

and IL-21-producing T cells (76). Monocytes/macrophages

derived from patients with GCA also had decreased expression

of PD-L1 (70), although the significance of the deficient

expression requires further elucidation. Taken together, PD-L1

immunoinhibitory mechanism to inhibit T cell hyperactivation

is defective in myeloid lineage on vascular lesion in GCA. It is

necessary to elucidate the mechanism of PD-L1 expression on

vascular DCs and tissue macrophages. Also, testing the effect of

PD-L1 signal-inducing agents, such as fusion proteins linking

the extracellular domain of PD-L1 to the Fc portion of

immunoglobulin (PD-L1 Fc), is warranted.
3.2 Takayasu arteritis (TAK)

Unlike GCA, it is difficult to perform biopsies of affected

lesions in TAK, and only specimens that have undergone surgery

are used for research. In addition, large amounts of steroids are

often administered prior to surgery, making it rare to obtain an

active untreated vascular sample. Thus, the pathogenesis of TAK
FIGURE 3

Macrophages/giant cells are professional chemokine producers in giant cell arteritis. Macrophages/giant cells in the vascular lesion of giant cell
arteritis actively engage in chemokine production. The released chemokines amplify vascular inflammation by mobilizing cells that express the
corresponding chemokine receptors. CXCL9, 10, and 11 recruit Th1 cells and memory B cells through CXCR3 receptor on the cell surface.
CCL3, 4, and 5 recruit T cells expressing CCR5. CCL2 recruits CCR2-expressing classical monocytes. CX3CL1 mediates non-classical monocyte
mobilization through CX3CR1 receptor. CCL, C-C motif Chemokine Ligand; CXCL, C-X-C motif Chemokine Ligand; CXCR, C-X-C Motif
Chemokine Receptor.
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has not been fully elucidated. Although such bias is undeniable,

M1 macrophages are dominant in aortic lesions of TAK (77, 78),

which may be linked to excess IFN-g produced by CD4+ T cells,

CD8+ T cells, and natural killer cells (79). In vitro production of

MMP-2 and MMP-9 in monocyte-derived macrophages is

mildly increased compared with that from healthy donors

(80). Steroid treatment transforms M1 macrophages into M2

macrophages and diminishes CCL2-express ing M1

macrophages (78). Thus, M2 macrophages dominate in treated

aortic lesion and promote tissue remodeling with an excess

fibrotic response.

Recently, single cell RNA sequencing was applied to examine

the transcriptome of peripheral blood mononuclear cells from

TAK patients (81). The study demonstrated that CD14+

monocytes were increased, and gene expressions involved in

oxidative stress were enriched. These monocytes may serve as a

reservoir of tissue macrophages.
4 Discussion

We have reviewed the role of monocytes/macrophages in

large vessel vasculitis, particularly in GCA. Of note, functionally

distinct macrophage subsets have been increasingly identified in

GCA (62), although there were no studies comparing

monocytes/macrophages from cranial GCA and those from

large vessel GCA. Also, it becomes clearer that circulating

monocytes, rather than embryonic progenitor-derived
Frontiers in Immunology 07
macrophages, cause vascular inflammation by migrating and

differentiating into the distinct subsets of macrophages, although

it has not yet been fully investigated in human. In particular,

since GCA only affects people over the age of 50, the number of

tissue resident macrophages in the vasculature may be

decreased. Furthermore, low grade inflammation caused by

aging, which is called inflammaging, inevitably affects

monocyte/macrophages, T cells, and vascular cells both in the

circulation and in the vascular tissue (82, 83). Cellular

senescence of immune cells is often linked to the senescence-

associated secretory phenotype, which could be implicated in the

pathomechanisms of GCA (62, 84).

Considering disease mechanisms mediated by monocytes/

macrophages in GCA, inhibiting the migration of circulating

monocytes or inhibiting their differentiation and function in the

tissues may be therapeutic strategies targeting macrophages. The

possible therapeutic options in GCA are summarized in Figure 4.

Blockade of the chemokine and chemokine receptor interaction

attracting circulating monocytes and T cells could be the

preferential therapeutic option based on the pathomechanisms.

However, it is speculated that by the time symptoms appear, a

significant number of monocytes have already been recruited to

the vascular tissues, and differentiated macrophages are

refractory to the current therapies. Therefore, it is unclear to

what extent chemokine blockade is effective. In fact, many

attempts have been made to treat rheumatic diseases by

blocking the chemokine-chemokine receptor interaction, but

many of the results have been disappointing so far (85).
FIGURE 4

Possible therapeutic strategies for giant cell arteritis targeting monocytes and macrophages. Monocytes/macrophages from patients with giant
cell arteritis have pleiotropic functions. Excess production of proinflammatory cytokines (IL-1b, IL-6, and TNFa), chemokines (CXCL9, 10, and
11), proteolytic enzymes (MMP-2 and MMP-9), colony stimulating factors (GM-CSF and M-CSF), growth factors (VEGF, FGF, PDGF) could be
targeted by the corresponding inhibitors. Immune dysregulation by defective PD-L1 expression on monocytes/macrophages could be corrected
by PD-L1 Fc. Janus kinase (JAK) inhibitors may directly suppress the function of monocytes/macrophages. CXCL, C-X-C motif Chemokine
Ligand; CXCR, C-X-C Motif Chemokine Receptor; FGF, fibroblast growth factor; GM-CSF, granulocyte macrophage-colony stimulating factor;
M-CSF, macrophage-colony stimulating factor; MMP, matrix metalloproteinase; PDGF, platelet-derived growth factor; PD-L1, programmed
death ligand 1; VEGF, vascular endothelial growth factor.
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Proinflammatory cytokines contribute profoundly to the

exacerbation of vasculitis. The GiACTA trial have successfully

demonstrated that blocking the IL-6 signal with TCZ suppresses

flare of GCA and has steroid-sparing effect (9). However, as

mentioned, recurrence after the discontinuation or even during

TCZ therapy remains common. In addition, blocking TNFa
with infliximab yielded disappointing results for GCA (86).

Moreover, anakinra, an IL-1 receptor antagonist, has been

shown the efficacy against GCA in case series (87), but its

efficacy and safety have not fully been confirmed in the large-

scale trials. Therefore, accumulating evidence shows that single

cytokine inhibition may not be sufficient to completely diminish

vascular inflammation.

As we have seen, treatment that suppresses a single

therapeutic target, such as chemokines, proinflammatory

cytokines, proteolytic enzymes, or growth factors, may not be

sufficient for treating GCA. A combination of these or agents

that inhibits the multiple cellular signaling, such as Janus

kinase (JAK) inhibitors, may be effective (88). Multiple

cytokines which are implicated in the pathomechanisms of

GCA, such as IL-6, IFN-g, IFN-a, GM-CSF, utilize the JAK-

signal transducer and activator of transcription (STAT)

pathway (89). Indeed, increased activities of the JAK-STAT

pathway has been reported both in the vascular lesions and in

circulating T cells (90, 91). In experimental animal model of

large vessel vasculitis, JAK inhibitors not only reduced T cell

infiltration and T cell-derived cytokine production, but also

inhibited macrophage infiltration and growth factor

production, resulting in reduced neoangiogenesis and intimal

hyperplasia (90).

CD4+ T cells from patients with TAK are also dependent on

the JAK-STAT pathway (92). In addition, genome-wide

association study has demonstrated that IL-12B is an

susceptibility gene in TAK (93) and risk allele of IL-12B was

associated with vascular damage in TAK (94). Since IL-12

utilizes the JAK-STAT pathway as a downstream signaling,

JAK inhibitors could be promising agents for TAK as well

(92, 95).

Finally, PD-L1 deficiency seems not specific to GCA

monocytes. Monocytes derived from ANCA-associated

vasculitis have the same defect (96). Lower PD-L1 expression

leads to increased stimulatory capacity of monocytes, thus

leading to overactivation of CD4+ T cells. The defective PD-L1

expression was due to an enhanced lysosomal degradation of

PD-L1 (96). As the efficacy of PD-L1 Fc has been shown in a

mouse model of lupus (97), PD-L1 Fc may induce negative

signals to overactivated T cells in vasculitis and ameliorate

vascular inflammation. Alternatively, agents that inhibit PD-L1

degradation in lysosomes may have therapeutic potentials.
Frontiers in Immunology 08
In conclusion, recent advances in the research have clarified

the origin and various roles of monocytes/macrophages in

vasculitis. Drugs that inhibit multiple therapeutic targets

simultaneously, rather than a single target, or agents that block

multiple cellular signaling may be effective; however, verification

of the efficacy and the safety of such drugs is essential.
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