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Although computational structure prediction has had great successes in recent years, it
regularly fails to predict the interactions of large protein complexes with residue-level
accuracy, or even the correct orientation of the protein partners. The performance of
computational docking can be notably enhanced by incorporating experimental data from
structural biology techniques. A rapid method to probe protein-protein interactions is
hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS has been
increasingly used for epitope-mapping of antibodies (Abs) to their respective antigens
(Ags) in the past few years. In this paper, we review the current state of HDX-MS in
studying protein interactions, specifically Ab-Ag interactions, and how it has been used to
inform computational structure prediction calculations. Particularly, we address the
limitations of HDX-MS in epitope mapping and techniques and protocols applied to
overcome these barriers. Furthermore, we explore computational methods that leverage
HDX-MS to aid structure prediction, including the computational simulation of HDX-MS
data and the combination of HDX-MS and protein docking. We point out challenges in
interpreting and incorporating HDX-MS data into Ab-Ag complex docking and highlight
the opportunities they provide to build towards a more optimized hybrid method, allowing
for more reliable, high throughput epitope identification.
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GRAPHICAL ABSTRACT |

Tran et al. Modeling Ab-Ag Complexes From HDX-MS
INTRODUCTION

The structural characterization of Ab-Ag interactions has
become increasingly important throughout the last decade.
The affinity and specificity of monoclonal Abs make them
very effective medical therapies and the top growing drug
classes in the past few years (1–5). As a result, there is a
ris ing need for enhanced bioanalytical methods to
characterize the structural basis of Ab-Ag recognition.
Correct identification of critical residues for Ab engineering
informs Ab engineering to improve its affinity and specificity or
binding breadth for therapeutic applications and Ag design to
produce prophylactic or therapeutic vaccines for disease
prevention (6–9).

Methods that can rapidly map epitopes play a crucial role in
guiding early-stage Ab development and provide critical
information for early decision making and Ab selection.
Nevertheless, this task remains challenging (10). Existing
Frontiers in Immunology | www.frontiersin.org 2
epitope mapping methods, such as electron microscopy (EM),
X-ray crystallography, bio-layer interferometry, and site-directed
mutagenesis can be expensive, have limited-throughput, and still
might not capture the binding interface of Ab-Ag complexes (7).
Some of these methods only recognize linear epitopes, while 80-
90% of Ab-Ag interactions have at least one conformational
epitope (11, 12).

Computationally, Ab-Ag complexes can be predicted using
protein-protein docking. The challenges that come with accurate
prediction of Ab-Ag complexes are two-fold: the sampling
problem where too many potential binding interfaces need to
be explored, and the scoring problem where the native model
must be accurately ranked and chosen from a big pool of
generated outputs. The integration of experimentally derived
information at the sampling and scoring stage of docking has
been shown to yield more accurate models by focusing the
potential sampling conformations and distinguishing correct
predicted models from the rest (13, 14).
May 2022 | Volume 13 | Article 859964
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HDX-MS is a powerful technique used increasingly to study
protein-protein interactions. It can be combined with
computational protein modeling protocols to produce high-
resolution near-native models. In this review, we will discuss
how HDX-MS has been applied to map Ab-Ag interactions and
delineate the limitations of the HDX-MS experiment and data
interpretation. We will emphasize the limitations that
computation has been unable to resolve fully, including the
simulation of HDX-MS data from protein atomic structure as
well as the lack of quantitative restraints, inaccurate data
interpretation, and non-optimized scoring functions for the use
of HDX-MS data during protein-protein docking. Our specific
interest lies in employing HDX-guided computational structure
prediction to model Ab-Ag complexes.
HDX-MS OVERVIEW: FUNDAMENTALS,
APPLICATIONS, AND ADVANTAGES AS
AN EPITOPE MAPPING TOOL

HDX-MS measures the change in mass of a protein after its
exposure to deuterated solvent, resulting from the isotopic
exchange between protein backbone amide hydrogens and
deuterium (15–18). To measure deuterium exchange for specific
peptides, the protein is labeled in the presence of D2O and
fragmented by proteolysis. The backbone amide hydrogens free
of hydrogen bond and/or exposed to the solvent typically
exchange more rapidly compared to those participating in stable
hydrogen bond or shielded from the solvent. The rate and location
of deuterium incorporation provide fundamental biophysical
information about protein folding pathways, localized structural
conformation of proteins, and protein interactions.

While standard biophysical methods such as X-ray
crystallography provide static models of a protein, HDX-MS
offers valuable information about protein dynamics in addition to
its structure. HDX-MS is applicable to numerous study areas:
structural-function relationships, membrane proteins, protein
folding and refolding, impacts of post-translational modifications,
sequence change, or denaturation, and protein binding analysis (19,
20). More specifically, HDX-MS has been employed to examine
protein conformations, to study protein intrinsically disordered
regions (21), to study conformational dynamics after modification
(i.e., compare the dynamic change of H7 HA0 trimer and cleaved
HA trimer) (22), and to monitor protein folding pathways and
quality control [i.e., biopharmaceutical comparability studies
detected subtle conformational differences between protein
samples (20) or detected potential aggregation interfaces (23)].
HDX-MS is also performed to locate protein-ligand binding sites
as well as protein-protein interactions (18, 24).

HDX-MS has been increasingly applied as an epitope
mapping tool due to its many advantages (25, 26). The biggest
advantage of HDX-MS is that it is fast and cost-effective, thus
achieving a relatively high throughput. With the development of
HDX-MS data processing software and a routine workflow, an
epitope mapping study can be completed within one week in
ideal situations (27). Its rapid turnaround time can be beneficial
Frontiers in Immunology | www.frontiersin.org 3
in urgent public health situations when Ab profiling is necessary
for Ab therapeutic development (28). In addition, HDX-MS
requires minimal amounts of protein material (ml of the
sample at low mM concentrations), which renders it applicable
for the characterization of large panels of Ab-Ag complexes (19,
29). Furthermore, HDX-MS is unrestricted by the size of the
proteins because they are cleaved into peptic peptides prior to
deuterium uptake analysis. In fact, HDX-MS is one of few
technologies that can be employed to study the local
conformational dynamics of hemagglutinin, a major surface
protein of influenza viruses in solution, because these
complexes are very large (25). Generally, de novo structure
determination by nuclear magnetic resonance (NMR) is
challenging for proteins larger than 50 kDa. Hence, Ab-Ag
complexes are not good targets for traditional NMR studies
because most of them easily exceed 50kDa (30). All these
advantages make HDX-MS a very potent and rapid method to
study Ab-Ag complexes, as well as proteins that are unamenable
to other structural methods due to their intrinsic nature.
HDX-MS EXPERIMENTAL APPROACH
AND DATA PROCESSING FOR AB-AG
STRUCTURE PREDICTION

HDX-MS has been used successfully in the past to map Ab
epitopes to Ag surfaces (e.g., 14, 20, 22, 28, 31–36). A typical
HDX-MS epitope mapping experiment (Figure 1) is performed
on the Ag alone as a reference and then in complex with the Ab.
The protein samples are labeled in D2O buffer under equilibrium
conditions for each of several different time points. The binding
of an Ab reduces the solvent exposure of Ag residues residing in
the binding interface. This lowers the level of deuterium
incorporation into peptic fragments containing the affected
residues. Therefore, comparing HDX-MS profiles between Ab-
free and Ab-bound states enables the identification of potential
epitope peptides. Optionally, another set of labeling runs on the
Ab by itself is added for paratope mapping (Figure 1).

After labeling, quenching is performed immediately by a drop
in pH and temperature to minimize back exchange (37).
Denaturants and reducing agents (i.e., tris(2-carboxyethyl)
phosphine (TCEP)) are often added to the quench solution to
reduce disulfide bonds in Abs because they are highly protease-
resistant and will complicate MS data interpretation if left intact
(19, 38). After pepsin digest (typically on-column), proteolytic
peptides are desalted, separated on an ultra-high-performance
liquid chromatography (LC) column, and ionized by electrospray
ionization (ESI). The peptides’masses are measured. By comparing
the mass in the complex sample and in free sample for each
peptide, its deuterium incorporation is computed, revealing
potential peptides participating in the Ab-Ag interface (19).

Overall, the output of a conventional HDX-MS experiment is
the level of deuterium uptake of each individual peptide at each
labeling time point, accumulated by amide groups constituting
that peptide. In most epitope mapping studies, the exchange rate
of each peptide is averaged over all its amide groups, compared
May 2022 | Volume 13 | Article 859964
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between the complex state and free state, and mapped onto the
Ag/Ab structure if available (14, 20, 22, 31–35). These peptide-
resolution HDX-MS data preclude quantitative analysis and
identification of residue interactions between Ab and Ag (39).

HDX-MS provides the most comprehensive understanding of
Ab-Ag interactions when combined with other structural
Frontiers in Immunology | www.frontiersin.org 4
techniques such as chemical-crosslinking with MS (XL-MS),
cryo-electron microscopy (cryo-EM), or X-ray crystallography.
XL-MS delivers information about the proximity of nearby
protein sites and the distances between specific residues due to
the identified inter-molecular cross-links. When combined with
HDX-MS, XL-MS increases the chance of identifying a protein-
FIGURE 1 | Overview of a typical workflow for an epitope/paratope mapping HDX-MS experiment. Separately, the Ag, Ab-Ag complex, and Ab are labeled in D2O
and incubated for varying lengths of time. The reactions are then quenched at low pH and low temperature. The protein samples are digested (typically with pepsin)
to generate peptide fragments. Peptide fragments from each sample are analyzed using LC-MS to identify mass differences at various time points. The D uptake
altered by binding enables identification of putative paratope and epitope peptides. Figure is adapted from (20).
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protein binding site, pinpoints the exact interacting residues, and
contributes explicit distance restraints for complex modeling.
Their integration allows for the generation of more precise, high-
confidence models of protein interfaces (13, 40).

HDX-MS offers valuable information about protein dynamics
and flexibility while standard biophysical techniques such as X-
ray crystallography and cryo-EM provide static structures of a
protein. As each approach brings forth unique information,
combining HDX-MS with either X-ray crystallography or cryo-
EM can complement one another and provides a more
comprehensive picture of protein interactions. The distinctive
ability of HDX-MS to capture conformational changes and
dynamics was highlighted in a recent protein interaction study
(41). Several promising sites for antibody neutralization on
SARS-CoV-2 spike protein were detected by HDX-MS and
would have been overlooked if investigators had relied only on
a snapshot of the protein complex from X-ray crystallography.

Employing both HDX-MS and cryo-EM, a study of the
interaction between transcription initiation factor sS and its
activator protein Crl revealed an allosteric structural change at
one site among all HDX-predicted binding sites (42). The
allosteric site would have not been discovered based on the
cryo-EM structure alone. Similarly, one of the HDX-predicted
binding sites would have been a false positive based on the HDX-
MS data alone. The combination of HDX-MS and cryo-EM
unveils information that is unattainable by each individual
technique. Besides distinguishing allostery, the benefits of this
combined approach were thoroughly reviewed by Engen and
Komives (43); examples of which include protein quality
control, protein folding, and the process of large complex
assembly and their mechanisms (43).
HDX-MS EXPERIMENTAL LIMITATIONS
COMPLICATE ACCURATE PREDICTION
OF RESIDUE-RESIDUE INTERACTIONS

Emerging as a potent epitope mapping technique, HDX-MS
comes, however, with several limitations. A brief introduction of
Frontiers in Immunology | www.frontiersin.org 5
the major inherent limitations of HDX-MS and some alternative
or complementary approaches currently being used, along with
their respective advantages and disadvantages, is presented below
(see also Figure 2 and Table 1).

Peptide-Level Resolution
In most commonly used experimental setups, HDX-MS reaches
peptide-level resolution, and individual residues’ contribution
remains uncertain. When protonated peptide ions collide with
neutral gas upon collision-induced dissociation (CID) - a
typically-employed ion fragmentation method, CID increases the
vibrational energy of the ions and leads to extensive
intramolecular H/D scrambling (44). As a result, HDX-MS fails
to achieve residue-specific resolution with CID employed and only
provides the mass change for an entire peptide fragment
(calculated as the centroid value difference of a peptide isotopic
envelope at two time points) (24). There has not been a widely
established MS method to locate single amino acid residues to
which deuterium is incorporated (20, 45, 57).

An experimental solution to this challenge is the usage of
electron-induced fragmentation methods such as electron
transfer dissociation (ETD) and electron capture dissociation
(ECD). In ETD/ECD with very gentle ion source conditions, D
scrambling rarely happens because the internal energy
deposited upon the recombination of an electron with the
positive peptide ion remains localized, causing bond cleavage
at the site where the electron is captured (11, 46). Nevertheless,
gas-phase scrambling can still occur and needs to be diminished
for different peptides through meticulous optimization of ion
fragmentation and ESI parameters (24, 39). In principle, the
ETD/ECD experiment enables single residue resolution
through the calculation of mass differences between fragment
ions (c and z ions) differing by exactly one overhanging amino
acid. While different acid-stable proteases can be exploited to
generate overlapping peptides, obtaining peptides that differ by
only one residue and overhang through the entire protein
sequence is unlikely. As ETD/ECD fragmentation is most
efficient with peptides at high charge states, some peptides
will be unamenable to this fragmenting method, preceding its
FIGURE 2 | Experimental limitations when using HDX-MS for epitope mapping.
May 2022 | Volume 13 | Article 859964
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TABLE 1 | Current alternative or complementary experimental approaches and their pros and cons regarding each HDX-MS experimental limitation.
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application as a routine method for localize deuterium uptake
at individual amide level (58). Overall, HDX-MS ETD/ECD
fragmentation has promising potential to provide amino acid
resolution but there is no guarantee that residue resolution,
even only for the sites of interest, will be achieved (44, 45).

Insufficient Sequence Coverage
HDX-MS experiments depend heavily on identifying
reproducible peptides spanning the whole protein sequence.
There is no threshold on what peptide coverage level is
qualified as acceptable in the HDX-MS community (19). The
goal is always to maximize the sequence coverage and to generate
as many overlapping and unique peptides as possible to increase
the sequence resolution in the optimization stage prior to HDX-
labeling. To achieve this goal, the emphasis is on optimizing
various HDX-MS conditions including quenching, digestion,
and chromatography separation in the optimization stage
(59). Insufficient peptide coverage or improper peptide
identification in HDX-MS limits the ability to detect protein-
protein interactions.

Large complexes contribute to this challenge in HDX-MS
analysis because too many peptic peptides are produced. Given
the restraints of the quench conditions in HDX, it is challenging to
acquire chromatographic resolution for all the peptides generated.
This results in overlapping mass spectra and complicates proper
HDX-MS identification (38). In a recent report from Garcia et al.,
HDX-MS sequence coverage was significantly reduced when using
a whole virus sample because of overlapping mass spectra from
too many viral proteins present (60). One way to increase the
resolution and reduce mass spectral overlap in HDX-MS
experiments is to incorporate ion mobility spectrometry (IMS)
after the chromatography step. Overlapping peptides in
chromatographic separation can be separated in the gas phase
with IMS, thus allowing the identification ofmore peptides in large
complexes. However, more work is needed to routinely
incorporate IMS in the overall HDX-MS experiment (45).

Highly glycosylated proteins, such as viral envelope proteins,
pose a special challenge in HDX-MS experiment analysis. For
glycoproteins, the substantial heterogeneity of the glycans
combined with the broad specificity of pepsin digestion
produces a diverse pool of peptic glycopeptides, leading to
poor MS signal intensity of individual glycopeptides. As a
result, severely reduced sequence coverage around the glycan
sites is observed, significantly impacting the utility of HDX-MS
to analyze such proteins (51). In Puchades et al., all residues
immediately surrounding the hemagglutinin glycosylation sites
lacked coverage (25). This challenge can be addressed by
enzymatic deglycosylation of the glycoprotein with peptide-
N4-(N-acetyl-b-d-glucosaminyl)asparagine amidase F (PNGase
F) - the most common enzyme used prior to the HDX-MS
labeling step (48). However, deglycosylation before labeling may
alter the protein-protein interaction and prevent correct
identification of antigenic sites, as some Abs carefully navigate
around glycans. Deglycosylation also risks destabilizing the
proteins and can cause aggregation. PNGase A and PNGase H
+ are enzymes of choice when it is desirable to remove the
Frontiers in Immunology | www.frontiersin.org 7
N-linked glycosylations after labeling to preserve the native
conformational dynamics and interaction of the glycoproteins
(49, 50). Nevertheless, these enzymes require offline pepsin
digestion and manual sample injection into the LC-MS system,
which can be more labor-intensive than the automated sample
injection system conventionally employed in the epitope
mapping experiment. There are strategies to enrich the
glycopeptides for MS analysis, but, to date, none have been
developed for routine implementation in HDX-MS epitope
mapping experiments (61, 62).

In addition to the highly glycosylated Ags, Abs with their
disulfide-bonded regions add complexity to HDX-MS analysis.
Peptides containing disulfide bonds are resistant to digestion, thus
producing complicated fragment ion spectra and severely
compromising interpretation. To reach an acceptable coverage
of Ab sequences and facilitate HDX-MS analysis, a high
concentration of TCEP is commonly added to the quench buffer
to increase its disulfide reduction efficiency during the quench
period (19, 38). On the other hand, too much TCEP can
deteriorate LC and MS performance (51).

The stochastic behavior of pepsin contributes to difficulties in
HDX-MS analysis. Although pepsin prefers to cleave between
hydrophobic residues, it is still a non-specific protease with
unpredictable cleaving pattern (63). Peptides generated from
pepsin digestion display a great diversity of sequences; however,
only highly reproducible and ubiquitous peptides can be used for
further study and sequence-level comparison of deuterium
content (52). Therefore, multiple replicates are needed to
identify peptides reproducibly after pepsin digestion. When
multiple replicate digestions under the same condition fail to
result in reproducible peptides covering a region of interest,
another strategy to increase coverage is to alter the digestion
conditions by including additives such as denaturants or by using
an activated pepsinogen coupled column. One other option is to
change to or supplement with another enzyme (i.e., aspartic
protease such as rice field eel pepsin) (53). A commercially
available co-immobilized, dual protease column combines
pepsin and type XIII protease from Aspergillus into a single
packed column. The combination of their complementary
specificities was shown to enhance the digestion efficiency of
IgG molecules compared to pepsin or type XIII protease
alone (54).

An acceptable sequence coverage percentage entirely depends
on each practitioner’s own standard, their preliminary
knowledge of the protein interaction, and the purpose of the
project. Specifically in epitope mapping studies, the
complementarity-determining regions (CDRs) of an Ab are
often the regions of special interest. If the sequence coverage is
perceived to be unsatisfactory or the regions of interest are not
covered after optimization, the HDX study stage may be
cancelled. It is not uncommon to encounter cases from time to
time where HDX-MS does not provide any useful information
on the binding sites of the proteins of interest. It is also important
to note that even when the sequence coverage percentage is high,
there is always a possibility of false negative results because a
section of the protein sequence is not covered. Fortunately, this
May 2022 | Volume 13 | Article 859964
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difficulty is one of several that computational docking
can alleviate.

Allosteric Effect Being Indistinguishable
From the Binding Interface
Another limitation of HDX-MS is that protection due to
protein-protein interaction can be confounded by allosteric
effects. HDX-MS fails to discriminate between the direct
binding sites and the remote conformational change resulted
from complexation (11, 25, 32). Often complementary
experiments are carried out to validate the direct binding sites
such as site-directed mutagenesis (20). This approach can be
laborious and expensive, with the occasional occurrence of
false-positive results. Disulfide trapping in cells is another
method that can verify the binding interface and validate MS
data in physiologically-relevant conditions by introducing two
cysteine residues, one per interaction partner, at selected
positions within their potential interaction interface and
examining the formation of disulfide bonds with oxidizing
agents (13). The employment of XL-MS as a complementary
approach can also distinctly detect conformational changes
induced by protein aggregation from the reduction in solvent
exposure (55). For modeling the complex, XL-MS contributes
unambiguous distance restraints, unlike HDX-MS. The kinetic
millisecond HDX-MS (TRESI-HDX) method utilizes the early
(millisecond) labeling time where conformational equilibria are
unsettled, thus allowing the HDX-MS signal to develop as the
binding event occurs before the allosteric event (64). The
millisecond deuterium labeling takes place in a capillary
mixer incorporated into a microfluidic chip (65). The sample
is then quenched, digested, and ionized rapidly. However, only
epitope peptides from Ags can be identified. It is difficult to
identify paratope peptides from the Ab via TRESI-HDX-MS
because the pepsin-linked agarose resin used on the chip makes
pepsin digestion less efficient, resulting in insufficient peptide
coverage on the Ab. Furthermore, distinguishing binding events
from allosteric events with TRESI-HDX-MS depends heavily on
the time it takes for allostery to develop, which varies from case
to case (32). Besides the above, many other methods can be used
to validate directly contacting regions, such as low-resolution
cryo-EM, immunodiffusion in gel, Ab competition, surface
plasmon resonance, etc (56, 66).
Frontiers in Immunology | www.frontiersin.org 8
COMPUTATIONAL METHODS TRY TO
ESTIMATE THE RESIDUE-SPECIFIC
RESOLUTION OF HDX-MS
EXPERIMENTAL DATA, SIMULATE
HDX-MS DATA FROM PROTEIN
STRUCTURE, AND EXPLAIN
UNDERLYING FACTORS CONTRIBUTING
TO THE OBSERVED HDX-MS DATA

Computational methods are being used more frequently to tackle
the inherent limitations of the HDX-MS technique. In this
section, we focus on the state of computational methods in
improving the resolution in HDX-MS experimental datasets and
simulating HDX-MS data for native model selection through
parallel comparison with the observed deuterium uptake profile.
The complementarity of protein modeling and HDX-MS will
greatly benefit from a detailed understanding of factors
underlying the HDX mechanism.

The Protection Factor (PF) Is a Biophysical
Concept Used to Describe
Hydrogen-Deuterium Exchange Behavior
The H-D exchange reaction occurs at neutral pH in most
experiments and predominantly adheres to a base catalysis
mechanism. The amide proton is attacked by a deuterated
hydroxide ion, leaving the amide nitrogen atom negatively
charged (Figure 3). The amidated anion then removes a D+
ion from another D2O molecule to get re-protonated (57).

The key to investigating protein structure using HDX-MS is
that the conversing rate from N-H to N-D is modulated by the
protein structural attributes. The overall exchange mechanism
can be described by the equilibrium below:

N −Hclosed⇄
kop

kcl
 N −Hopen !

kch

D2O
 N − D

kop and kcl represent the rate constants for the opening and
closing reactions. kch is the “chemical” rate constant or the
intrinsic and maximal exchange rate of N–H ! N–D
conversion measured for each residue amide N-H when they
are solvent-exposed and without hydrogen bonds. The
FIGURE 3 | Schematic of base catalysis HDX of amide backbone protons in solution. Figure is reproduced from (57).
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combination of these three rate constants is unique to each N-H
group in a protein.

The N-H groups represent a continuum of hydrogen deuterium
exchange mechanisms. If the rate of the opening/closing transition
is lower than the chemical exchange rate (kch ≫ kcl), chemical
exchange occurs quickly after conversion to the solvent-exposed
form (i.e., the amide exchanges as soon as the very first opening
event) and the observed rate (kHDX) is governed by the rate of
structural opening (kHDX = kop). This kinetic regime is called EX1.
Under physiological conditions, EX2 is the dominant kinetic regime
where the reconversion of the solvent-exposed to the protected state
occurs much faster than the rate of chemical exchange: kcl ≫ kch
(17). Thereby, only a fraction of the available amide hydrogens will
undergo deuterium exchange before resuming the closed
conformation. The HDX exchange rate for EX2 regime is

kHDX = kch
kop
kcl

� �

kch is dependent on the pH, temperature, and the protein
primary sequence (i.e., the neighboring residues) and can be
calculated from these parameters (67, 68). The only variable
depending on the protein structure-related features is kop/kcl
ratio – the equilibrium constant of the closed-to-open state of N-
H reaction (Kop). The inverse of this equilibrium constant (Kop

-1)
is the so-called protection factor (PF) (17, 29, 39).

The PF (kch/kHDX) illustrates the degree of reduction in the
observed exchange rate compared to the intrinsic exchange rate
of a backbone amide hydrogen, in relation to the protein
structure. Therefore, PF is a representation of how protein
conformational properties hamper an amide from deuterium
exchange. The concept of PF is especially important in folding
simulations and can be used to infer local structural stability at
specific sites on the protein (69, 70).

Computational Approaches Enhancing the
Resolution in HDX-MS Experimental
Datasets Through the Estimation of PF
Values or Equivalently Exchange Rates
Multiple mathematical and statistical methods have been
developed to delineate exchange rates at the residue level of
HDX-MS datasets with optimized fragmentation patterns (71–
74). These predictingmethods comprise a mathematical algorithm
to assign potential HDX rates into equivalence classes for
individual residues from overlapping peptide fragments (74),
weighted residue-by-residue averaging of the HDX exchange
midpoints (73), or a Bayesian modeling statistical method to
assess the significance and magnitude of HDX differences
between two states, which provides an estimate of DHDX for
each residue given enough data available (72). Some studies
localize the incorporated deuterium in peptides from the isotope
distribution pattern. This approach computed trail deuterium
uptake value for each amino acid in the protein sequence to
achieve the best global goodness-of-fit to the experimental isotopic
envelope of each observed peptide (71). This approach functions
optimally with well-defined isotopic envelopes provided by high-
Frontiers in Immunology | www.frontiersin.org 9
resolution data. Improved versions of the method were reported
(75, 76); however, the computational cost is quite expensive and
thus restricts the method application to only small proteins
weighing less than 30 kDa (76). Also, based on isotope envelope
analysis, Hamuro et al. combined their isotope envelopes global-
fitting algorithm with wide labeling time windows (eight orders of
magnitude) and ETD to achieve residue-specific resolution (77,
78). Another computational method exploits overlapping peptide
fragments from HDX-MS datasets cleaved by a mixture of pepsin
and protease type XIII (79). A linear optimization iteration is
performed to quantify the deuterium incorporation in segments
from overlapping peptides, followed by a non-linear iteration to
quantify exchange rates for all amides.

Overall, while the above computational methods demonstrate
the viability of determining HDX rate at residue-resolution level,
they are being adopted relatively slowly for conventional use. The
reasons are due to the complex data processing procedures and the
demanding experimental requirements. This is because most
approaches, specifically those utilizing global fitting iteration,
depend largely on high-quality data with an abundance of
overlapping fragments, multiple time points, wide time
windows, and resolved isotopic envelopes (79, 80). These
requirements limit their use on most available HDX-MS datasets
where the fragment patterns and redundant coverage are far from
optimal. A statistical method developed by Skinner et al. was
proposed to yield estimates or restraints of PFs for individual
amides based on overlapping fragments regardless of the quality of
input data (80). Nevertheless, the caveat is that the solution is
ambiguous since the method can only provide an estimation of
plausible distributions of the PFs (80).

Computational Methods Predict HDX-MS
Data (PF and Deuterium Uptake Level) for
Comparison With HDX-MS Experimental
Values to Improve Protein Model Selection
Simulating HDX-MS result from protein model is a promising
approach for protein structure prediction. By comparing
experimental deuterium uptake with predicted deuterium
profiles derived from protein models, native configurations can
be validated (Figure 4). This approach requires the ability to
accurately predict HDX-MS PFs from a protein structure, which
has proven challenging. The details of this will be discussed in the
next paragraph. The predicted PFs are used along with the
intrinsic exchange rates kch to calculate kHDX for each residue
(Equation 2), from which their deuterium level is computed at
user-defined labeling times. The deuterium uptake over
contiguous residues of peptides present in the HDX-MS
experimental sequence coverage list is integrated to estimate
peptide isotope uptake data. Unique HDX-MS patterns are
simulated for each protein model, facilitating model ranking
and validation of native models through pairwise comparison to
HDX-MS experiment data. Back exchange also needs to be
accounted for. Deuterium loss from back exchange is easier to
correct for during HDX-MS experimental data acquisition than
through computational approximation, by measuring a fully
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deuterated control sample. Nevertheless, this extra step is
disregarded in a majority of the reported HDX-MS datasets.
While deuterium losses can be approximated computationally
(68, 81), the varying experimental conditions such as
temperatures, buffer solutions, pH, and LC eluent
concentrations render these estimates inexact (82). Error in
back exchange correction contributes to some of the
disagreement between experimental and computationally
predicted HDX-MS data (39, 82).
Frontiers in Immunology | www.frontiersin.org 10
Many Different Methods Have Been
Developed to Predict PF From
Protein Structures
Methods to estimate HDX-MS behavior of proteins through PF
prediction have a unique combination of metrics. Each one
incorporates different features of protein conformation to
varying extents to derive PFs including solvent accessibility,
hydrogen bond, electrostatic force, and solvation (39, 82–89).
Simulation methods for PF estimation generally belong to one of
FIGURE 4 | Flowchart of HDX-MS data simulation to validate plausible protein models. For each protein model, PF at each amide position is predicted. From PF
and the intrinsic exchange rate kch, the D value of each residue is calculated. HDX-MS data for each peptide (from the experimental peptide list) is generated by
summing D uptake of the member residues. The simulated HDX-MS profiles of protein models are compared with the experimental data normalized for back
exchange. Matching D profiles of multiple peptides validates the protein model, facilitating differentiation between native and non-native models.
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the two groups: fract ional populat ion models and
empirical models.

The first group - fractional population models, exemplified by
the COREX method, exploits the connection of PF with the free
energy difference between a protein folded and unfolded states
(90). PF of a residue is derived as an equilibrium constant from a
structural ensemble in an MD simulation and is computed by
fractioning the total number of states where an amide is buried
and “closed” to the total number of states where it is exposed and
“open” (89).

The second group - empirical models, associates PF with
protein structure-related features and uses structure-based
scoring functions to approximate PF. The widely used
phenomenological approximation method is an example of this
group (83, 91). PF is characterized as the sum contributions of
hydrogen bonding and amide burial (the number of heavy atoms
surrounding the amide), with each term scaled by a previously
defined weighting factor. Despite being underperforming, this
method benefits from the ease of implementation with promising
potential for high-throughput scoring of an ensemble of
modeling outputs (92–94). The calculation of HDX data from
a protein atomic models based on the phenomenological
expression is now feasible for researchers using a software
package called HDX ensemble reweighing (HDXer) developed
by Bradshaw et al. (93). In a recent study, this technique was
applied to simulate the deuterium uptake of the top docking
poses to compare with the experimental data (36). The simulated
HDX profiles of the two docking complexes aligned well with the
empirical data, further validating the selected models, and
highlighting the advances being made in the field of
HDX prediction.

Also belong to this group of empirical models, a recent
method called protection factor prediction based on protein
motions (POPPeT) incorporated additional information of
secondary structure features and protein motions (95). The
POPPeT method was shown to predict amide hydrogen PFs
more accurately than both the phenomenological approximation
and the COREX method. However, POPPeT was based on
information about HDX-enabling protein motion, which is
rarely available and is thus not considered a full-fledged PF
prediction method by its authors (95).

Moreover, high accuracy in amide hydrogen PF prediction do
not necessarily translate into high accuracy in deuterium uptake at
peptide level (95). A recent study compared the accuracy of HDX-
MS simulation from nine different PF predicting models (96).
Using the same set of proteins, each model was evaluated by how
well it matches HDX-MS experiment result. Mohammadiarani
et al. concluded that the fractional population models
outperformed conventional empirical models. Nevertheless, even
the most reliable models in this study still had large errors (around
40%) and low correlation coefficients when predicting
experimental HDX-MS data.

Overall, attempts to reliably estimate deuteration profiles that
match closely with the experimentally determined HDX-MS data
based on predicted PFs have been proven challenging so far. In
addition, PF formulations that require usage of MD simulations
Frontiers in Immunology | www.frontiersin.org 11
or other sampling methods are computationally expensive and
thus, are impractical for high-throughput ranking of docking
simulation models. Indeed, further testing on the capacity of
these methods to identify native conformations among others is
severely lacking.

Simulated HDX-MS Patterns From Protein
Decoys Can Benefit Structure Prediction
The Borysik research group is the only group, to date, to have
extended to work on simulating HDX-MS in structure prediction
and docking (92, 94). Using PF predicted from the easy-to-
implement phenomenological approximation method, Borysik
and his colleagues predicted HDX-MS outputs for two
monomeric proteins (barnase and alpha-lactalbumin) and two
homomeric proteins (enolase and serum amyloid P), each with
1,000 models and compared them with experimental HDX-MS
data (94). HDX-MS simulation generated for crystal structures of
two homo oligomeric proteins correlate significantly less with the
experimental data than the monomeric proteins. This might be
because the algorithm used to predict PF was originally trained
on monomeric globular proteins only and was never optimized
for usage on large multiple chain proteins. Indeed, when this
phenomenological approximation method was applied to help
select native conformations among the docking outputs in
another study, optimization was required to tune the PF
expression for protein interfaces (92). PF of proteins obtained
in their bound configurations was redistributed towards those
values simulated for the unbound states, akin to incomplete
binding where a fraction of each protein would populate
unbound conformations in the mixed samples. In both studies,
pairwise comparisons of HDX-MS simulated output with
experimental data was shown to be sufficient to discern native
structures from non-native ones, as well as selecting the native
docking pose (iRMSD<0.7 Å) without the necessity of further
data analyzing or manual interpretation (92, 94). It was
demonstrated that the predicted PFs, even when poorly
determined, can still be adequate for simulation of HDX-MS
data or HDX-MS difference data (produced by subtracting the
simulated isotope uptake of the bound from the unbound states)
that effectively evaluate and discriminate between poses. As the
two studies were performed to only a few proteins, future work is
in need to fully assess the potential of simulated HDX-MS data in
high-throughput structure evaluation. Nevertheless, these studies
revealed the promising power of HDX-MS in protein modeling
and how this area would greatly benefit from improved
prediction of PFs from protein atomic structures.

Factors Contributing to PF Are
Incompletely Understood
Progress on improved simulation methods is pending upon a
deeper understanding of HDX structure determinants. Factors
commonly thought to contribute to amide backbone protection,
making the overall exchange rate constant kHDX smaller than the
intrinsic exchange rate kch are intramolecular hydrogen bonding
and limited solvent accessibility (17, 97). A study by McAllister
and Konermann reexamined this notion by exploring the
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correlation between experiment and simulation (98). In their 1-
ms all-atom simulation of ubiquitin, only 57 out of 72 amide
exchanges were accounted for through hydrogen bonding or
solvent exposure. Some amide hydrogens were solvent accessible
and did not participate in hydrogen bonding but were found to
be protected from exchange. Electrostatic factors and hydration
could potentially be contributing factors for these observed
discrepancies between the simulation and HDX pattern. The
ambiguous understanding of the HDX-MS process has led to the
apprehension that HDX events are too intricate to be expressed
in a formula (99). More study on the correlation between
theoretical mechanisms of HDX-MS and its experimental
measurement is necessary to improve future models.
HDX-MS EXPERIMENTAL RESULTS
ON AB-AG INTERACTION HAVE BEEN
COMBINED WITH COMPUTATIONAL
DOCKING

Computational docking is a common method to predict Ab-Ag
interaction when a complex crystal structure is unavailable and
has been combined with HDX-MS to better map epitopes (100,
101). In this section, we will focus on different practices for
implementing HDX-MS in Ab-Ag docking as restraints in
sampling and model generation and as filters in model selection.

Overview of Computational
Ab-Ag Docking
The protein-protein docking process involves two main steps:
effectively sampling various docking configurations and
accurately ranking the decoys by free energy score. There are
many algorithms for protein–protein docking such as
RosettaDock (102–104), DOT (105), HADDOCK (106),
ZDOCK (107), ClusPro (108), PatchDock/SymmDock (109),
and FTDOCK (110). In this paper, RosettaDock in the Rosetta
software suite is chosen to exemplify a typical docking
protocol (111).

RosettaDock is a Monte Carlo-based docking algorithm that
employs rigid-body docking of two interacting partners and
optimizes their side-chain conformation (102–104). The
algorithm requires a structure of both proteins in an initial
docking pose as input. This is either manually arranged if prior
structural information about probable regions of interaction is
known or is randomized through a global docking step (102,
112). RosettaDock starts with a low-resolution (coarse grain)
docking step. A Monte Carlo search is performed with rigid-
body movements (namely adaptive rotation and translational
moves) around the surface of the binding partners being
represented in centroid-mode. For Ag–Ab interactions, the
search space for Ab is limited to the six CDR loops as they are
known to be the binding sites for the Ag epitope (113). The best
scoring model from the low-resolution stage is adopted for high-
resolution docking (all-atom refinement). All-atom side chains
of docking partners are restored in place of centroid atoms,
followed by additional docking position refinement and side-
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chain optimization steps (112). The performance of a docking
attempt and evaluation of the best model can be assessed by the
total energy and the energetic enhancement of the interface
(binding interface energy), as well as the Ca RMSD to the best
scoring model.

Predicting a protein-protein interaction is challenging due
to many possible docked conformations. Although Ab
recognition of Ag is largely limited to the CDR loops, Ab-Ag
interactions present a unique challenge for computational
docking. The structural flexibility of the CDR loops,
especial ly HCDR3, and the homology model-based
inaccuracy of Ab can confound docking (114, 115). As
conformational changes after complexation and error in Abs
homology modeling are taken into consideration, Ab-specific
moves have been incorporated into the RosettaDock protocol
(SnugDock): refining of HCDR2 and HCDR3 loops after the
low-resolution stage and sampling of VH–VL orientations
during the high-resolution stage (113, 116). Nevertheless, if
motions upon Ag binding is substantial or the Ab models are
substandard, it would be challenging, if not improbable to
accurately predict the native binding structures.

The chance of achieving an accurate docking model will be
enhanced by including experimentally obtained restraints - a
strategy that has become increasingly popular (117, 118).
Various experimental methods have been employed in
combination with computational docking such as NMR, site-
directed mutagenesis, electron paramagnetic resonance, low-
resolution cryo-EM, and XL-MS (41, 117, 119–122). Here, we
focus on how HDX-MS and computational docking are
combined to identify the epitope of various Ab-Ag
interactions. Given a diverse collection of restraints and filters
in Rosetta, knowledge derived from HDX-MS experiments can
be incorporated into the sampling strategy (Figure 5). For
example, the starting docking pose is manually arranged to a
configuration compatible with the experimental knowledge,
which allows for the exploration of only a small region of
conformational space and improves sampling density around
the putative binding sites. Additionally, distance-based filters (or
restraints) can be set during either low- or high-resolution
docking stage or both to bias sampling towards docking poses
compatible with the experimental data. Moreover, HDX-MS data
can be applied to select native models, either manually or as
filters or ideally being incorporated into the scoring
function (Figure 5).

Different Practices for Implementing
HDX-MS as Restraints in Computational
Ab-Ag Docking
In a recent benchmark study, blind Ab-Ag docking using current
docking algorithms was shown to achieve a success rate of
approximately 66% for near-native prediction using CAPRI
(Critical Assessment of Predicted Interactions) criteria of
Medium accuracy (115). Although there has not been any
benchmark study to examine the success rate of HDX-MS in
conjunction with Ab-Ag docking, evidence in the literature has
pointed to significant improvement in docking performance with
HDX-MS.
May 2022 | Volume 13 | Article 859964

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tran et al. Modeling Ab-Ag Complexes From HDX-MS
HDX-MS signals have been combined with docking
simulations in different protein modeling suites (i.e., MOE,
PatchDock, ZDOCK, RosettaDock (102, 103, 112, 123) to
derive Ab-Ag complex structures in several epitope mapping
studies (e.g.,11, 14, 27, 32, 36). A summary of their protocols and
docking performance is presented in Table 2. The ideal starting
components for docking are crystal structures of unbound Ag
and unbound Ab (in the form of Fab fragments or variable
fragment Fv). In the absence of an experimentally determined Ab
structure, a homology modeled Ab is often used instead,
representing a more common Ab-Ag docking case. One study
used models of HDX-predicted Ab peptides (32). The number of
sampling poses ranges from 50,000 to 100,000. The detailed
practices of implementing HDX-MS as restraints in
computational docking vary between studies and are depicted
in Figure 6.

Not all of these studies were carried out in comparison to
blind docking. However, those that did demonstrated a higher
number of energetically favorable contacts in the docking poses
and better interface root-mean-square deviation (i-RMSD) of the
top models (27, 32). Aside from Ab-Ag complexes, docking
studies with HDX-MS integration were performed for other
protein-protein complexes (13, 40, 125). The incorporation of
Frontiers in Immunology | www.frontiersin.org 13
HDX-MS as restraints and filters was shown to enrich the native-
like conformations in the prediction and accurately select high-
quality, biological-relevant models that would not be the case for
docking poses ranked by the regular binding scores.

HDX-MS Data Are Applied as Restraints in
the Sampling and Model Generation
HDX-MS difference identifies peptides at the protein binding
interfaces. This information can be utilized as restraints during
the generation of docked complexes to better focus the
conformational sampling space. The restraints are generally in
the form of distance restraints (score penalty) or favorable
potentials. They facilitate one of the two goals: favoring the
presence of residues in HDX-predicted epitope peptides at the
interface or hindering residues outside of these peptides from
participating in binding.

To propel the presence of HDX-MS predicted epitope
peptides at the interface, these peptides are assigned as
favorable docking sites (11, 14, 32, 36). This is accomplished
by applying fixed distance restraints between residues in HDX-
detected epitope peptides and residues in the Ab. Since most Abs
interact with Ags through the CDRs, the restraints for Ab are
often applied to residues in the Ab CDRs or residues in HDX-
FIGURE 5 | The protein-protein docking procedure from RosettaDock – a multiscale Monte-Carlo based algorithm with different stages for HDX-MS data to be
incorporated. HDX-MS data can be applied to the sampling stage (including the arrangement of the starting pose, low-resolution docking, and high-resolution
docking) as well as the scoring stage. Figure is adapted from (102).
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TABLE 2 | A summary of studies integrating HDX-MS and docking to predict Ab-Ag native poses and their performance.

Studies Docking
algorithms

Docked
Ag

Docked Ab Sampling and applying HDX
restraints

Model selection Evaluation

(27) ZDOCK (in
combination
with ZRANK
and
RDOCK)

crystal
structure

crystal structure
(Fab) or
homology
modeled
antibody (Fv)
using
RosettaAntibody
protocol

-54000 poses were sampled in
ZDOCK
-All residues in non-CDR regions
(Ab) and in non-epitope peptides
(Ag) were blocked during ZDOCK,
allowing the pairwise shape
complementarity (PSC) scoring
function of ZDOCK to penalize
docked poses when the blocked
residues are in the interface
-The initial-stage docking poses
were scored and ranked using
ZRANK
-The top 50 rigid-body docking
poses were refined using RDOCK

-The top 10 poses from RDOCK
refinement process were selected
for evaluation
-The RMSD value of the interface
Ca atoms (iRMSD) was calculated
by superimposing a docked pose
onto the relax co-crystallized
antigen-antibody complex.
Docking poses with an iRMSD less
than or equal to 2.5 Å are
considered near-native structures
or “hits” with the interface defined
as all residues with at least one
atom within 10 Å of the binding
partner

-Compared to stand-alone docking,
the HDX-MS-derived restraints
significantly improved the docking
results for one of the three testing
Ab-Ag complexes: the number of
“hit” poses among top 10 poses
generated increased from four to
seven, with the iRMSD of the
highest-ranking pose being 1.4 Å to
the complex crystal structure
-Incorporation of HDX-MS data
produced more tightly clustered
docking poses for all three
complexes and did not interfere with
the result when the stand-alone
docking already did well by itself

(32) MOE crystal
structure

models of HDX-
predicted
antibody
peptides were
generated with
MOE

-HDX-predicted epitope peptides
were set as the docking sites

-Five (MOE) to ten (PatchDock and
ZDOCK) molecular dynamics-
minimized docking poses were
selected for evaluation
-Optimal poses are those with the
highest numbers of energetically
favorable contacts (“hit”) between
the paratope peptides and the
antigen, where a “hit” is regarded
when a residue from a predicted
epitope peptide located within 4.5
Å of a residue from the antibody
peptide

-For all three software packages,
computational docking with HDX-
MS data produced more “hit”
residues than docking without HDX-
MS data. In other words, more ‘hit’
residues were detected for docking
at the HDX-specified site compared
to randomly selected sites
-The crystal structure of the Ab-Ag
complex is not available. Thus, it
cannot be determined how much
the iRMSD to the native structure
improved with the incorporation of
HDX-MS

PatchDock -HDX-predicted epitope peptides
were set either as the docking sites
or as volume-constraint
pharmacophores

ZDOCK -HDX non-epitope residues of the
antigen were blocked as a scoring
penalty

(11) MOE crystal
structure

Homology
modeled
antibody (Fab)
using
Bioluminate
protocol v1.9
and MAESTRO
v10.2

-100,000 starting poses were
sampled using MOE
-CDR restraints were applied by
using an energy penalty to require
that all poses contain a minimum
number of residue contacts
between HDX-predicted paratope
peptides and these regions
-The poses were further refined and
scored using a full-atom potential
(AMBER)

-The top 200 poses were
evaluated for surface
complementarity based upon
AMBER complementarity score
(24) and visual inspection of
surfaces as implemented in the
protein_contact_surfaces script
implemented in MOE

-The best docking poses were
proposed to be the Ab-Ag
interaction model. The HDX-
predicted peptides in this model
were at the interface and were
corroborated by the SASA analysis
-No blind docking was done for
parallel comparison

(14) Rosetta crystal
structure

crystal structure
(Fab)

-Restrict docking in Rosetta to HDX-
predicted epitope of the antigen and
the CDRs region of antibody
-The docking poses were filtered by
overall energy, binding energy, and
satisfaction to HDX constraints
-The best 500 models by binding
energy underwent the protocol
again

-An ensemble of 25 best-scoring
models (by binding energy) that
fulfilled HDX constraints were
selected

-The best docking poses were
proposed to be the Ab-Ag
interaction model. Functional assays
were performed, and the results
endorsed the binding modes of the
docked complexes
-No blind docking was done for
parallel comparison

(36) PatchDock crystal
structure

Homology
modeled Ab (Fv)
using
ABodyBuilder Fv
prediction

-HDX-predicted epitopes were set
as docking sites by adding a scoring
parameter to PatchDock
-The clustering RMSD was set at 4
Å

-The top 100 poses were
evaluated for CDR inclusion at the
interface and agreement to the
alanine scan data. Among these,
the top two poses were selected

- HDX profile simulation was
performed using the ‘calc-HDX’
function of the HDXer tool for the
top two docked structures
-Comparison between the simulated
DHDX versus the experimental
DHDX further validated these poses,
displaying a RMSD of deuterium
exchange of 0.981 Å and 0.684 Å
-No blind docking was done for
parallel comparison
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FIGURE 6 | Different practices have been used to incorporate HDX-MS data into Ab-Ag docking. HDX-MS data are provided in form of identified epitope peptides
(e.g., peptide 219-230 with a decrease in deuterium level of at least 4Da across 4 timepoints). Docking components: Ag crystal structure (blue; HDX-identified
peptide: red) and Ab (Fab or Fv) crystal structure or homology model - (yellow; CDRs: pink). Sampling stage: (A) Restrain the docking sites. Favorable potential (red
sphere) - spheres surrounding the backbone N atoms in the epitope are filled with favorable values. Each atom of the Ab lying within this sphere would contribute a
favorable potential to the energy function. Distance restraint (left right arrows) - a minimum number of residues from each epitope peptide must be within a specified
threshold distance to the Ab. Lenient approach: one residue from the epitope peptide to be at the interface. Stringent approach: the minimum number of contact
residues correlates with the decrease in deuterium level (i.e., 4 residues in this case). (B) Restrain the non-docking sites: non-epitope peptides and non-CDR regions
(grey) are blocked from docking using distance restraint. Scoring stage: HDX-MS data is applied as filters in form of: the number of satisfied distance restraints is -
the higher the count (favorable contact) is, the more optimal a docked pose is considered to be; visual analysis - manually inspection of the docked poses on
whether the epitope is at the interface; SASA evaluation - SASA calculation of the epitope peptide in the unbound form must be larger than the bound form.

Tran et al. Modeling Ab-Ag Complexes From HDX-MS
MS-detected paratope peptides if an HDX-MS experiment on
paratope mapping was done. The interpretation of the distance
restraint is that the sampling poses are required to contain a
minimum number of residues from each epitope peptide within
a specified threshold distance to certain residues in the Ab, or an
energy penalty is applied.

The distance restraint comprises three elements whose
parameters are seldom explicitly stated. The first element is
the minimum number of residues from each HDX-MS peptide
to be restrained at the interface. The qualitative, lenient
approach does not take into account the DHDX signal
intensity. Regardless of the magnitude of the relative
deuterium uptake difference in a peptide, the lenient,
qualitative restraint only requires at least one residue in each
interacting peptide to be at the interface (14, 125). A more
stringent approach is to correlate this number with the
deuterium uptake difference between the unbound and the
bound states (125). Roberts et al. reported that one approach
could offer more optimal results than the other depending on
the protein it is applied to. While the stringent approach allows
for quantitative HDX-MS data interpretation in form of
restraints, it runs the risk of overestimating the number of
residues in the HDX-MS peptides that truly contact the other
molecule, which would bias the docking process to incorrect
configurations. This is because the increased level of solvent
Frontiers in Immunology | www.frontiersin.org 15
protection is not only caused by protein interaction but also
allosteric effects, especially in the case of structural stabilization.
Therefore, the interpretation of HDX-MS interacting peptides
must be confident for the stringent approach, perhaps by
additionally inspecting the 3D structure of the unbound
protein. Otherwise, it might be better to interpret HDX-MS
data as lenient, qualitative restraints. Perhaps a hybrid approach
can be used where the stringent restraints are applied to
confidently identified HDX-MS peptides (either through visual
inspection of 3D structure or complementary data from other
experiments) and lenient restraints are applied to the remaining
HDX-MS peptides. We have not seen such a hybrid
approach reported.

The second element is the nature of the distance restraint.
Unlike chemical crosslinking, HDX-MS fails to provide a
numeric distance threshold between specific atoms for docking.
Thus, for implementing HDX-MS restraints, the distance and the
atom of each of the two residues for which this distance being
measured are improvised by researchers. They vary between
studies, such as 10Å between Ca atoms of two residues (14) or
7Å between the backbone nitrogen atom of one residue and any
heavy atom of another residue (125). One study examined a
range of distance values and suggested that the optimal distance
value can be slightly different for different protein systems (125).
The third element to consider is the magnitude of the applied
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energy penalty function. A too harsh score penalty will likely
hamper the sampling process by trapping structures in a local
energetic minimum, which might result in a uniform population
of complex models with the wrong conformation.

Another way to favor HDX-MS peptides as docking sites,
besides using distance restraints, is through added potentials,
although this is less commonly used. The docking study of
Roberts et al. was performed with DOT rigid-body docking
calculation (105, 125). In one protein, backbone nitrogen
atoms of HDX-MS predicted peptides were assigned favorable
potential. Each atom in the other protein residing within specific
distance cut-off to these nitrogen atoms would contribute a
favorable potential to the free energy score. A variety of sphere
sizes and values within them were examined and the optimal
values were chosen (125). While docking with added favorable
potentials endeavors to maximize the number of contacts
between specific residues of one protein to another, it neglects
that one molecule must simultaneously contact all the interacting
peptides on the other molecule. Meanwhile, the distance restraint
has greater flexibility to enforce simultaneous contact by
multiple regions.

Instead of requiring HDX-MS peptides to be buried at the
interface, a different approach to apply HDX-MS data to the
sampling stage is excluding regions with identical deuterium
exchange profiles before and after complexation from the
interface (20). In this approach, all residues in non-epitope
peptides and non-CDR peptides are blocked from docking
using distance restraints (27, 32). This approach relies on the
notion that a common HDX-identified peptide is larger than the
actual contacting segment and thereby contains most of the true
contacting residues (27). As a result, it is safe to assume that
residues in non-epitope peptides fail to participate in protein-
protein interactions. However, this assumption is inapplicable to
regions rich in proline because these are the “blind spots” in
HDX-MS experiment; no inference can be drawn about them
from HDX-MS data.

HDX-MS Data Are Applied as Restraints in
the Scoring and Model Selection
A major challenge in protein docking is identifying native
models among the entire ensemble of docking outputs. In
studies leveraging HDX-MS data to evaluate docked models,
the bulk of the evaluation relies on the total score and binding
energy computed by the docking software (13, 14, 32, 40, 125–
127). Based on these energy functions, an initial list of 50,000-
100,000 models can be curated to an ensemble of the top 25-
2,000 models. HDX-MS data are then incorporated to
distinguish correct complexes from these top-scoring models.
One crude way to utilize HDX-MS data for model selection is
visual inspection (14, 40, 126, 127). The top 10-25 models are
manually inspected for agreement with HDX-MS data: the
binding regions with reduced exchange rate upon
complexation should reside in the interface. In contrast,
regions with constant exchange rate should be absent from the
interacting regions. Visual analysis is commonly performed in
studies combining docking with both XL-MS and HDX-MS
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where XL-MS is used to provide distance restraints during
sampling and HDX-MS is used to narrow down the best
complex models at the final stage (40, 126, 127).

Other studies implemented HDX-MS data as filters to
eliminate incorrect configurations. The filter can be based on
solvent accessible area (SASA) calculations where SASA of the
interacting regions predicted by HDX-MS in the bound protein
is compared with the SASA of its unbound form. A model is
considered to be accurate when the SASA of these regions in the
docked complex are all smaller than that of the unbound (13).
Another form of HDX-MS filter is the number of distance
restraints being satisfied. Docking models are eliminated if
they fail to fulfill a minimum number of distance restraints
(125). Using this criterion, Deng et al. ranked the docking models
where the optimal poses had the highest numbers of favorable
contacts between the two proteins (32). It is worth noting that
applying HDX-MS data as distance restraints during both the
sampling and the scoring stage can result in incorrect
configurations due to overfitting. To avoid overfitting models
when using HDX-MS data, some HDX-MS restraints should be
omitted from the sampling stage and instead used to validate the
ensemble following refinement. Nevertheless, this approach only
works if there are multiple HDX-identified interacting peptides,
which might seldom be the case for many HDX-MS experiments.

Overall, although many studies have been conducted using
different software packages, there is currently no common best
practice to implement HDX-MS restraints or guidance on how to
use these restraints in docking simulations, nor has a consecutive
method been developed for how to select models fulfilling HDX-
MS restraints.
CURRENT DOCKING SIMULATIONS HAVE
YET TO CAPTURE THE COMPLEXITY OF
HDX-MS DATA

Although hybrid methods for combining experimental data and
docking simulations have been quite well-developed for
techniques such as cryo-EM, NMR, XL-MS, or electron
paramagnetic resonance (117), an optimized method for
integrating HDX-MS data into computational docking, in
general, and for Ab-Ag complexes, specifically, is needed. A
brief overview of the challenges associated with this task is
presented in Figure 7. The opportunities that these deficiencies
provide are described in the following paragraphs.

Quantitative HDX-MS Restraint
As mentioned above, relatively crude atom-atom restraints have
been most commonly used to restrain the distance between
residues in HDX-predicted interacting peptides, with no regard
to the intensity of HDX-MS signals. The geometric distances
between specific atoms deduced from HDX-MS data are
ambiguous for usage as quantitative restraints in model
building. There is an opportunity for benchmarking a set of
optimized parameters constituting HDX-MS distance restraints.
Ideally, the rigidity of the restraint correlates with the magnitude
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of the relative deuterium uptake difference for each peptide to
some degree (a balance between the stringent approach and the
lenient approach).

While the number of native-like structures can be
significantly enriched in the prediction with HDX-MS data
being applied as restraints, the expectation of accurate docking
with HDX-MS where near-native configurations are always
generated is unreasonable. Regardless of how HDX-MS data
are applied to restrain the docking sites (either as distance
restraints or favorable added potential), the inherent properties
of HDX-MS data mentioned above might mislead docking
experiments (125). First, HDX-MS are sparse, in which
information is insufficient to fully constrain the structure.
Second, HDX-MS provides no information about proline
residues. Both properties can move the best ranking complexes
away from the correct conformation.

Potential Misinterpretation of
HDX-MS Data
HDX-MS data can be ambiguous. True positive interactions can
go undetected due to insufficient coverage and inherent blind
spots (peptides rich in proline) in HDX-MS experiments. Even
when detected, a true interacting peptide can be overlooked in
HDX-MS experiments. Such a case was demonstrated by Pandit
et al. by comparing the interactions of three different Ab-Ag
complexes between HDX-MS data and X-ray crystallography
data (27). Although 35 contacting residues were detected by X-
ray crystallography, only 20 of them were correctly identified by
Frontiers in Immunology | www.frontiersin.org 17
HDX-MS. There were nine contact residues undetected (in the
blind spot regions) and six contact residues detected but their
deuterium uptake remained unchanged upon complexation (27).
Why this happens is poorly understood. As described above, the
process of HDX-MS of proteins is highly complex and
translation between HDX-MS and structure is still being
investigated (98, 128).

In addition, HDX-MS data can be non-specific with
moderately high false-positive signals. There are recommended
thresholds on the difference in D levels that would statistically be
considered as significant (129). However, due to different
experimental set-ups and auxiliary information known to the
researchers, manual review and assessment are often called for
and various studies assign the statistically significant differences
in HDX-MS peptides differently. Thus, it is challenging to
properly account for experimental errors and noise in HDX-
MS experiments. False positives are also possible because of
allosteric effects, as mentioned above.

Overall, HDX-MS data are sparse and maybe partially
incorrect or incomplete. As a result, a promising approach
applying HDX-MS as experimental restraints should balance
the weighting of HDX-MS data in qualitative and quantitative
docking for improvement in docking accuracy.

HDX-MS Weighted Scoring Function
Evaluating docked models by HDX-MS has been a qualitative
procedure. A better way to quantify the agreement of docking
models with HDX-MS data would be to alter the scoring
FIGURE 7 | Challenges of HDX-MS data incorporation into docking. 1) Quantitative HDX-MS restraint: HDX-MS data is incapable of providing quantitative geometric
distances between atoms, thus, hindering its application to the sampling process. 2) Potential misinterpretation of HDX-MS data. True positive signals can be
undetected due to insufficient coverage and inherent blind spots or overlooked. False positive signals are very probable due to manual data interpretation, noise, and
allosteric effects. 3) HDX-MS weighted scoring function. The evaluation of docking poses based on HDX-MS data is still largely qualitative. 4) High-quality dataset for
benchmarking. HDX-MS data and crystal structure of an Ab-Ag complex in most cases are exclusively available. There is a need for establishing a database for HDX-
MS epitope mapping data.
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function for each calculated metric to consider the sparseness
of the HDX-MS data. HDX-NMR data has been incorporated
into a scoring function used for computational de novo
protein structure prediction (130). Considering residual
solvent exposure and structural flexibility, the weighted
scoring function improved RMSD of the selected model in
12 out of 15 proteins and by 1.42 Å on average (130–132). This
study paves the way for future development of a scoring
algorithm for HDX-MS sparse data in docking protocols,
which would significantly enhance Ab-Ag complex
model selection.

High-Quality Datasets for Benchmarking
One challenge for developing a computational method that
incorporates sparse experimental HDX-MS data in Ab-Ag
docking is high-quality datasets for computational
benchmarking are insufficient. Ideal Ab-Ag complexes for
benchmarking will require both HDX-MS datasets and crystal
structures of the Ab-Ag complex. Nevertheless, most Ab-Ag
complexes with HDX-MS data lack crystal structures because
HDX-MS experiments are often performed when the proteins
are unamenable to X-ray crystallography. This deficiency
provides the opportunity for establishing a database to deposit
HDX-MS epitope mapping datasets. The development of an
HDX-NMR incorporated scoring system was made possible
thanks to a large HDX-NMR dataset on protein folding and
stability available via the Start2Fold database (130, 133). Similar
to Start2Fold, a framework for deposition and analysis of HDX-
MS experimental data targeting protein complexes would
tremendously benefit integrative computational modeling effort
(19, 51).

Suppose the obstacles mentioned above could be resolved
for computational modeling, a typical HDX-MS experiment
will be sufficient to restrict the sampling space and output
an ensemble of near-native, high-resolution Ab-Ag
complex models. HDX-MS could be used more reliably and
with greater throughput for epitope identification for
Ab engineering.
FUTURE DIRECTIONS

HDX-MS is uniquely suited to characterize protein interactions,
even for complexes that are challenging to study by other
biophysical techniques. The biggest intrinsic limitation of
HDX-MS experiment is its resolution being at the peptide-level
and being limited by the observed sequence coverage. New
developments over the past decades have continuously pushed
the limits of what is feasible for HDX-MS (51, 57, 134, 135).
Improved separation and digestion techniques like ion mobility
and combined proteases are being used to obtain different sets of
overlapping peptides, and thus increase the resolution through a
subtractive approach. With the continued development of
mathematical algorithms estimating single amide deuterium
uptake from HDX-MS datasets and the increase in accessibility
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to gas-phase fragmentation methods along with the
advancement in their data analysis software, residue-resolution
HDX-MS may become more established and routine in
the future.

Advances in HDX-MS prediction models have been made
and were applied to discriminate between conformational poses
by a comparison to experimental HDX profiles. Nevertheless,
accurate computational simulation of HDX-MS data from
protein sequences has proven challenging so far as the
combination of all structural determinants underlying HDX
kinetics are not fully understood. The development of
successful methods relies heavily on the greater availability of
residue-level experimental HDX data for proteins with known
structures (136). This deficiency is being addressed by the
establishment of the Stat2Fold database and the emerging
protocols in HDX-MS experiments enabling single residue
HDX datasets. Collaboration between experimental and
computational researchers will provide more usable data for
model development to be collected, which provides more
structural insights on HDX-MS and increases the prospect of
accurate HDX prediction models. In another approach to
improve protein complex modeling, the incorporation of
HDX-MS into molecular docking, HDX-MS data is often
applied qualitatively using distance restraints to corroborate
the produced docking models, with little regard to the intensity
of the experimental signals. Enhanced sampling and ranking of
docking models will require benchmarking of more sophisticated
methods that exploit deeper layers of HDX-MS data. The future
of this area is moving towards docking protocols that enable
quantitative usage of HDX-MS data as restraint and weighted
scoring functions to accurately generate atomic-level models of
Ab-Ag complexes. Overall, an integrated platform of HDX-MS
and protein complex modeling, once established, will be a
powerful tool in elucidating Ab-Ag binding interfaces with
high-resolution and minimum turnaround time, especially in
the absence of other structural information. This advancement
will propel HDX-MS to become an indispensable tool for
reliable, routine, and high-throughput epitope mapping in the
near future.
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