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Aim: This study aims to identify pyroptosis-related genes (PRGs), their functional immune
characteristics, and distinct pyroptosis-related clusters in periodontitis.

Methods: Differentially expressed (DE)-PRGs were determined by merging the
expression profiles of GSE10334, GSE16134, and PRGs obtained from previous
literatures and Molecular Signatures Database (MSigDB). Least absolute shrinkage and
selection operator (LASSO) regression was applied to screen the prognostic PRGs and
develop a prognostic model. Consensus clustering was applied to determine the pyroptosis-
related clusters. Functional analysis and single-sample gene set enrichment analysis (ssGSEA)
were performed to explore the biological characteristics and immune activities of the clusters.
The hub pyroptosis-related modules were defined using weighted correlation network
analysis (WGCNA).

Results: Of the 26 periodontitis-related DE-PRGs, the highest positive relevance was for
High-Mobility Group Box 1 (HMGB1) and SR-Related CTD Associated Factor 11
(SCAF11). A 14-PRG-based signature was developed through the LASSO model. In
addition, three pyroptosis-related clusters were obtained based on the 14 prognostic
PRGs. Caspase 3 (CASP3), Granzyme B (GZMB), Interleukin 1 Alpha (IL1A), IL1Beta (B),
IL6, Phospholipase C Gamma 1 (PLCG1) and PYD And CARD Domain Containing
(PYCARD) were dysregulated in the three clusters. Distinct biological functions and
immune activities, including human leukocyte antigen (HLA) gene expression, immune
cell infiltration, and immune pathway activities, were identified in the three pyroptosis-
related clusters of periodontitis. Furthermore, the pink module associated with
endoplasmic stress-related functions was found to be correlated with cluster 2 and
was suggested as the hub pyroptosis-related module.
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Conclusion: The study identified 14 key pyroptosis-related genes, three distinct
pyroptosis-related clusters, and one pyroptosis-related gene module describing several
molecular aspects of pyroptosis in the pathogenesis and immune micro-environment
regulation of periodontitis and also highlighted functional heterogeneity in pyroptosis-
related mechanisms.
Keywords: periodontitis, pyroptosis, inflammasome, immune microenvironment, prognostic
INTRODUCTION

Periodontitis is a highly prevalent plaque biofilm-associated
chronic inflammatory disease affecting the supporting
structures of teeth that causes loss of attachment, including
alveolar bone and connective tissues, as well as imposing
significant systemic inflammatory burden (1, 2). At its core,
the pathogenesis of periodontitis involves microbial dysbiosis in
the subgingival dental plaque niche, which is followed by
immune dysregulation, perturbed host response, and loss of
homeostasis and ongoing inflammation, ultimately leading to
tissue destruction (3). An increasing number of systemic
conditions have been linked with periodontitis (4, 5), and
multiple underlying mechanisms understood to mediate this
association include circulating pro-inflammatory cytokines,
bacterial cell components such as the keystone pathogen
Porphyromonas gingivalis (P. gingivalis), among others (6). A
large volume of research has focused on describing the molecular
pathways mediating periodontal disease susceptibility,
inflammation, and destruction (7), yet these molecular
mechanisms are not completely delineated.

Programmed cell death (PCD), including apoptosis,
necroptosis, NETosis, and pyroptosis, is recognized as a key
feature of innate immune defense in infectious diseases (8, 9),
whereby moderate degrees of pyroptosis may serve protective
functions, but excessive degrees enable host-tissue destruction.
The roles of different PCD pathways in periodontitis are not yet
well established, and in particular, little is known about the role
of pyroptosis (10, 11). Pyroptosis is a caspase (CASP)-activated
form of PCD characterized by pore formation in plasma
membranes, followed by swelling, cell lysis, and local release of
pro-inflammatory mediators (12, 13). More recently, pyroptosis
has been found to be driven by Gasdermin family proteins,
chiefly including Gasdermin D (GSDMD), activated by pro-
inflammatory CASPs located on inflammasomes (14). The Nod-
Like Receptor (NLR) Family Pyrin Domain Containing 3
(NLRP3) inflammasome is a key canonical activator of CASP1
(15). Several studies have indicated that NLRP3 inflammasome
production is a feature of periodontitis and reflected by increased
levels of NLRP3-associated proteins in serum and saliva (16, 17).
In the context of periodontitis, a number of recent in vitro and
animal experimental studies have also documented the activation
of GSDMD and NLRP3 inflammasome pathways, including that
by P. gingivalis lipopolysaccharide (LPS) stimulation (18–23). P.
gingivalis induced the activation of pyroptosis-related NLRP3
inflammasome, which is also implicated in atherosclerosis
associated with periodontitis (24, 25). The inhibition of NLRP3
org 2
inflammasome in periodontitis is also documented as a
mechanism of immune evasion (26, 27). Accruing evidence has
shown that pyroptosis plays a role in periodontitis pathology,
whereby several virulence factors associated with periodontal
pathogens like P. gingivalis can trigger inflammasome activation
via CASPs and downstream pyroptosis (28). CASP4/GSDMD
initiated by bacterial LPS is shown to cause pyroptosis of
periodontal ligament stem cells in periodontitis (29). P.
gingivalis LPS is also found to mediate macrophage pyroptosis
in periodontitis (30). However, very little is known about the
detailed regulatory genetic and molecular machinery that
underlies the involvement of pyroptosis in the pathogenesis
and systemic sequelae of periodontitis.

Therefore, the current study was aimed to leverage publicly
available transcriptomics datasets for integrative bioinformatics
to identify a pyroptosis-related gene signature and its associated
functional pathways in periodontitis, thereby deepening the
understanding of putative pyroptosis-related mechanisms in
periodontal diseases. The findings of this investigation could
offer directions for future experimental research and uncover
important pathogenic pathways and therapeutic targets
for periodontitis.
MATERIALS AND METHODS

Data Processing
Periodontitis-related datasets from affected gingival tissues and
healthy controls were obtained from the Gene Expression
Omnibus (GEO) database of NCBI and included GSE10334
(28) and GSE16134 (31) (Supplementary Table S1). A total of
37 pyroptosis-related genes (PRGs) were obtained, including 16
PRGs from previous literature (32) and 24 PRGs from the
Molecular Signatures Database (MSigDB) (https://www.gsea-
msigdb.org/gsea/msigdb/), excluding three overlapped PRGs.
Next, to obtain the periodontitis-related PRGs, the above 37
PRGs were merged with the expression profiles of GSE10334
and GSE16134.

Identification of the Differentially
Expressed Periodontitis-Related PRGs
Differential expression analysis was performed to screen
periodontitis-related PRGs with GSE10334 and GSE16134
each, using the “Linear Models for Microarray data” (“limma”)
package in R (33) with Benjamini–Hochberg false discovery rate
(34) adjustment and with a P-value <0.05 and |log FC| > 0 as the
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threshold to screen differentially expressed (DE)-PRGs. These
were then visualized in a heat map. The expression pattern of the
PRGs in disease and healthy controls was identified in the
GSE10334 dataset, further validated in the GSE16134 dataset,
and displayed in box plots using the “limma” package in R (33).
A protein–protein interaction (PPI) network was constructed to
assess the gene interactions among the 26 DE-PRGs using the
Search Tool for the Retrieval of Interacting Genes database
(https://string-db.org/), visualized with "igraph" package in R
(http://igraph.org). To evaluate the correlation between PRG
pairs, Pearson’s correlation coefficient (35) was computed for
the DE-PRGs in periodontitis samples from GSE10334 and
visualized using “corrplot” in R (36).
Construction and Validation of a
Prognostic Model Based on Periodontitis-
Related PRGs
The significant DE-PRGs in GSE10334 were selected by univariate
logistic regression analysis (P-value <0.05) and visualized in forest
plots. A prognostic model was constructed to select the most
relevant DE-PRGs using the least absolute shrinkage and selection
operator (LASSO) regression, selecting the penalty parameter (l)
with tenfold cross-validation. Subsequently, multivariate logistic
regression analysis was applied to develop a diagnostic model
based on the selected prognostic signatures. The risk scores of
each sample in the training set (GSE10334) and the test set
(GSE16134) were calculated based on the following risk score
formula: risk score =o7

i (Xi � Yi) (X: coefficients, Y: gene
expression level) (37). The risk scores were visualized using box
plots, and analysis of variance (ANOVA) was applied. The
predictive accuracy of the training set and the test set was
evaluated by plotting a receiver operating characteristic (ROC)
curve (38) with the “pRPC” package (39) in R.
Consensus Clustering Based on the
Prognostic DE-PRGs
The pyroptosis-related clusters in 183 periodontitis samples
(GSE10334) were determined using “ConsensusClusterPlus”
package in R (40) based on the prognostic DE-PRGs. The cluster
number was determined according to the consensus matrix, the
consensus index-cumulative distribution function (CDF) curve, and
the delta area score ofCDF. The gene distribution of different clusters
was evaluated by principal component analysis (PCA). In addition,
the gene expression profiles of the prognostic DE-PRGs within
different clusters were compared using Student’s T-test, where DE-
PRGs with a P-value <0.001 were considered as the specific
prognostic PRGs in periodontitis.
Functional Analysis of Different Clusters
The DEGs in different clusters were filtered with the criteria of
adjusted P-value <0.05 and |log FC| ≥0.2. The enriched functions
for these DEGs were explored and compared by investigating
their enriched Gene Ontology (GO) terms, including biological
processes (BP), cellular components (CC), and molecular
Frontiers in Immunology | www.frontiersin.org 3
functions (MF), as well as Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis, using “clusterProfiler”
package in R and visualized using bubble plots.
Single-Sample Gene Set Enrichment
Analysis for Different Clusters
The immune scores of human leukocyte antigen (HLA)-related
gene expression, infiltrating immune cells, and immune
pathways in periodontitis as well as in different clusters were
calculated and compared by the single-sample Gene Set
Enrichment Analysis (ssGSEA) (41) and depicted using
box plots.
Weighted Correlation Network Analysis to
Identify the Hub Pyroptosis-Related
Modules
The weighted correlation network analysis (WGCNA) package (42)
was applied to the DEGs in the clusters to construct a co-expression
network and identify pyroptosis-related gene modules. Briefly,
Pearson’s correlation coefficients were firstly calculated, an
adjacency matrix was built, and the optimum power (b) was
selected to construct a scale-free topology. Then, average linkage
hierarchical clustering was conducted to identify modules through
topological overlap matrix approach (cutHeight = 20, 000,
minModuleSize = 60). Next, module eigengenes, representing the
correlation between different clusters and modules, were applied to
select significant modules. A high correlation between gene
significance (GS) and module membership (MM) implied an intra-
modular hub gene module. Subsequently, functional enrichment
analysiswasperformed to identify the significantGOs,BPs,MFs, and
KEGGpathwaysenrichedby thehubpyroptosis-relatedgenemodule
using the “clusterProfiler” package in R (43).
RESULTS

Identification of DE-PRGs in Periodontitis
The workflow of the study is displayed in Figure 1. Of the 37
PRGs, a total of 26 DE-PRGs were identified from the GSE10334
dataset (train set), and the same upregulated and downregulated
DE-PRGs were determined in the GSE16134 dataset (test set)
(Figures 2A–D). Of these, 18 PRGs were upregulated in
periodontitis, including interleukin (IL) 1 beta (B), IL6,
NLRP3, NLRP7, nucleotide binding oligomerization domain
containing 1 (NOD1), phospholipase C gamma 1 (PLCG1),
protein kinase CAMP-activated catalytic subunit alpha
(PRKACA), BCL2 antagonist/killer 1 (BAK1), BCL2-associated
X (BAX), CASP3, CASP5, charged multivesicular body protein
(CHMP) 4B, CHMP7, GSDMD, granzyme B (GZMB), IL1A,
interferon regulatory factor 1 (IRF1), and IRF2, while eight PRGs
were downregulated in periodontitis, including IL18, CHMP2B,
NOD2, CHMP4C, cytochrome C, somatic (CYCS), PYD and
CARD domain containing (PYCARD), SR-related CTD
associated factor 11 (SCAF11), and high mobility group box 1
June 2022 | Volume 13 | Article 862049
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(HMGB1) (Figures 2A–D). The PPI network shows the
interactions between the 26 periodontitis-related PRGs
(Figure 2E). The correlation analysis presented the relevance
of PRG pairs in periodontitis (Figure 2F). The highest positive
correlation was noted between HMGB1 and SCAF11 (R = 0.46,
p = 4.3e-11), while the strongest negatively correlated pair were
CASP3 and PYCARD (R = -0.37, p = 2.2e-07) (Figure 2F).

Development and Validation of the
LASSO Model
The prognostic value of the 26 DE-PRGs in periodontitis (train
set) was assessed by univariate logistic regression analysis
(Figure 3A). All the 26 DE-PRGs were included in the LASSO
model, with a P-value <0.001 (Figure 3A). Then, the optimum
parameter (l) was selected as 14 (Figures 3B, C), and a 14-PRG
signature model was developed based on a multivariate logistic
regression analysis (Figure 3D). The risk scores of the disease
samples were significantly higher than those of the healthy
samples in both the training set (Figure 3E) and the test set
(P < 2.2E-16). The accuracy and area under the curve of the
training set and the test set was 0.940 and 0.933, respectively
(Figure 3F), suggesting that the model has “outstanding”
robustness (38).
Frontiers in Immunology | www.frontiersin.org 4
Three Clusters Were Determined Based on
the 14 Prognostic DE-PRGs
By determining the clustering variable (k) as 3 (Figures 4A–C),
the 183 periodontitis samples in the GSE10334 dataset were
classified into three pyroptosis-related clusters based on the 14
prognostic PRGs, including 91 cases in cluster 1 (C1), 52 cases
in cluster 2 (C2), and 40 cases in cluster 3 (C3). The PCA
indicated a difference among the three clusters (Figure 4D).
The heat map displayed the gene expression profiles of the 14
prognostic PRGs in the three clusters (Figure 4E). Of these, the
expression levels of CASP3, GZMB, IL1A, IL1B, and IL6 were
highest in C2, whereas these genes presented lowest in C3 (P-
value <0.001, excluding GZMB with P-value <0.05)
(Figure 4F). On the contrary, PLCG1 and PYCARD
presented the lowest level in C2 but the highest level in C3
(P-value < 0.001) (Figure 4F).

Distinct Biological Functions Enriched in
the Three Clusters
Distinct enriched functional GO terms, including BP, CC, MF,
and KEGG pathways, were identified in the three clusters,
particularly in C1 (Figure 5). Among the GO-BP terms, C1
and C2 were distinguished from C3 by significant enrichment in
FIGURE 1 | Study workflow. Step1: 26 differentially expressed (DE)-pyroptosis-related genes (PRGs) were determined by merging the expression profiles of
GSE10334 and 37 obtained PRGs. The 26 DE-PRGs were further validated in another periodontitis dataset (GSE16134). Protein-protein interaction (PPI) network
and correlation analysis were conducted to investigate the interaction and correlation between the 26 DE-PRGs; Step2: The prognostic value of the 26 DE-PRGs in
periodontitis (Training set) was assessed by univariate logistic regression analysis, and least absolute shrinkage and selection operator (LASSO) regression was
applied to screen 14 prognostic PRGs from the 26 DE-PRGs. Then, a 14-PRGs signature model was developed based on multivariate logistic regression analysis.
The risk scores and receiver operating characteristic (ROC) curves were applied for the model validation; Step3: Consensus clustering was applied based on the 14
signatures, and three pyroptosis-related clusters were determined. Differential expression levels of the 14 PRGs were compared among the three clusters. Functional
analysis was applied to compare the Gene Ontology (GO) terms, including Biological Processes (BP), Cellular Components (CC), and Molecular Functions (MF), as
well as Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways among the three clusters. Single-sample gene set enrichment analysis (ssGSEA) were applied
to compare the immune activities among the three clusters. Step4: Weighted correlation network analysis (WGCNA) identified the pink module as the hub
pyroptosis-related module based on the module-trait relationship. Functional analysis was conducted for the pink module, in order to explore the role of pyroptosis
in periodontitis
June 2022 | Volume 13 | Article 862049
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endothelial cell migration (Figure 5A). Among GO-CC terms,
C1 and C3 were significantly enriched in NADPH oxidase
complex, while C1 alone was enriched in keratin filament but
not enriched in ficolin-1-rich granule, ficolin-1-rich granule
lumen, cornified envelope, secretory granule membrane,
membrane raft, and membrane microdomain (Figure 5B).
Considering GO-MF, C1 distinctly lacked enrichment in
cytokine binding, immune receptor activity, and misfolded
protein binding (Figure 5C), whereas transforming growth
factor (TGF) beta signaling pathway and primary bile acid
biosynthesis were only enriched in C1. KEGG pathways
including malaria, lipid and atherosclerosis, fluid shear stress
and atherosclerosis, and protein processing in endoplasmic
reticulum lacked enrichment only in C1 (Figure 5D).

Distinct Immune Characteristics
Characterized Both Periodontitis and the
Three Pyroptosis-Related Clusters
Significant differences were noted in the relative enrichment
scores of HLA gene expression, immune cell infiltration, and
immune pathway activities between periodontitis (diseased) and
healthy tissues, indicating that the immune micro-environment
acts as a vital regulator in periodontitis pathology
(Supplementary Figure S1). Higher levels of HLA-related
genes, such as HLA-DP alpha 1 (DPA1), HLA-B, and HLA-C
(Supplementary Figure S1A), more infiltrating immune cells,
such as B cells, CD8+ T cells, and neutrophils (Supplementary
Figure S1B), and higher activation of immune pathways, such as
type II interferon (IFN) response, inflammation promoting, and
Frontiers in Immunology | www.frontiersin.org 5
chemokine receptors (CCR) (Supplementary Figure S1C), were
detected in periodontitis compared to healthy controls. No
significant difference in the levels of HLA-DQ alpha 1
(DQA1), HLA-DP beta 2 (DPB2), T helper 2 (Th2) cells,
major histocompatibility complex class I, and type I IFN
response were detected between periodontitis and controls
(Supplementary Figure S1).

Importantly, marked differences were observed in the
immune microenvironment among the three pyroptosis-related
clusters, indicating a close relationship between pyroptosis and
immune regulation. Compared to C1 and C2, C3 presented
higher levels of HLA-DQ beta 2 (DQB2) but lower levels of
other HLA-related genes, such as HLA-C, HLA-DM alpha
(DMA), HLA-DO beta (DOB), HLA-B, HLA-DR alpha (DRA),
HLA-DR beta 6 (DRB6), HLA-M beta (DMB), and HLA-DPA1
(Figure 6A). Unlike C1 and C2, more infiltrating iDCs—whereas
fewer infiltrating aDCs, B cells, neutrophils, natural killer cells,
pDCs, Th1/TH2 cells, tumor-infiltrating lymphocytes cells, and
Treg cells were likewise observed in C3 (Figure 6C). Specifically,
compared with C1 and C2, C3 showed a lower activation of
immune pathways, including antigen-presenting cell (APC)
co-inhibition, APC co-stimulation, CCR, check-point, T cell
co-inhibition, T cell co-stimulation, and type II IFN
response (Figure 6B).

Identification of the Hub Pyroptosis-
Related Gene Module
By WGCNA, 13 gene modules were determined based on a
dynamic tree (Figures 7A, B). Based on the module–trait
B

C

D E F

A

FIGURE 2 | Identification of differentially expressed pyroptosis-related genes (DE-PRGs) in periodontitis. (A) Heat map of 26 DE-PRGs in the periodontitis dataset
(GSE10334 and GSE16134). (B, C) The box plots show the different expression levels of the 26 PRGs between disease (periodontitis) and healthy samples in the
GSE10334 dataset (B) and GSE16134 dataset (C). *P < 0.05, **P < 0.01, ***P < 0.001. (D) Volcano plot of the 26 DE-PRGs in the GSE10334 dataset. (E) Protein–
protein interaction (PPI) network of the 26 DE-PRGs. (F) Correlations of the 26 DE-PRGs in the periodontitis samples Red, positive correlation; Green, negative
correlation. The color depth and the size reflect the strength of the relevance. The strongest positive and the strongest negative correlation were displayed in scatter plots.
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relationships between 13 modules and three clusters, the most
significant correlation was seen between the pink module and
cluster C2 (Cor = 0.36, P = 7e-07) (Figure 7C). The association
of the module membership in the pink module with gene
significance in C2 was visualized in the scatter plots (Cor=0.41,
P=7.7e-25) (Figure 7D).
Biological Functions Enriched
in the Pink Module
To explore the functional mechanisms indicated by the
pyroptosis-mediated pink gene network module, the GO
characters (BP, CC, and MF) as well as KEGG pathways
were investigated. Most genes in the pink module were
found to be enriched in BPs such as response to
endoplasmic reticulum stress and endoplasmic reticulum
unfolded protein response (Figure 8A), in CCs such as
integral component of organelle membrane and transport
vesicle (Figure 8B), and in MFs including immune receptor
activity, misfold protein binding, and mannosidase
activity (Figure 8C). The KEGG pathway analysis showed
that the pink module genes were mainly enriched in
pathways including protein export pathway, protein
process in endoplasmic reticulum pathway, various types of
N-glycan biosynthesis pathway, and N-glycan biosynthesis
pathway (Figure 8D).
Frontiers in Immunology | www.frontiersin.org 6
DISCUSSION

The present study used a suite of comprehensive bioinformatics
analyses to describe multiple molecular aspects of pyroptosis in
the pathogenesis of periodontitis by leveraging publicly available
transcriptome data. By applying clustering approaches, hub
pyroptosis-related genes and their key functional roles in
periodontitis were identified. At the first step, PRGs
significantly dysregulated in periodontitis were determined.
Among the upregulated PRGs, high log fold changes were
evident for the pro-inflammatory mediators IL1B, IL6, and
GZMB. The inflammasome-mediated activation of CASPs,
such as CASP1, CASP11, or CASP8, is known to cleave
GSDMD to induce the maturation of the pro-inflammatory
cytokine IL1B (44–47). GZMB, a serine protease, is shown to
cleave gasdermin E to induce pyroptosis (48). GZMB is
associated with chronic inflammation in multiple conditions,
in particular, destructive skin and connective tissue conditions,
and induces extracellular matrix destruction and pro-
inflammatory cytokine activation (49), but experimental
evidence concerning its role in periodontitis-associated
pyroptosis is scarce. Among the DE-PRGs, CASP3 was notable
in terms of high log fold change. Increased CASP3 levels have
been observed in gingival crevicular fluid from periodontitis (50)
and also seen to decline in the short term following therapy (51).
Mechanistically, the short-chain fatty acid butyrate has been
B C

D E F

A

FIGURE 3 | Construction and validation of a prognostic model. (A) Univariate logistic regression analysis for the 26 differentially expressed pyroptosis-related genes
(PRGs) in periodontitis samples (GSE10334) with P < 0.05. (B, C) A total of 14 prognostic genes were selected among 26 periodontitis-related PRGs with least
absolute shrinkage and selection operator (LASSO) model, selecting the optimum parameter (l) as 14 with 10-fold cross-validation. (D) Multivariate logistic
regression for the 14 prognostic PRGs. (E) Risk scores of the disease (periodontitis) and healthy samples in the GSE10334 dataset (P < 2.2E-16). (F) Receiver
operating characteristic (ROC) curve of the GSE10334 dataset (training set) and the GSE16134 dataset (test set). The area under the curve (AUC) value of the train
set and the test set is 0.940 and 0.933.
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found to induce CASP3-mediated pyroptosis in gingival
epithelial cells (52). Downregulated DE-PRGs with high fold
change included NOD2, CHMP2B, and CHMP4C. NOD2 is
crucial for bacterial pathogen recognition and its subsequent
macrophage response in periodontal tissue, and in agreement
with our findings, its knockout was shown to reduce bone resorption
in a mouse model of Aggregatibacter actinomycetemcomitans (Aa)-
induced periodontitis (53). The CHMP proteins are part of the
endosomal sorting complex required for transport (ESCRT) III
machinery involved in regulating endosomal transport and cargo
recognition (54, 55) and are crucial to the repair of plasmamembrane
damage and resistance to pyroptosis (56), but experimental evidence
specifically investigating the role of CHMP family of proteins in
periodontitis-related pyroptosis is lacking. Of note is that the
expression pattern of NLRP3-associated genes, such as ASC
(PYCARD), and inflammasome-associated cytokines has shown
different expression patterns in literature regarding periodontitis
pathology (16, 57). Aral et al. (57) showed that P. gingivalis
exposure of human gingival fibroblasts along with ATP led to the
Frontiers in Immunology | www.frontiersin.org 7
downregulation of ASC and NLRP3 while upregulating IL-1,
whereas, in contrast, Fusobacterium nucleatum (F.nucleatum)
infection was marked by increased levels of NLRP3, ASC, and IL-
1B. Similar findings of P. gingivalis-containing biofilm infection
leading to the downregulation of NLRP3 inflammasome were
earlier reported by Belibasakis et al. (58), indicating that the
pathogen-induced dampening of innate immune response to favor
pathogen persistence might underlie this finding. Furthermore, the
downregulation of inflammasome regulators in periodontal disease
has also been noted by Aral et al. (59) who found that ASC/PYCARD
was negatively correlated to probing depth, although no differences
were noted between ASC/PYCARD between disease groups. In the
present study, lower levels of IL-18 were noted in the disease group as
compared to the healthy controls, which is suggestive of the
dichotomous roles of IL-18. Lower levels of IL-18 have been noted
in early periodontal disease as compared to healthy controls (60).
Clinically, periodontal therapy has been found to reduce NLRP3 but
not IL-18 (61). Distinct and independent processes in NLRP3
inflammasomes in vitro are shown to elicit IL-1B and IL-18
B C D

E

F

A

FIGURE 4 | Identification of the pyroptosis-related clusters in periodontitis. (A–C) Consensus clustering for the 183 periodontitis samples in GSE10334 based
on the prognostic pyroptosis-related genes (PRGs). Three clusters were classified according to the consensus matrix (A), consensus index of cumulative
distribution function (CDF), and CDF delta area curve (C) for k = 3 by increasing the index from 2 to 9. (D) The principal component analysis (PCA) shows a
different distribution of the three clusters. (E, F) The expressions of the 14 prognostic PRGs in the three clusters are shown in the heat map (E) and box plots (F). *P <
0.05, **P < 0.01, ***P < 0.001.
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production in response to non-canonical stimulation, which can fine-
tune the pyroptosis response (62) and is likely to account for the
opposing patterns observed in periodontitis samples. The role of non-
canonical NLRP3 inflammasome activation in periodontitis needs
further study.

Among the PRG pairs, HMGB1 and SCAF11 showed the
strongest positive correlation in periodontitis. HMBG1 is
stimulated by inflammatory stimuli, can act on toll-like
receptors, and can also enhance chemotaxis, depending on the
redox state (63). In periodontitis, HMBG1 secretion due to
bacterial stimulation has been documented and shown to
prolong the inflammatory responses (64). SCAF11 is involved
in mRNA splicing and recently recognized as implicated in
several types of cancer, but its involvement in periodontitis
Frontiers in Immunology | www.frontiersin.org 8
remains to be clarified. The strongest negative correlation was
noted between CASP3 and PYCARD, while CASP3 and NLRP3
were both also negatively correlated with IL-18. CASP3 is
common to both apoptosis and pyroptosis pathways, whereas
PYCARD is a key inflammasome regulator (65). These findings
could suggest that pyroptosis via the non-canonical NLRP3
pathway activation could occur in periodontitis, plausibly
occurring in a distinct temporal stage or in differing disease
characteristics. In support, ATP is shown to induce pyroptosis in
macrophages through the alternative CASP3 pathway when the
canonical NLRP3 pathway is blocked by pathogens as a
mechanism to counter pathogen evasion (66). The present
findings are closely aligned with an earlier study which showed
that PYCARD/ASC knockout led to the attenuation of the
B

C D

A

FIGURE 5 | Distinct biological functions identified among the three pyroptosis-related clusters. (A–C) Comparison of the GO-BPs (A), GO-CCs (B), and GO-MFs
(C) enriched in the three clusters. GO, Gene Ontology; BP, biological processes; CC, cellular components; MF, molecular functions. (D) Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways enriched in the three clusters. The terms with p-value <0.05 were shown as triangle points (TRUE), and others were
displayed as round points (FALSE).
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canonical pyroptosis-associated CASP1 but increased the
number of non-canonical pyroptosis-associated CASP3- and
CASP8-expressing gastric epithelial cells (67), which occurred
independent of mucosal inflammation.

The 14-PRG signature for periodontitis achieved excellent
prediction accuracy in disease classification and provides a
basis for translational research. To further explore the
mechanistic aspects, consensus clustering was applied and
demonstrated three distinct clusters, whereby C2 was
characterized by CASP3, GZMB, IL1A, IL1B, and IL6,
representing CASP3-st imulated pyroptosis pathway
dominance. On the other hand, C3 was marked by PLCG1
and PYCARD, where lipid peroxidation-mediated PLCG1
Frontiers in Immunology | www.frontiersin.org 9
activation can drive GSDMD and induce pyroptosis (68), and
PYCARD is a NLR component implicated in reactive oxygen
species-mediated pyroptosis involving NLRP3 activation (69,
70). The potential relevance of these differences in pyroptosis
mechanisms between clusters may represent the molecular
subtypes of the disease in the context of pyroptosis and
warrants further investigation in experimental research. The
functional analysis indicated that C1 was enriched in
endothelial cell migration, NADPH oxidase, keratin filament,
and TGF beta signaling pathway, suggesting the dominance of
canonical pathway-mediated pyroptosis. Pyroptosis can be
mediated by the canonical inflammasome pathway via CASP1
that stimulates the IL18/INFg/NADPH oxidase axis and can be
B

C

A

FIGURE 6 | Distinct immune characteristics underlined in the three pyroptosis-related clusters. (A–C) Human leukocyte antigen (HLA) gene expression (A), immune
pathway activities (B), and immune cell infiltration (C) of the three pyroptosis-related clusters. *P < 0.05, **P < 0.01, ***P < 0.001.
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triggered by gram-negative bacteria (71–73). Cluster C3 was
marked by higher levels of HLA-DQB2, an increase in
infiltrating iDCs, and lower activation of APC and T cell-
related immune pathways, along with a lower type II IFN
response. Dendritic cells display multiple modes of
inflammasome activation upon encountering a microbial
product or endogenous triggers, resulting in either pyroptosis
or a hyperactive state that stimulates adaptive immunity and T
cell activation (74). Bacterial LPS is shown to induce CASP11-
mediated non-canonical inflammasome activity, which leads to
pyroptosis (75). Furthermore, while PMN infiltration was
higher in periodontitis as compared to healthy tissues, C3
manifested a relatively lower PMN signature as compared to
C1 and C2. Considering together with the findings that C3 was
marked by higher PYCARD and iDCs but lower CASP3,
GZMB, and pro-inflammatory cytokines, this raises further
questions regarding the clinical and microbiological correlates
Frontiers in Immunology | www.frontiersin.org 10
of this cluster. It is also plausible that C3 may represent an
earlier temporal stage of periodontitis or periodontal pathogen-
associated immune evasion. Incidentally, the periodontal
pathogen P. gingivalis has been associated with impairment of
PMN recruitment (76). Increased HLA-DQB2 expression has
been associated with susceptibility to the autoimmune disease
rheumatoid arthritis (77) and increased renal transplant
rejection (78). Therefore, the cluster C3 could also represent
distinct host susceptibility associated with deregulation of
immune tolerance, including pyroptosis. Of note is that non-
canonical pyroptosis pathway activation has been associated
with autoimmune disease (79), and our earlier research has
shown distinct immune subtypes to exist in periodontitis (80).
The role of pyroptosis should be investigated in these contexts.
Together with the data from earlier investigation showing
PYCARD suppression that led to increased CASP3 and
CASP8 in gastric epithelial cells (67), these findings suggest
B

C D

A

FIGURE 7 | Identification of hub pyroptosis-related gene modules by performing weighted gene correlation network analysis (WGCNA). (A) Scale independence and
mean connectivity analysis for various soft threshold powers, where the optimum power = 9. (B) Network heat map plot of topological overlap for all genes. Each
row and column correspond to a gene. The color row underneath the dendrogram indicated the module assignment, of which 13 modules were identified according
to the dynamic tree cut. (C) The module–trait relationships between the 13 modules and three clusters are shown in the heat map. The most significant relationship
was between the pink module eigengene and cluster 2 (Cor = 0.36, P = 7e-07). (D) The scatter plots of module membership in pink module vs. gene significance in
cluster 2 (Cor=0.41, P=7.7e-25). Cor, correlation..
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the possibility that the cluster C3 represented a greater non-
canonical inflammasome pathway molecular activity as
compared to C1 and C2.

Future research should also address variations in periodontitis-
associated biofilm composition and functions linked to specific
pyroptosis pathways. Importantly, in the current study, metadata
regarding clinical disease characteristics, such as disease severity or
associated risk factors, were unavailable for correlation with
pyroptosis-based clusters and should be addressed in future
studies. The nature of host inflammatory responses and
associated cell death varies with disease. In case of apical
periodontitis, it has been shown that pyroptosis increases with
the progression of the disease (81). In periodontitis, recent work
has highlighted that genes associated with apoptosis and hypoxia
show the largest changes during the disease initiation stage of 2
weeks; autophagy-related genes show maximum changes during
disease progression stages and are associated with distinct oral
microbiome features (82). Similar research into the temporal
progression of disease or its severity and its association with
pyroptosis is essential. CASP8, which can cleave GSDMD,
resulting in pyroptosis activation (83), has been shown to be
Frontiers in Immunology | www.frontiersin.org 11
expressed at lower levels in aggressive periodontitis as compared to
chronic periodontitis (84). An increase in CASP3 expression with
disease has also been documented (85); however, whether the C3
samples manifested a lower severity in conjunction with a low
CASP3 expression or whether disease progression patterns were
distinct could not be ascertained in the present analysis.
Additionally, several PRGs are implicated in other forms of cell
death, and the balance of pyroptosis with other mechanisms of
PCD, which occurs synergistically, also merits deeper investigation.

WGCNA showed a high correlation of the pink module with
C2, which was found to be enriched in endoplasmic reticulum
(ER) stress, vesicle transport, protein export, unfolded protein
response, N-glycan biosynthesis pathway, and related functions.
Increased ER stress in periodontitis has been noted (86). LPS has
been shown to induce the ER stress response, an adaptive
mechanism which, when excessive, leads to NLRP3
inflammasome activation and pyroptosis via the CASP1
pathway (87). P. gingivalis LPS has been shown to stimulate
ER stress and, consequently, apoptosis in human umbilical vein
endothelial cells (88), but the effects on pyroptosis are not
established. In periodontitis, long-standing inflammation has
B

C D

A

FIGURE 8 | Biological functions behind the pink module. (A–C) GO-BPs (A), GO-CCs (B), and GO-MFs (C) enriched in the pink module. GO, Gene Ontology; BP,
biological processes; CC, cellular components; MF, molecular functions. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in the pink
module. The terms with p-value <0.05 are visualized.
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been shown to induce ER stress via lysine acetyltransferase 6B
(89). Others have noted that the ER stress-induced alveolar bone
resorption in periodontitis was independent of inflammatory
cytokine release (90). Taken together, these data suggest that
multiple pathways of pyroptosis may be implicated in
periodontitis with heterogeneous occurrence; furthermore,
distinct molecular subtypes may exist in terms of their
relative dominance.

These data highlight the necessity of further studies to unravel
the mechanisms of pyroptosis involvement in periodontitis. Such
research assumes significance considering the possibility of
therapeutic interventions directed at pyroptosis blockade (91,
92) that can offer a novel management modality for periodontitis
and syndemic oral-systemic conditions. The significance of
pyroptosis in the linkage of periodontitis-associated systemic
disease has been recently demonstrated in the context of
rheumatoid arthritis using bioinformatics analysis (93), and
additional studies are warranted. The findings of this study
should be addressed in the context of its limitations. The 14-
PRG signature was not verified with clinical or experimental
data. In addition, the GEO datasets analyzed in the present study
were of a modest sample size, which further necessitates
verification experiments. As such, the presented findings must
be considered as preliminary and the basis for directing
future research.
CONCLUSION

The present study identified a highly robust, 14-PRG signature of
periodontitis. Furthermore, three distinct pyroptosis-related
clusters were identified, with differences in enriched functional
biological functions and immune microenvironments indicated
by HLA gene expression, immune cell infiltration, and immune
pathway patterns. A hub pyroptosis-related module associated
with ER stress and related functions was closely representative of
cluster 2. These findings presented several functional aspects of
pyroptosis involvement in periodontitis and also suggested
heterogeneity in the relatively dominant pyroptosis-related
pathways, which necessitates future investigation in the
context of disease features, susceptibility, and longitudinal
progression patterns.
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