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Immune recognition by T lymphocytes and natural killer (NK) cells is in large part
dependent on the identification of cell surface MHC molecules bearing peptides
generated from either endogenous (MHC I) or exogenous (MHC II) dependent
pathways. This review focuses on MHC I molecules that coordinately fold to bind self
or foreign peptides for such surface display. Peptide loading occurs in an antigen
presentation pathway that includes either the multimolecular peptide loading complex
(PLC) or a single chain chaperone/catalyst, TAP binding protein, related, TAPBPR, that
mimics a key component of the PLC, tapasin. Recent structural and dynamic studies of
TAPBPR reveal details of its function and reflect on mechanisms common to tapasin.
Regions of structural conservation among species suggest that TAPBPR and tapasin
have evolved to satisfy functional complexities demanded by the enormous polymorphism
of MHC I molecules. Recent studies suggest that these two chaperone/catalysts exploit
structural flexibility and dynamics to stabilize MHC molecules and facilitate
peptide loading.

Keywords: Antigen presentation, peptide loading complex (PLC), tapasin, TAP binding protein, related (TAPBPR),
major histocompatibility complex (MHC), protein folding, structural immunology
INTRODUCTION

Classical experiments indicate that proteins arrive at their stable three-dimensional conformation at
their lowest Gibbs free energy, achieved as a result of their primary amino acid sequence and their
interactions with solvent (1, 2). Nevertheless, the potential timescale of searching the myriad possible
conformations of a protein as noted by Levinthal (3, 4) raised a conundrum solved only partially by
the recognition of the contribution of protein nucleation regions and folding landscapes (5, 6) to the
descent along an energy funnel to achieve a final stable structure (7). More recently, the so-called
“protein folding problem” has been redefined in terms of the practical utility of predicting a protein’s
three-dimensional structure from its primary amino acid sequence. This computational boundary is
now being overcome by the concurrence of large and ever increasing structural and sequence
databases with innovative artificial intelligence approaches by DeepMind and its implementation of
AlphaFold2 (8). However, by contrast to the apparent success of structure prediction of individual
proteins in recent years, our understanding of the rules that govern protein interactions remain
org April 2022 | Volume 13 | Article 8597821
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rudimentary. To paraphrase Donne (9), no protein is an island.
During the course of its lifetime, from biogenesis on the ribosome
to destruction by the proteasome, a single protein molecule must
interact with a multitude of partners. These include chaperones
that aid its folding and prevent aggregation, enzymes that add
post-translational modifications, transport proteins that escort it
to its destinations, the substrate on which it performs its biological
function, and the ubiquitinylating enzymes that target it for
destruction. The evolutionarily conserved, and crucially
important, antigen presentation pathway in vertebrates provides
a valuable model system in which to investigate these various
events in the life of a protein

Reflected in the pathways that have evolved to permit coassembly
of antigenic peptides with their glycoprotein antigen presenting
elements, the antigen presentation pathways that govern the
biosynthesis, folding, assembly, peptide loading, peptide exchange,
and cell surface expression of peptide/protein complexes are crucial
to the immune response to tumors, viruses, and a variety of cellular
pathogens (10–12). These pathways are based on the major
histocompatibility complex (MHC) encoded class I (MHC I) and
class II (MHC II) proteins, and their associated molecules. In this
speculative review, we will focus on the classical MHC I molecules,
HLA-A, -B, and -C in the human andH2-K, -D, and -L in themouse,
obligate cell surface intrinsic membrane proteins, that serve as
recognition elements for T cell receptors (TCR) expressed on CD8
+ T lymphocytes as well as ligands for various receptors on natural
killer (NK) cells and other hematopoietic effector cells.
MHCMOLECULES, NOT ALL ARE THE SAME

The most remarkable characteristic of classical MHC I molecules
is that they are highly polymorphic. That is, the number of
allelomorphic variants in the human population, encoded at the
three major genetic loci, HLA-A, -B, and -C, is enormous,
catalogued by the IMGT database to be greater than 22,000 at
current count (13). These are cell surface expressed type I
membrane glycoproteins that are complexed with an essentially
monomorphic light chain, b2-microglobulin (b2m). In addition,
each MHC I molecule of a given cell binds a multitude of peptides
derived from an endogenous MHC I pathway, thus generating a
large repertoire of surface molecules available for interaction with
immune cell receptors. The puzzles of course, are how do all these
distinct MHC I molecules fold, how does each one form a stable
ternary complex bound to each of thousands of potential peptides,
and how does the biological system select for the most
thermodynamically stable peptide/MHC I complexes for display
at the cell surface.
THE PEPTIDE LOADING COMPLEX –

A MOLECULAR MACHINE FOR MHC I
ASSEMBLY AND PEPTIDE LOADING

Several decades of experimentation have identified the peptide
loading complex (PLC), a multimolecular dynamic machine that
Frontiers in Immunology | www.frontiersin.org 2
sequentially stabilizes the MHC I heavy chain to fold with its
light chain b2m, then to access and bind antigenic peptides
delivered to the lumen of the endoplasmic reticulum, to
exchange and evaluate peptides to identify the best binders, to
pass quality control, to access the cis Golgi, and to proceed from
there to the cell surface (10–12). Major insights included the
identification of the roles of the chaperone/lectins calnexin and
calreticulin that monitor the sequential glycosylation of the
MHC I heavy chain. Further studies recognized the importance
of the transporter associated with antigen processing (TAP) 1
and 2, an ATP-dependent heterodimer that delivers peptides
from the proteasome-generated cytoplasmic pool to the ER, and
the crucial function of tapasin, an ER protein that bridges TAP to
the nascently folding/peptide binding MHC I/b2m complex, and
an oxidoreductase, ERp57. Additional steps in the quality control
of peptide-loaded MHC I include glycan-dependent interactions
(14, 15). These steps of the classical peptide loading pathway are
illustrated in Figure 1.

Visualization of structural aspects of tapasin function was first
achieved in a classical paper by Dong, Wearsch and colleagues
(17), which reported the X-ray crystallographic structure of
human tapasin bound to ERp57. This work, complemented by
mutational analysis of MHC I molecules and study of MHC I
polymorphic variants, provided several molecular models for
how tapasin interacts with MHC I, revealing how it might
stabilize partially folded MHC I and encourage peptide
exchange (18–22).

In the absence of detailed structural information on the
nature of the tapasin/MHC I association, a cryo-electron
microscopic approach was taken by Blees et al, who established
a three-dimensional view, albeit at modest resolution (7.2 Å for
the full complex, 5.8 Å for the editing module). This established
the relationships between the components of the PLC: b2m,
MHC I heavy chain, TAP, tapasin, ERp57, and calreticulin, and
confirmed the stoichiometry previously established by pull-down
experiments (23, 24) (Figure 2). Thus, the full PLC was
visualized as containing one TAP1/2 heterodimer, with each
chain flanked by an MHC I/b2m/ERp57/calreticulin complex
(see Figure 2). Visualization of peptide was difficult at
this resolution.
TAPBPR A SURROGATE PLC, REVEALS
FURTHER DETAILS OF CHAPERONE/
CATALYST FUNCTION

As the complete map of the human genome became available,
several groups identified genetic regions paralagous to the
extended major histocompatibility complex (25, 26) and Teng
et al. identified a gene encoding a tapasin-like molecule (27).
Studies of the encoded protein languished until Boyle et al. (28)
demonstrated an interaction between TAPBPR and MHC I,
independent of other components of the PLC. Further studies
not only confirmed the potential for MHC I association, but
also established both chaperone and catalytic activities of
April 2022 | Volume 13 | Article 859782
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TAPBPR that mimicked tapasin. Although the precise
biological necessity for TAPBPR remains unclear (29), some
novel functions, including control of trafficking to the UDP-
glucose:glycoprotein glucosyltransferase quality control
pathway have been observed (30). Additionally, TAPBPR
interactions with MHC I are quantitatively dependent on the
glycosylation status of the MHC I molecule (31, 32). In
addition, TAPBPR distinguishes different MHC molecules
Frontiers in Immunology | www.frontiersin.org 3
based on their polymorphism (33, 34). Recently, exploitation
of the catalytic peptide exchange functions of TAPBPR have
given rise to new technologies facilitating the production of
recombinant MHC I molecules (35–37).

Structural studies of TAPBPR have offered insight not only
into its own function, but also to that of the tapasin homolog
(38–40). Initial low resolution small angle X-ray scattering
analysis (34) comparing recombinant tapasin with TAPBPR
A B C

FIGURE 2 | Cryo-EM maps of the complete protein loading complex reveal spatial organization of its components. (A) 5.8 Å cryo-EM map of the PLC
editing module (EMD-3906) with superposed X-ray -derived models (PDB-6ENY) as described by (23). (B) PLC rotated approximately 30° to center the
b2m/MHC H chain module. (C) 7.2 Å cryo-EM map of the pseudosymmetrical PLC module, with the left side editing module colored and the right side one
illustrating by map surface alone. Map and models with generated with ChimeraX. MHC H chain is grey, b2m is pink, calreticulin is green, tapasin is pale
blue, and ERp57 is tan.
A

B

FIGURE 1 | Pathways of MHC-I peptide loading. (A) Classic MHC-I peptide loading pathway is illustrated. Components of the pathway [i.e. the peptide loading
complex (PLC)] include the chaperones calnexin, calreticulin (CRT), ERp57, tapasin, and the TAP1/2 peptide transporter. Peptides are indicated. Additional quality
control through the UGT pathway is described in the text. (B) Peptide exchange with the chaperone TAPBPR are indicated. Lower affinity peptides are replaced by
higher affinity peptides while the MHC I molecules are stabilized by either tapasin or TAPBPR. When high affinity peptide is bound, the MHC I complex dissociates
from the chaperone and proceeds to the cell surface. [This figure is a modification of one published elsewhere (16)].
April 2022 | Volume 13 | Article 859782
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revealed their structural similarity as predicted by their shared
amino acid sequences (41, 42).

These results with TAPBPR suggested that higher resolution
structure determination of TAPBPR might offer further insight
into the mechanism by which TAPBPR, and by inference
tapasin, function in their dual roles as chaperones and
catalysts. Two reports of X-ray structures of MHC I/TAPBPR
complexes were reported at the same time—one of a complex of
the mouse MHC I molecule H2-Db complexed with human
TAPBPR (39), and another of the mouse H2-Dd with human
TAPBPR (38). The models derived in both laboratories are
remarkably similar (rmsd for the superposition of the
TAPBPR/MHC I/b2m complexes was 1.158 Å for 3385 atoms).
The H2-Db complex was generated with H2-Db emptied of a
labile peptide by photolysis, and the H2-Dd complex was
generated with a covalently-linked truncated peptide.
Nevertheless, in both structures, no peptide was visualized.
(For the covalent peptide/H2-Dd complex, it is presumed that
this is due to structural heterogeneity or mobility of the peptide
moiety.) The two structures were in remarkable agreement,
with the exception that a peptide loop representing residues
K22-D35 of TAPBPR was modeled for the H2-Db complex,
Frontiers in Immunology | www.frontiersin.org 4
while in the absence of reliable electron density in this region,
no model was built for the H2-Dd/TAPBPR complex (38).
Critical assessment of whether there is solid evidence for such
a loop has been presented elsewhere (43, 44). It is also relevant
to consider the alignment of a selection of TAPBPR sequences
from several species as compared with those of tapasin
(Figure 3). Notably, the K22 -D35 loop is significantly longer
in all TAPBPR molecules as compared with tapasin (labelled
here, TAPBP) molecules.

Indeed, several experimental lines of indirect evidence suggest
a competitive role for this loop in protecting the peptide binding
groove of the MHC during the process of binding and folding.
These include mutational analyses of the loop in TAPBPR
(47, 48) and structural studies of truncated peptides complexed
with MHC molecules (49). However, more recent nuclear
magnetic resonance studies suggest that the TAPBPR loop
functions dynamically, forming a lid that modulates the access
of peptides to the peptide binding groove (50–52). Other
interactions of TAPBPR with the exterior aspects of the
peptide binding domains of the MHC I a1 and a2 domains as
well as the interaction of the membrane proximal IgC-like
domain of TAPBPR with the membrane proximal a3/b2m unit
FIGURE 3 | Structure based amino acid sequence alignment of TAPBPR and tapasin (TAPBP) sequences from several different species. Sequences were aligned with
ClustalW in MacVector 18.0 and further illustrated with ESPript on the ENDscript server (57). Top and bottom sequences and secondary structure elements are taken
from TAPBPR (5WER) and tapasin (TAPBP) (3F8U) respectively. Sequences of TAPBPR_or (orangutan-Pongo abellii-Q5R8H1), TAPBPR_mo (mouse-Mus musculus-
Q8VD31), TAPBPR_ra (rat-Rattus novegicus-D4A6L1), and TAPBPR_ze (zebrafish-Danio rerio-X1WBD6), as well as TAPBP_gr (gorilla-Chlorocebus aethiops-Q6PZD2),
TAPBP_do (dog-Canis lupus familiaris-Q5TJE4), TAPBP_ch (chicken-Gallus gallus-Q9R233), and TAPBP_ze (zebrafish-Danio rerio-Q1LUU3) are provided.
April 2022 | Volume 13 | Article 859782
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of the MHC I molecule are evidence of a global disruption of the
peptide binding groove (16, 38, 43).

These experimental findings on TAPBPR are complemented
by molecular dynamics simulations of tapasin (44), MHC I
molecules (53–55), and of a model of the entire PLC (56).
These studies indicate that the chaperone/catalysts exhibit
considerable flexibility to accommodate the structural plasticity
of a wide range of peptide/MHC I complexes. As function is
embodied in structure, amino acid sequence relationships over
evolutionary time may be expected to reveal regions of tapasin
or nTAPBPR that are conserved because of conserved function.
In Figure 4 we display the surface of X-ray structures of tapasin
(Figure 4A) and TAPBPR (Figure 4B) colored according to
their evolutionary variability as calculated with Consurf (45,
46). Although considerable variability may be noted, high
degrees of conservation are observed in the region of the
amino terminal domain of tapasin/TAPBPR that contacts
MHC I (Figure 4C), as well as in the membrane proximal
IgC domain of these molecules.
STRUCTURE PREDICTIONS
ACROSS SPECIES

The recent success of the application of AlphaFold2 to protein
structure prediction (8, 58, 59) compels us to exploit this
Frontiers in Immunology | www.frontiersin.org 5
powerful approach to explore likely three-dimensional
structures of several additional tapasin and TAPBPR
molecules. In Figure 5, we display the experimentally
determined models of human TAPBPR (Figure 5A) and
human tapasin (Figure 5G) as compared with computationally
derived models for h-TAPBPR (Figure 5B) and h-tapasin
(Figure 5H) along with examples from other species (TAPBPR
- 5C Pongo abelli (Sumatran orangutan); 5D Rattus novegicus; 5E
Mus musculus; and 5F Danio rerio). Tapasin comparisons are
shown as – 5I Chlorcebus aethiops (green monkey); 5J Rattus
novegicus; 5K Mus musculus; and 5L Danio rerio. The overall
structures as expected are remarkably similar, revealing the
overall N terminal and IgV domain (from the N terminus to
TAPBPR residue 278) and the distinctive C terminal IgC domain
(TAPBPR residue 279 to C terminus). Structural distinctions are
evident in the amino acid sequence alignment of Figure 3. The
K22-D35 loop of TAPBPR (as compared to the homologous
D12-L18 loop of tapasin) not observed well in the TAPBPR
electron density map, is modeled by AlphaFold2 as highlighted
by the red dashed oval in Figures 5A–F. Residues T106-K111,
another region of poor electron density in h-TAPBPR, is
modeled as a-helix by AlphaFold2 (Figures 5B–F).

The Alphafold2 analysis of several tapasin structures reveals
modeling for tapasin residues L26-R37 (aligned with L38 to R59
of TAPBPR, Figure 4), which was not built into the original
tapasin structure (3F8U) because of poor density. AlphaFold2
also recognizes a conserved a-helix (A83 to T91), unique to
A B C

FIGURE 4 | Surface representations of tapasin (A), TAPBPR (B), and MHC/TAPBPR complex (C) reveal regions of conservation and variability. PDB models of
tapasin (3F8U) and TAPBPR (5WER) were submitted to the Consurf server (45, 46) to assess the evolutionary conservation of the amino acids of the indicated
molecules. Color scheme for the degree of variability is shown.
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tapasin, distinct from the corresponding short loop (Q105-T108)
of TAPBPR a region poorly defined in TAPBPR. The conserved
loop E72-G101 of tapasin is longer than E98-A114 of TAPBPR
(see comparison in Figure 6).
VIEWING THE FUTURE

The importance of understanding the mechanistic details of
peptide loading of MHC I molecules, not only with respect to
the obvious applied utility of appreciating the cellular evolution
Frontiers in Immunology | www.frontiersin.org 6
of immunevasion in tumorigenesis (60–62), but also with respect
to appreciating the interplay between basic aspects of the protein
folding problem, peptide loading, and structure prediction
cannot be overemphasized. In this brief review we highlight
how structural information—derived both experimentally and
computationally—complements our understanding of
fundamental aspects of immune function. With improved
experimental methods [crystallographic, electron microscopic
(both cryogenic and tomographic)], expansion of available
sequence and structural databases, and remarkable advances in
artificial intelligence and computational approaches, we may
anticipate not only a host of solutions to vexing, long-standing
A B D

E F

G IH J

K L

C

FIGURE 5 | Structures predicted by AlphaFold2 preserve features of experimentally derived structures. The AlphaFold2 Protein Structure Database (https://
alphafold.ebi.ac.uk) was queried for TAPBPL (alternate designation for TAPBPR) or TAPBP (for tapasin) and the resulting structural models were superposed on
experimentally determined structures for TAPBPR (5WER chain C) (A) and tapasin (3F8U chain B) (G) as indicated. (B) represents the predicted human TAPBPR. (C)
Pongo abelii (Sumatran orangutan). (D) Rattus norvegicus. (E) Mus musculus. (F) Danio rerio. Panels (G–L) represent tapasin (TAPBP) structure (3F8U chain B) (G),
and models of human (H), Chlorocebus aethiops (I), Rattus novegicus (J), Mus musculus (K), and Danio rerio (L). As described in the text, loops that were not
modeled based on X-ray data but were modeled by AlphaFold2 are indicated by dashed ovals.
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questions, but may even look forward to deeper and more
exciting questions that result from this enlightenment.
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