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To gain access to the brain, a so-called immune-privileged organ due to its physical
separation from the blood stream, pathogens and particularly viruses have been selected
throughout evolution for their use of specific mechanisms. They can enter the central
nervous system through direct infection of nerves or cerebral barriers or through cell-
mediated transport. Indeed, peripheral lymphoid and myeloid immune cells can interact
with the blood–brain and the blood–cerebrospinal fluid barriers and allow viral brain
access using the “Trojan horse”mechanism. Among immune cells, at the frontier between
innate and adaptive immune responses, dendritic cells (DCs) can be pathogen carriers,
regulate or exacerbate antiviral responses and neuroinflammation, and therefore be
involved in viral transmission and spread. In this review, we highlight an important
contribution of DCs in the development and the consequences of viral brain infections.

Keywords: viral infection, dendritic cell, blood–brain barrier, neuroinflammation, neuroinfections, blood–
cerebrospinal barrier
INTRODUCTION

The central nervous system (CNS) is often considered as an immune-privileged organ because it is
separated from the blood by specific cellular barriers. Nonetheless, pathogens, in particular
neurotropic viruses, have been selected throughout evolution for their ability to reach the brain
(1). Human pathologies following CNS viral infections can be due to direct virus invasion and
elicited toxicity or indirectly by mediators of neuroinflammation. For instance, some virus-
associated neuronal diseases can be due to direct infection of neurons or to indirect effects
triggered by CNS-supporting cells and inflammatory mediators, causing damages and
dysfunctions (paralysis, cognitive deficits, ocular problems) (2, 3). Different clinical symptoms
may appear depending of the site of infection and/or inflammation: meningitis for inflammation of
leptomeningeal structures, myelitis for the inflammation of the spinal cord, and encephalitis for
inflammation of parenchymal brain tissue (4), the latter being most common upon viral
neuroinfections. Viral brain infections are generally limited by in situ innate immune response of
the host and by the physical protection exerted by the brain barriers. These are complex
org April 2022 | Volume 13 | Article 8620531
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multicellular structures forming an endothelium or an
epithelium that separates the systemic circulation from the
CNS. Depending on their location, the brain barriers exert
different functions but they mostly control diffusion between
CNS and blood and allow a precise regulation of CNS
metabolism and immunity.

Importantly, immune cells have an ambivalent role during
viral brain infections, as they are actors of the antiviral response
but can also be viral carriers into the CNS and therefore
participate in virus transmission, neuroinflammation, and
associated deleterious effects. Moreover, because of the
presence of viruses or inflammatory mediators in the brain, the
release of cytokines and chemokines will further allow
transmigration of immune cells such as monocytes, T
lymphocytes, natural killer cells (NK), and dendritic cells
(DCs) (5–7).

Immunosurveillance is provided by specific resident and
incoming immune cell subsets. Their distribution varies
depending on the nature of the epithelium and the
inflammatory state of the tissue (8, 9). Among these immune
cells, DCs are the very first responders following viral infection,
as they are at the frontier between innate and adaptive immunity
and acting as sentinels of the immune system, notably in the site
of potential infection, including in the CNS. In this review, we try
to shed some light on the pathogenesis of viral brain infections
with a particular interest in the interactions with brain barriers
and a focus on the role of DCs during viral brain invasion.
MECHANISMS OF VIRAL BRAIN ACCESS

Different viral CNS access mechanisms have been characterized,
involving a neuronal-mediated spread mechanism (through
axonal transport) and a hematogenous-mediated viral entry
route (through interaction with brain barriers) (Table 1).
Notably, entry mechanisms and viral tropism may determine
neurological symptoms and clinical outcome (42, 43).

Axonal Transport
Neurons represent significant entry gates to the CNS for
numerous pathogens (43). Indeed, cranial nerves from the
olfactory system (Figure 1A) or peripheral nerves (Figure 1B)
can be used for axonal transport by viruses such as rabies virus,
herpes simplex virus (HSV), poliovirus, St. Louis encephalitis
virus, West Nile virus (WNV), or severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (10–12, 14–16, 18, 19,
23, 24). Viruses use also the host cell transport machinery, such
as transport mediated by kinesins along microtubules in the
anterograde direction or the interaction of dynactin and dynein
with microtubules in the retrograde transport (44–46)
(Figure 1B) and trans-synaptic trafficking that will enhance
brain invasion as it was described for WNV (47) and Measles
virus (25) (Figure 1A). This allows a direct access to the CNS
while escaping from host immune response (17, 48, 49). For
instance, some viruses can access the CNS via peripheral uptake
Frontiers in Immunology | www.frontiersin.org 2
because of limited host defense that did not control peripheral
infection (1).

Entry Through the Blood–Brain Barrier
The blood–brain barrier (BBB), located between neuronal
capillaries and the CNS, is constituted by pericytes and
astrocytes closely interacting with a monolayer of endothelial
cells to control exchanges with the blood through the high
expression of tight junction proteins (Figure 1C) (50–52). This
structure is found in cerebral blood vessels and is essential for the
transport of lipid-soluble molecules or gaseous and liquid
components by passive diffusion, while the transport of large
and polar molecules is reduced (53). The BBB also has active
transport mechanisms that regulate CNS homeostasis while
avoiding neuroinvasion by leukocytes or pathogens (54).
However, some molecules and pathogens can be transported in
endocytic vesicles across the endothelial cells and pericytes, and
transferred into the CNS, such as cells and pathogens upon
secretion of chemoattractant molecules (28, 55).

Cell-free viruses, when in sufficient amount in the blood, can
reach the CNS during the primary viremia (Figure 1C).
Thereupon, endothelial cells can be susceptible and permissive
to direct viral infection and replication, leading to brain invasion
by basolateral viral particle release. Measles virus, for example,
can productively infect BBB endothelial cells, allowing the release
of viral particles and CNS invasion (26). Other studies on the
interaction between human brain endothelial cells and
flaviviruses have demonstrated CNS invasion by direct
infection of these cells (Figure 1C) (28, 56). Moreover, the
presence of viral particles such as WNV in the blood can also
lead to BBB dysregulation with a decrease of tight junction
protein expression, mostly zona occludens-1 (ZO-1) and
claudin-5, after activation of Rho GTPases following the
recognition of pathogen-associated molecular patterns
(PAMPs) by pattern recognition receptors (PRRs). For
instance, human T-cell lymphotrophic virus type 1 (HTLV-1)
is also able to productively infect human brain endothelial cells,
leading to a dysregulation of tight junction protein expression
and subsequent transcellular virus spread into the CNS (27, 57).

Viral Interaction With Meninges and the
Blood–Cerebrospinal Fluid Barrier
The blood–cerebrospinal fluid (CSF) barrier (BCSFB) limits the
passage between the blood and the CSF produced by the choroid
plexus (51) (Figure 1D). Located in the ventricular system of the
brain, the choroid plexus complexed with endothelial cells and
CSF form the BCSFB. The stroma, at the center of the choroid
plexus, is composed of fibroblasts, immune cells, connective
tissue, and blood microvessels (58). Similarly to the BBB, this
barrier is an important interface between the peripheral
circulation and the CNS. Indeed, the specialized cuboidal
epithelial cells form a layer with a high expression of tight
junctions to separate the blood from the CSF that they
produce (51, 59). Some viruses display important choroid
plexus tropism such as chikungunya virus, echovirus-30, JC
virus (JCV), or Zika virus (ZIKV) (31–33, 60). Neuroinvasion
April 2022 | Volume 13 | Article 862053
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and/or spreading may also involve meninges and the CSF. Of
note, the lymphatic transport system (glymphatic system and
meningeal lymphatic vessels) is also a key actor in the regulation
of CNS homeostasis due to its functions in immune monitoring
and metabolite draining among others (61). It is also involved in
pathological mechanisms, including brain infections (62).
Because the lymphatic transport system is involved in CSF
drainage (or outflow), it can also facilitate cell and viral CNS
Frontiers in Immunology | www.frontiersin.org 3
access. Indeed, evidence of close interaction between CSF and
lymphatic vessels, notably for CSF drainage from subarachnoid
space (63, 64), can support cell-mediated and viral particle
circulation in the CNS.

The Trojan Horse Mechanism
Importantly, an exacerbated primary inflammatory response that
alters brain barrier permeability can also facilitate transfer
TABLE 1 | Different CNS mechanism access and symptoms for some neurotropic viruses.

Viruses CNS access Main cells
targeted

Symptoms References

Rabies virus Axonal transport (peripheral
nerve and olfactory bulb)

Neurons Encephalitis (10–13)

Herpes simplex
virus

Axonal transport (olfactory bulb) Glial cells
(astrocytes)
Neurons

Encephalitis, persisting latent infection (14)

Poliovirus Axonal transport (peripheral
nerve and olfactory bulb)
Entry via brain barrier

Neurons Paralytic poliomyelitis, encephalitis, acute flaccid paralysis (15, 16)

St. Louis
encephalitis
virus

Axonal transport (peripheral
nerve and olfactory bulb)
Entry via brain barrier

Neurons
Glial cells
(astrocytes)

Meningitis, encephalitis, coma, agitations, confusion, tremors (17)

West Nile virus Axonal transport (peripheral
nerve and olfactory bulb)
Entry via brain barrier
Cell-mediated (leukocytes
neutrophils)

Neurons
Endothelial cells
Astrocytes

Encephalitis, cognitive dysfunction, flaccid paralysis, ocular manifestations,
muscle weakness

(18–22)

SARS-CoV-2 Axonal transport (olfactory bulb) Neurons? Seizures, encephalitis, loss of consciousness, anosmia, ageusia, Guillain–Barré
syndrome, ischemic stroke

(23, 24)

Measles Axonal transport (peripheral
nerve and olfactory bulb)
Cell-mediated
Entry via brain barrier

Neurons
BBB endothelial
cells

Encephalitis, encephalomyelitis, subacute sclerosing, panencephalitis (25, 26)

HTLV-1 Entry via brain barrier Neurons HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) (27)
Zika Axonal transport (peripheral

nerve and olfactory bulb)
Cell-mediated (leukocytes)
Entry via brain barrier

Neurons
BBB cells
Glial cells

Guillain–Barré syndrome, congenital Zika syndrome, meningoencephalitis (28–30)

Chikungunya
virus

Entry via brain barrier Neurons
Glial cells
(astrocytes)

Myalgia, arthralgia, encephalopathy, hemorrhagic fever, meningoencephalitis,
myelitis, Guillain–Barré syndrome

(31)

Echovirus-30 Entry via brain barrier (infection
choroid plexus)

Meningitis, encephalitis, flaccid paralysis, myocarditis (32)

JC virus Entry via brain barrier (infection
choroid plexus)
Cell-mediated (B cells)

Oligodendrocytes
Microglial cells

Encephalitis, meningoencephalitis, multifocal leukoencephalopathy (33, 34)

HIV-1 (and SIV) Cell-mediated (CD4+ T cells,
monocytes, DCs)
Entry via brain barriers

Macrophages
Microglia

HIV-1-associated dementia (HAD), cognitive and motor disorders, HIV-1-
associated neurocognitive disorders (HAND)

(35–37)

Coxsackievirus Cell-mediated (myeloid cells)
Entry via brain barrier (infection
choroid plexus)

Neurons Encephalomyelitis, meningitis (38)

Toscana virus Cell-mediated
Entry via brain barriers

Brain endothelial
cells
Neurons?

Kernig sign, nuchal rigidity, photophobia, consciousness troubles, tremors,
nystagmus, paresis, meningitis, meningoencephalitis, encephalitis

(39)

Varicella zoster
virus

Cell-mediated (DCs and T cells)
Entry via brain barriers

Nerve cells Postherpetic neuralgia, congenital varicella syndrome (40)

Nipah virus Cell-mediated
Axonal transport
Entry via brain barriers

Brain endothelial
cells
Neurons

Encephalitis, vasculitis, parenchymal necrosis drowsiness, headache,
disorientation or confusion, reduced consciousness

(41)
April 2022 | Volume 13 | A
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through circulating infected immune cells (Figure 1C). The
transfer of pathogens to the CNS through infected immune
cells is called “Trojan horse” mechanism and is increasingly
studied, as several viruses are now described to use this pathway
to invade the CNS (65). CNS infection by human
immunodeficiency virus (HIV)-1 can presumably occur in a
cell-free manner (66), but virus transport across the brain
barriers can be mediated by HIV-1-infected immune cells as
monocytes or CD4+ T cells (35, 36, 66). HIV-1-infected CD14+/
CD16+ monocytes were also reported to efficiently cross the BBB,
thus placing the “Trojan horse” strategy as a main route of CNS
infection (4, 67, 68). In non-human primates, it was also
demonstrated in the role of simian immunodeficiency virus
(SIV)-infected monocytes in neuroinvasion (37). Similarly, JCV
can infect B cells, which transmigrate across the BBB (34). By its
location at the interface of the blood, CSF, and brain, the choroid
plexus is an important regulator of immune cell traffic and is also
a target during infections and immune cell infiltration
supporting neuroinflammation (59). For example, myeloid cells
infected by coxsackievirus are suspected of being disseminators
of the virus from the blood within the CNS via the choroid
plexus (38).
Frontiers in Immunology | www.frontiersin.org 4
Nonetheless, it seems that viral access through brain barriers
and direct neuronal access to the CNS are not mutually exclusive
and can occur concomitantly for instance during infection by
rabies virus and WNV (1, 13, 17, 47, 69) (Table 1). Mediators
released during infection can interact with and modulate the BBB
permeability as vasogenic and growth factors, cytokines, and
chemokines (70, 71). These examples illustrate how infections
and pro-inflammatory factors lead to an increase in brain barrier
permeability and an enhanced access across brain barriers,
promoting the development of neuroinflammation (71–
73) (Figure 2).

Upon cytokines, chemokines, and cellular adhesion molecule
upregulation, different classes of immune cells can be recruited at
brain barriers. Their transmigration into the CNS helps the
antiviral response and control neuroinflammation or facilitate
viral entry (Figure 2). In healthy context, macrophages and DCs
can be found in the perivascular space at the BBB and choroid
plexus, which ensure immunosurveillance. During pathological
conditions, these cells and other antigen-presenting cells (APC)
can recruit effector immune cells in these perivascular spaces
(74). For example, in the context of SIV infection, SIV-infected
immune cells are found in the perivascular space (37). This
FIGURE 1 | Different viral modes of access to the central nervous system (CNS). (A) Viruses can be up taken by nerve terminals at the olfactory bulb to gain access
to the CNS. (B) They also can infect peripheral neurons and use long-range retrograde axonal transport. (C) At the blood–brain barrier (BBB), (1) viruses can directly
cross the endothelium (by paracellular or transcellular ways), (2) they can infect and replicate in brain endothelial cells and be released in the CNS, (3) and finally they
can pass through the BBB by infecting immune cells that cross the endothelium through the “Trojan horse” mechanism. (D) At the blood–cerebrospinal fluid barrier,
(1) viruses can directly cross the endothelium, (2) they can also infect, replicate, and be released from endothelial cells, pericytes, or epithelial cells of the choroid
plexus, (3) and finally infected immune cells can also cross this barrier and deliver viruses in the CNS. Created with SMART Servier Medical Art.
April 2022 | Volume 13 | Article 862053
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compartment should not be neglected during neuroinflammation
studies, as immune cell recruitment at the BBB starts with a
transmigration in the perivascular space before migration across
glia limitans (75, 76).
A FOCUS ON DENDRITIC CELLS

Immunosurveillance is provided by specific resident and
incoming immune cell subsets. Their distribution varies
depending on the nature and the inflammatory state of the
tissue (8, 9). Among these immune cells, DCs are the very first
responders following viral infection, as they are at the frontier
between innate and adaptive immunity and acting as sentinels of
the immune system, including in the CNS.

DCs include different subsets with specific cellular and
immunological properties: the myeloid/conventional DCs
(DCs), the Langerhans cells (LCs) that are the unique DC
subset located in mucosal stratified (intestine and oral mucosa)
and pseudostratified epithelium (example: lung) as well as skin
Frontiers in Immunology | www.frontiersin.org 5
epidermis (8, 77), and the plasmacytoid DCs (pDCs), which are
unconventional DCs characterized by their ability to produce
large amounts of type I interferon (IFN-I) in response to viral
pathogens (78, 79) (Table 2).

DC subsets originate from bone marrow CD34+

hematopoietic stem cells giving rise to common myeloid/
lymphoid progenitors (CMLPs), which then differentiate
toward common myeloid progenitor (CMP) or common
lymphoid progenitor (CLP). Under specific environmental
cytokine conditions, concomitantly with the expression of
defined transcription factors, CMPs separate from the
monocyte/macrophage axis and generate common DC
progenitors (CDPs), which will give rise to pDCs and
conventional DC subsets (8, 80). Various DC precursors (Pre-
DCs) with selective functional features are characterized by the
unique expression of AXL and SIGLEC6 along with myeloid and
plasmacytoid markers like CD11c and CD123 (81, 82). However,
this was recently challenged, since DC (Axl+ Siglec 6+), named
AS DC, was described in 2017 as a potential new functional DC
subset instead of being an exclusive pre-DC progenitor (81).
FIGURE 2 | Effects of neuroinfections in the CNS. Viral brain infections will trigger multiple molecular and cellular mechanisms in the various CNS cell types that can
lead to apoptosis of neuronal cells, release of pro-inflammatory factors, disruption of brain barriers, and immune cell recruitment, which ultimately will exacerbate
neuroinflammation. Created with SMART Servier Medical Art.
April 2022 | Volume 13 | Article 862053
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Nevertheless, DCs can be divided into three major DC subsets,
pDC, conventional DC1 (cDC1), and conventional DC2 (cDC2),
but other cell phenotypes can arise from those subsets
particularly when considering tissue-resident DCs and
inflammatory status (8, 80). Interestingly, LCs, which represent
a DC subset exclusively present in the epidermis and upper
mucosal layers, were shown to be functionally related to DCs but
ontogenically closer to macrophages due to their reported
embryonic origin and self-renewing capacities (83, 84). Indeed,
the ontogeny of LCs has always been subject to intense debate,
and new transcriptomic data suggest that LCs are rather closely
related to tissue-resident macrophages. Nevertheless, LCs were
recently reported to share ontogeny and transcriptional features
with both macrophages and DCs (85). From a functional and
phenotypic point of view, LCs have strong similarities with DCs
(86). For example, LCs have the ability to capture pathogens and
possess migratory abilities to initiate T-cell responses in lymph
nodes. Moreover, LCs can be generated ex vivo from
hematopoietic precursors in response to cytokines and cell
membrane-associated ligands. Thus, LCs were found to share
both macrophage and DC characteristics (85, 87), as particularly
evidenced upon skin damage and inflammation or infection
processes in vivo. All the current debates based on the different
reported cell or animal models emphasize the importance to
consider functional lineage plasticity besides ontogenetic data.
Also, as LCs, other DC subsets were reported to develop under
certain conditions like monocyte-derived DC (MoDC), arising in
inflamed tissues and reminiscent of reported inflammatory DC
subsets (88, 89). Importantly, the myeloid DC lineages (cDC1
and cDC2) are clearly distinguished from MoDCs, which are
usually derived from monocytes predominantly under
inflammatory conditions in vivo and in vitro (Table 2) (90),
Frontiers in Immunology | www.frontiersin.org 6
although the identification of new DC subsets evolves with the
recent identification of new human anogenital MoDCs present in
non-inflamed tissues that take up HIV and transmit virus to CD4
T cells (91).

DCs are highly specialized professional APC populations
through the expression of major histocompatibility complex
(MHC) class II and costimulatory molecules that lead to naive
T-cell stimulation (91–94). They have the capacity to capture
antigen in the periphery and in the subepithelium to migrate to
proximal lymph nodes where they prime naive T cells and engage
the adaptive immune response. These cells express various
pathogen sensors, including many specific PRRs and toll like
receptors (TLRs), allowing major secretion of type I IFN that
induces IFN-stimulated genes (ISGs) used to counteract infection
(8, 95–97). However, their capacity to capture pathogens is mainly
due to their expression of lectin and lectin-like receptors such the
sialic acid-binding immunoglobulin (Ig)-like lectins (Siglecs)
family (98) and especially C-type lectins receptors (CLRs). CLRs
bind carbohydrate structures associated with viruses, fungi, or
bacteria expressed by LCs, Dendritic cell-Specific Intercellular
adhesion molecule-3-Grabbing Non-integrin (DC-SIGN)
(CD209) and the CLR DC-associated C-type lectin-2 (Dectin-2/
CLEC6A) expressed by DCs and macrophage, and galactose type
C-type lectin (MGL, CD301) expressed by both DCs and
macrophages (but not LCs), respectively (99, 100). Although
CLRs have established antiviral functions, many viruses are
capable of hijacking these receptors to their advantage. In
particular, langerin escape or its hijacking by a virus seems to be
much rarer in contrast to DC-SIGN that has been shown to bind
the gp120 glycoprotein of HIV-1 and promotes efficient trans-
infection of CD4+ T cells. DC-SIGN can also be used to infect
certain DCs with many viruses, such as cytomegalovirus or Ebola
TABLE 2 | Phenotypic and functional markers of human blood and tissue dendritic cell subsets.

Plasmacytoid DCs
(pDCs)

Myeloid DC subtypes

Myeloid DCs Langerhans cells (LCs) Conventional
DCs

Monocyte- derived DCs
(MoDCs)

cDC1 cDC2

Localization Blood Blood Epidermis and other
tissues

Dermis and other
tissues

In vitro

Phenotype CD11c–CD1a+

CD1c–CD123high

BDCA4+

BDCA2+

CD11c+CD1a+ CD1c+CD123low

BDCA1+
CD11c+CD1a+
CD207+

CD11clow

CD68+
CD11b-
CLEC9A+

XCR1+

CD11c
+
CD11b
+
SIRPa

CD11c+CD1a+ CD1c+CD123low

TLR (toll like
receptor)
expression

TLR1, TLR6, TLR7,
TLR9 and TLR10

TLR1,TLR2, TLR3, TLR4, TLR5,
TLR6, TLR8 and TLR10

TLR1, TLR2, TLR3,
TLR6, TLR7 and TLR8

TLR1, TLR2,
TLR3, TLR4,
TLR5, TLR6,
TLR7 and TLR8

TLR1, TLR2, TLR3, TLR4, TLR5,
TLR6, TLR8 and TLR10

C-type lectin
expression

BDCA2 and DCIR DCIR, DC-SIGN and MR Langerin/CD207 DC-SIGN and MR DCIR, DC-SIGN and MR
April 2
BDCA2, blood DC antigen 2 (also known as CLEC4C); DCIR, DC immunoreceptor (also known as CLEC4A); MR, mannose receptor; SIRPa, signal regulatory protein a. BDCA2, blood DC
antigen 2 (also known as CLEC4C); CD, cluster of differentiation; cDC, conventional dendritic cells; CLEC, C-type lectin domain containing; DC-SIGN, dendritic cell-specific intercellular
adhesion molecule-3-Grabbing Non-integrin; DCIR, DC immunoreceptor (also known as CLEC4A); MR, mannose receptor; pDC, plasmacytoid dendritic cells; SIRPa, signal regulatory
protein a; TLR, Toll-like receptor; XCR, X-C motif chemokine receptor.
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virus but also several flaviviruses, including dengue virus and
WNV (101). Thus, some DC subtypes may constitute the point of
access of viruses, allowing their subsequent transmission and
propagation through the body including the CNS. Although the
contribution of different DCs is not clearly established, they may
also represent a “Trojan horse” because they can migrate
efficiently to the brain.
DENDRITIC CELLS IN
NEUROINFLAMMATION AND
BRAIN DISEASES

DCs are naturally present within the brain where they act as
sentinels under steady-state conditions and during brain disease
and neuroinflammation (102). They have been shown to
efficiently interact with brain barriers in order to access the CNS.

During the leukocyte recruitment at the BBB, immune cells
including DCs interact with various actors. First, cytokines and
chemokines, released during CNS inflammation such as CCL2,
can chemoattract circulating DCs at brain barriers. Then, contact
between the upregulated cellular adhesion molecules (CAMs) P-
selectin, E-selectin, vascular cell adhesion molecule-1 (VCAM-
1), and intercellular adhesion molecule-2 (ICAM-2) on
endothelial cells with P-selectin glycoprotein ligand-1 (PSGL-
1) and DC-SIGN on DCs allows rolling and adhesion on the BBB
apical surface (103). These steps are followed by potential
transmigration, facilitated by interaction of DC-SIGN with
CAMs or tight junction proteins. Interestingly, DCs can also
express tight junction proteins to facilitate this step without a
deleterious effect on the BBB integrity (103) (Figure 3A).
Importantly, neuroinfiltration may depend on the DC state.
Indeed, during activation and arrest steps, migration of mature
DCs across the BBB can be enhanced by interaction of CCR7
with CCL19 and CCL21 (Figure 3B), whereas immature DCs
can also be attracted by CCR2, CCR3, and CCR5, which interact
with CCL2, CCL3, and CCL5, respectively (Figure 3C) (6, 104).
Interestingly, immature DCs have better capacity to cross the
BBB than mature DCs in part because of the different expressions
of specific traffic signals at their surface (105, 106). In vitro, the
transmigration of granulocyte-macrophage colony-stimulating
factor (GM-CSF)-induced DCs across the BBB was shown to be
increased in the presence of CCL3. In addition, GM-CSF-
matured DCs secrete meta l loprote inases , a l lowing
transmigration across the BBB with redistribution of tight
junction molecules (107). Regarding the BCSFB, molecular
mechanisms of DC interaction are less well-defined (108, 109).
As in the blood compartment, DCs are mainly recruited in the
CSF by chemoattraction through the release of CCL2, CCL3,
CCL4, and CXCL12, the latter of which being critical during this
recruitment step (110). Following increased concentration of
DCs in the CSF, they can interact by the expression of CAMs on
their surface and on the surface of choroid plexus epithelial cells
(5). All these interactions support BCSFB immunosurveillance
functions with DC’s high APC role and recruitment in
brain parenchyma.
Frontiers in Immunology | www.frontiersin.org 7
Brain DCs represent 1% of immune cells found in the brain
and are sparsely found in the CSF (less than 1% of CSF cells) (5,
111, 112). Macrophages and DCs are found naturally in non-
pathological conditions in the choroid plexus stroma (113), in
sites of plasticity and neurogenesis, and where the BBB is absent
to provide immunosurveillance (114). Through their innate
properties, brain DCs can activate encephalitogenic T cells
(self-antigen-reactive T cells) or release pro-inflammatory
cytokines to the detriment of the CNS homeostasis; their loss
leads to dysregulation of immune tolerance and excessive
inflammatory response (115). Consequently, in a context of
adaptive immune response, DCs are important potential
inducers of primary T cells (113). For example, they are
among the APCs, present in dural sinuses, one compound of
the meninges, and they allow the presentation of antigen from
CSF to T cells in cervical lymph nodes (115, 116).

During neuroinflammation, the number of DCs increases in
the CNS and particularly in the CSF where they can more easily
reach lymph nodes to activate the immune response. They
participate indirectly to exacerbate neuroinflammation (74,
110). For example, they are involved in autoimmune diseases
as in the murine model of multiple sclerosis (MS) named
experimental autoimmune encephalomyelitis (EAE) (117). MS
is a chronic CNS inflammatory disease, often studied with the
EAE mouse model, based on the reactivity of T cells to
endogenous myelin epitopes (encephalitogenic T cells). At the
EAE onset, DCs from the CNS support inflammatory T cells at
the peak of the disease, then become poor APC and prime the
development of regulatory T cells (118–120). Notably, it was
shown that DCs promote myelin-reactive T cells during the
reactivation phase of EAE (121) leading to the proposition to
target DCs for therapeutic approaches in MS. The accumulation
of DCs during the neuroinflammation translating the EAE is
becoming better understood. These immune cells can be mainly
from peripheral bone marrow-derived precursors or from
activation of resident microglia that will show DC
characteristics, reflecting the wide range of DC precursors
(120, 122). Another illustration is the role of DC during
Guillain–Barré syndrome. They are the main APCs in the CSF,
whether they are myeloid or plasmacytoid; they can present
auto-antigen from spinal nerve, activate T and B cells, and finally
lead to the autoimmune disease (123, 124).

Neuroinflammation can also be due to CNS injuries such as
strokes or seizures. In these cases, different DC subpopulations
can be recruited due to the release of various cytokines and
chemokines by damaged cells. cDCs and pDCs have different
sensitivities to chemokines according to their receptor expression
(125). Studies have found peripheral derived DCs in the necrotic
zone after stroke injury, but also resident DCs associated with T
cells in the penumbral zone where they have a more
immunomodulatory function after activation probably due to
release of IFNg (126). Others have shown the presence of DCs
from bone marrow-derived population that exert pro-
inflammatory actions with the production of cytokines after
ischemic lesions (120, 127). Epilepsy is a consequence of
infection or autoimmune disease, and during extended seizure,
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there are glial cell activation and upregulation of CAM
expression on endothelial cells (128, 129). Also, in epileptic
experimentation on rats, DCs can be found in blood vessels
until 24 h after the seizure (130). In humans, the study of chronic
epileptic patients has found the presence of DCs and T cells in
blood vessels (131). In this epileptic context, DCs seems to
maintain the chronic inflammation, source of seizures (132).

DCs are also important players during brain infections.
During protozoal infection of the brain, caused by Toxoplasma
gondii, DCs are major factors of neuroinflammation. First, the
intracellular parasite accesses the brain through “Trojan horse”
mechanisms using migratory leukocytes, including DCs (120,
133, 134). Next, during T. gondii-induced encephalitis, DCs
found in the brain are mature APCs, produce pro-
inflammatory interleukin (IL)-12 cytokines, and can provide
Th1 response from CD4+ T cells (135, 136). Here, DCs
participate in the initiation of immune response against the
parasite, but they also maintain neuroinflammation and can
contribute in T. gondii-induced encephalitis chronicity. For
bacterial meningitis, the more severe CNS infection etiology,
DCs are in high concentration in patient CSF. They lead to
neuroinflammation by Th1 immune response induction, but
they also exert a key role in the regulation of the host immune
Frontiers in Immunology | www.frontiersin.org 8
evasion of some bacterial strains such as Escherichia coli K1
(120, 137).
IMPLICATION OF DENDRITIC CELLS IN
VIRAL BRAIN INFECTIONS

Dendritic Cells as CNS Trojan Horses
DCs display also various roles in viral brain infections notably
through their interaction with brain barriers. Indeed, especially
mucosal and skin-resident DCs and LCs that are the first line of
defense and an immune barrier against a multitude of external
pathogens are also unexpectedly key actors of infection spread to
the lymph nodes and other distal sites (8). Thereby, they can be
viral carriers to the CNS by this inherent role as sentinel. These
cells will also locally amplify the inflammatory response that,
under certain conditions, can further aggravate infection
outcome, and their activation can switch these protective cells
to virus-transmitting cells (138, 139). However, there is currently
a limited knowledge on the role of these cells in virus evasion,
transmission, and systemic dissemination, especially when
considering tissue-resident DCs and LCs upon flavivirus skin
FIGURE 3 | Interaction of dendritic cells with the blood–brain barrier. Through the neuroinfection and the release of pro-inflammatory factors, DCs can produce type I
interferon to regulate viral replication. Infected DCs can also act as antigen-presenting cells and stimulate T cells. (A) DCs are chemoattracted to brain barriers by
circulating chemokines (such as CCL2); a firm contact is established by interaction of cellular adhesion molecules expressed by endothelial cells that facilitate rolling and
adhesion. Transmigration occurs as an interaction of cellular adhesion molecules and integrins. (B) The recruitment of mature DCs is facilitated by expression of CCR7
and IL-1R that increases attraction by secreted CCL19, CCL21 or IL-1a and IL-1b, respectively. (C) Immature DCs can also be attracted by interaction of IL-1a or IL-1b
with IL-1R, but their expression of CCR2, CCR3, and CCR5 increases the interactions with CCL2, CCL3, and CCL5. Created with SMART Servier Medical Art.
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infection for instance, and their potential role in viral
brain spread.

Concerning the recruitment mechanisms of DCs during viral
infection, the release of chemokines or cellular adhesion
molecules initiate the process. For instance, WNV- and
Japanese encephalitis virus-infected neurons can produce
CCL2 (140), and in EAE models, CCL2 released by astrocytes
and endothelial cells will lead to chemoattraction of DCs (105).
In this same model, immature DCs migrate in the CNS by
interaction of a4b1 integrin with endothelial VCAM-1 and then
participate in inflammation (106). Ou et al. (141) have also
highlighted the role of VCAM-1 in DC recruitment during
lymphocytic choriomeningitis virus infection in mice
(Figure 3). Furthermore, an important expression and
production of pro-inflammatory IL-1a and IL-1b have been
reported during neuroinflammation in viral encephalitis (142,
143); IL-1 participates in lymphocyte activation and leukocyte
infiltration by increasing CAM expression and other cytokine
and chemokine induction. Also, IL-1 can be released by
microglia and brain endothelial cells, leading to the
enhancement of BBB damage and leukocyte recruitment
(Figure 3). In that way, studies have demonstrated that during
WNV infection, the IL-1 receptor (IL-1R1) participates in the
activation of two types of DC populations with APC functions:
the lymphoid-derived DCs and migratory DCs (144–146). And
following WNV infection, IL-1R1-deficient mice have shown
fulminant encephalitis (147), indicating a possible correlation
between DC recruitment and neurological symptoms via IL-1
release. The involvement of BBB permeability during Japanese
encephalitis virus infection in CD11hiDCs-ablated mice also
illustrates the importance of these cells during regulation of
brain infections (148). CXCL10 is another important chemokine
for leukocyte recruitment in the brain. In HSV-1-infected mouse
brains with CXCL10 deletion, there is a lower and even absence
of NK cells, CD8+ T cells, and DCs, which translate to important
viral loads with consequent CNS defects (149).

An important role of CD4+ T cells and DCs was also
demonstrated in the dissemination of varicella zoster virus
(VZV) at the BBB (40). Resident DCs and LCs from the skin
and mucosa are the main carriers of VZV and VZV viral antigens
to the lymph nodes where they can activate T cells. But they can
also participate in viral dissemination through a “Trojan horse”
mechanism (40). This mechanism has been reported in the case
of other infections such as ZIKV brain infection (29) and WNV
neuroinfection (20–22) or in a more older case of Maedi–Visna
virus dissemination (150). For Nipah virus brain infection,
reports establish that the principal access occurs through the
transfer of infected DCs from the blood to the CNS (41). Toscana
virus (TOSV), an arbovirus from the Phlebovirus genus, has been
found in DCs from blood circulation of infected animals and
humans. It was shown that TOSV-infected DCs notably produce
IL-6 and tumor necrosis factor (TNF)-a, pro-inflammatory
cytokines able to dysregulate the BBB. Thus, TOSV-infected
DCs can be a pathway to reach the CNS (39). From the BCSFB
side, it was shown that HIV-infected monocytes and DCs can
allow viral invasion of the brain after CP passage. Thus, studies
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have proposed that HIV encephalitis emerges mainly by CNS
infection through the choroid plexus (151, 152).

Numerous factors are implicated and are key regulators
during the recruitment of DCs in the CNS, but the
consequences of this recruitment must be discussed.
Dendritic Cells and Brain Antiviral
Response
Numbers of studies reveal the role of DCs in neuroinflammation
during viral brain infections. DCs have major roles in antiviral
responses, particularly through the regulation of T-cell
responses. In a mouse model of viral encephalitis, the
depletion of peripheral DCs led to a decrease of the viral
presentation to CD8+ T cells and a delay in viral clearance
from the brain, illustrated by an increasing death rate (103).
Moreover, there is a complex role of DCs during HIV infection:
they are at the entry site of the virus (mainly in mucosal areas)
and can be infected and recruit CD4+ T cells, the main HIV
reservoir (80). In the choroid plexus, they can also provide a CNS
reservoir in HIV brain infection as mentioned earlier (153).
During vesicular stomatitis virus infection, a model of acute
encephalitis, DCs are the first responders at the olfactory bulb,
the site of infection by this virus. Here, DCs activate and
participate in the differentiation of T cells at early steps of
neuronal infection (120). Similarly, in the Theiler’s murine
encephalomyelitis virus-induced demyelinating disease mouse
model, T cells are activated against endogenous myelin epitope
due to an antigen presentation by DCs directly in the CNS (154).
Epstein–Barr virus preferentially infects B cells and immortalizes
them, but DCs play a role during this infection. Indeed, they can
initiate innate and adaptive immune responses notably by viral
antigen detection. Then, DCs can activate NK, CD4+, or CD8+

cells (155). However, a dysregulated CD8+ T-cell response
against EBV can be at the origin of CNS impairments, and a
link with MS development and recurrence is increasingly
suggested (156, 157). From these last examples, DCs are clearly
the activator of T-cell responses that will participate in viral
clearance but consequently in neuroinflammation.

In response to viral infection and because they express high
TLR7, TLR9, and interferon regulatory factor7 (IRF7), pDCs are
the main IFN type I producers (158). They recognize PAMPs as
viral antigens through their PRRs leading to a production of type
I IFN and transcription of ISGs. For instance, when DENV
particles or DENV-infected cells are brought into contact with
peripheral blood mononuclear cells (PBMCs), the first response
is a secretion of IFNa by pDCs (159). It has been shown that
direct DC infection by the neurotropic arbovirus Usutu virus
(USUV) induces strong IFNa production and, in comparison to
WNV-infected DCs, USUV seems to be more sensitive to this
type I IFN response. This can partly explain that the percentage
of neurological clinical disorder in human following WNV
infection is higher than USUV infection (160). Nonetheless,
during WNV infection, DCs are mostly found in brain tissue
of mouse models where there is a predominance of IFNa
mRNA (161).
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As already noted, DCs have an important function during
epileptic seizure, and some viral infection of the CNS can lead to
epileptic syndrome such as SARS-CoV-2 infection (162),
arbovirus infection (30, 163–165) or during HIV infection and
HSV encephalitis. Incidentally, studies reveal that a large
proportion of epileptic seizures could be from infectious
etiology and that a lot of work needs to be done in that
domain (166). Notably, during epilepsy studies on guinea pig
brains, the release of neuroinflammatory factors was described at
the BBB (129). These are selectins and CAMs, known to attract
leukocytes as DCs. In this context, it appears that DCs could be
an interesting target for therapy (167).

Finally, various DC phenotypes are recruited depending on
the virus and host immune responses. In vivo, the mouse
hepatitis virus model shows two DC populations of which the
most predominant expresses co-stimulatory molecules (CD40,
CD80, and CD86). This DC population is responsible for effector
CD8+ T-cell activation upon CCL3 modulation (168). The two
distinct pDC and cDC populations can be detected in the brain
of HSV-1-infected mice, and it was shown that respective CCR
knockout models have increased susceptibility to the virus,
indicating a complementary role (149). In a cohort study of
coronavirus disease 2019 (COVID-19) patients with neurological
impairments, it appears that DCs found in the CSF have a
different profile compared to the normal DC subset found in
the CSF of healthy controls. They are more susceptible to
interaction with CD8 and CD4 T cells and have a critical role
during the emergence of neuronal symptoms (169). More
generally, each DC subtype can be recruited during CNS
infection following specific neuroinflammatory mediators (170).

In these examples, DCs are important to control virus spread
in the systemic circulation, but they are also transporters of virus
to the CNS or promoters of neuroinflammation. In addition,
several DC subpopulations can have a role during the same
infection. Hence, the importance of their study to boost antiviral
response and control virus spread and neuroinflammation that
can have serious and long-term consequences.
DISCUSSION

In conclusion, it appears that 1) viral brain infection can be
mediated by several mechanisms and lead to neuroinflammation
with various consequences including leukocyte recruitment; 2) as
a result, immune cells and particularly DCs can interact with
brain barriers and invade the CNS to act against the viral
infection; 3) they can also support neuroinflammation; 4) and
they can be a “Trojan horse” during virus CNS entry. Indeed, a
viral infection can lead to general inflammation as seen with a
cytokine storm that can have a deleterious effect on the CNS with
chronic neuroinflammation leading to various sequelae (171,
172). This inflammation, as well as by DC innate properties, can
lead to recruitment of DCs in the CNS (125), sometimes also
carrying the virus itself in the brain (40, 72). Once in the CNS,
DCs can directly act against viruses, for example, with IFN
production (173), they also contribute to neuroinflammation
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by T-cell activation for instance (170). For each of these
conditions, different DC populations can be recruited (120).
However, to tackle these pathological manifestations, we need
a better characterization of CNS inflammation following
infections. Thus, there is a major need to better dissect the role
of each cell type in the establishment of neuroinflammation
processes by considering both neuronal and immune cells
including DCs. Novel technologies allowing quantitative single-
cell mRNA sequencing and proteomic profiling of inflammatory
markers may reveal specific DC characteristics linking these cells
with the establishment of inflammation and CNS disorders.
These data will critically contribute to deepen our current
knowledge on brain viral infection. Moreover, DCs are known
for their role in priming T-cell responses. It will be, therefore, of
interest to further characterize how DC-dependent antiviral T
responses can lead to neuroinflammatory pathologies and what
are the antigenic drivers of such conditions. Clarifying the role of
DCs as major players in neuroinflammation as well as deeper
investigations on how they are carrying viruses to distal organs
will undoubtedly render the possibility to consider them as a
therapeutic target in order to rapidly control the possible
pathological outcomes of infections. Gathering more data on
metabolic and immunobiological features of DC subsets at sites
of primary viral infection will also allow to transpose and adapt
novel antiviral therapies, for example, by a topical drug-based
application targeting early events of skin DC infection.

Moreover, a flavonoid, apigenin, was proposed to regulate
inflammation by a reduction of a4-chain expression by DC and
limiting the BBB cross (174). In the context of MS, there are
some studies as the use of prestimulation of DC TLR9 to increase
neuroinflammation control and immune regulation of the course
of the disease in EAE (175). The use of DC-vaccine was also
proposed to support the treatment of neurodegenerative disease
as Alzheimer’s disease (176). Nonetheless, in the context of viral
brain infection, there is a lack of evidence for the use of DC in
care. Also, the regulation or the blocking of DC entry into the
CNS should be explored, for example, to limit viral carrying.
Increasing work on different subsets of DCs depending on the
viral infection etiology could be a key issue to understand and
treat neuroinfections that are considerable public health concerns.
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