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Epitopes that bind simultaneously to all human alleles of Major Histocompatibility Complex
class II (MHC II) are considered one of the key factors for the development of improved
vaccines and cancer immunotherapies. To engineer MHC II multiple-allele binders, we
developed a protocol called PanMHC-PARCE, based on the unsupervised optimization of
the epitope sequence by single-point mutations, parallel explicit-solvent molecular
dynamics simulations and scoring of the MHC II-epitope complexes. The key idea is
accepting mutations that not only improve the affinity but also reduce the affinity gap
between the alleles. We applied this methodology to enhance a Plasmodium vivax epitope
for multiple-allele binding. In vitro rate-binding assays showed that four engineered
peptides were able to bind with improved affinity toward multiple human MHC II alleles.
Moreover, we demonstrated that mice immunized with the peptides exhibited interferon-
gamma cellular immune response. Overall, the method enables the engineering of
peptides with improved binding properties that can be used for the generation of
new immunotherapies.

Keywords: MHC class II, epitope engineering, molecular dynamics, peptide design, multiple-allele binding
1 INTRODUCTION

Peptides have been used in vaccine formulations to trigger specific immune responses toward a
particular disease (1). These peptides, acting as epitopes, are able to bind receptors such as the Major
Histocompatibility Complex class II (MHC II) (e.g., Figure 1A), which displays them on cell
surfaces for T-cell recognition and immune-response activation (2). The use of artificial peptides
capable of mimicking natural epitopes has also been proposed (3). For example, designed peptides
have been used for immunological therapies (4), and as neoepitopes targeting tumor-specific
mutations, with the potential for becoming cancer vaccines (5, 6).

Peptides have also been successfully used as adjuvants, namely components of a vaccine which
increase the immune response (7–9). A primary example of this is PADRE (Pan DR T-helper
Epitope), which was developed as a universal T-helper epitope (10). This peptide helps to trigger the
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immunological machinery, and complements the specific
response generated by the antigenic sub-units (11). PADRE
was designed through multiple and expensive experimental
trials. The targets of PADRE, and of many other adjuvant
peptides, are MHC II receptors.

In humans, MHC II exists in several different alleles, some of
which involve mutations localized in the peptide-binding pocket.
Consequently, peptides targeting this receptor typically have
different binding affinities for different alleles. Multiple-allele T-
helpers could be incorporated into vaccines and immunological
agents, leading to an improved activity for all human populations
(2, 12). For example, PADRE binds with high affinity to multiple
alleles, and has been evaluated in vitro and in vivo with positive
results (13, 14). However, PADRE has no pathogen specificity (i.e.,
no information about pathogenic epitopes was used to create its
consensus sequence), which limits its capability to target a specific
disease. Moreover, designing peptides through a trial-and-error
experiments is extremely challenging, given the large amount of
possible mutations, and the costs and time required to test
potential candidates experimentally (15).

Machine learning models trained on peptide-sequence
datasets (16), aid the prediction of binding affinities of epitopes
toward different MHC II alleles (17, 18). The IEDB consensus
tool (19) combines three methods [CombLib (20), SMM-align
(21) and Sturniolo (22)] to score epitopes by comparing against
five million random peptide-sequences toward specific MHC II
alleles. NetMHCIIPan (23) predicts peptide-binding to any
MHC II molecule using artificial neural networks. Machine
learning strategies can predict the likelihood of antigen
presentation in the context of specific HLA class I (24) or for
both class I and II alleles, trained with metadata such as mass
spectroscopy (25, 26). Multiple-allele scoring prediction of MHC
II epitopes has also been developed using machine learning
methods trained with a variety of data (27, 28). However, the
extension of these methods to engineer new epitope sequences
with improved binding is challenging because large affinity
changes can be triggered by single-point mutations, which are
difficult to predict (29).

To address this problem, one can resort to de novo design, in
which peptides are engineered based on the physico-chemical
properties of their interaction with the targets. This route has
been successful in the design of antimicrobial and membrane
pore-forming peptides (30, 31), or peptides capable of binding
with high affinity to organic molecules (32), and of antibody
fragments (33). The wide availability of MHC I and II structures
(34, 35) has greatly facilitated targeted peptide-binding design.
Recently, it has been shown that structural modelling toward
MHC I, in combination with NetMHC predictions, brings
valuable insights of neoepitopes’ immunogenicity (36). De novo
design of MHC I binders targeting multiple alleles has also been
attempted (37). Rosetta applications (38) have been used to
design epitope scaffolds for neutralizing antibodies (39), and to
reduce the immunogenicty of a target protein by searching for its
potential epitopes and designing less immunogenic sequences
(40). Recently, an energy term for the same software has been
customized to deimmunize biological entities toward MHC II (41).
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However, engineering peptides to have higher affinities toward
multiple MHC II alleles is still a major challenge, due to its highly
dynamic nature.

In this work, we developed an in silico design approach to
address these challenges, and engineer peptides with improved
experimental binding affinity toward many MHC II alleles
simultaneously. Based on extensive molecular dynamics (MD)
simulations, our novel methodology runs multiple designs (42)
in parallel, one for each allele, and automatically selects epitope
mutations which make the affinity higher for the majority of the
alleles, rejecting those which increase the affinity unevenly. Using
this approach, we engineered modifications to a Plasmodium
vivax (P. vivax) epitope to improve simultaneously its affinity
toward several human MHC II (HLA) alleles. A small subset of
sequences was tested in vitro, finding four modified peptides with
better affinities. To confirm their ability to induce specific
immune responses ex vivo, each peptide was mixed with the
adjuvant AddaVax and used to immunize C57BL/6 mice. All
peptides induced specific in1terferon gamma (IFNg)-producing
cells and, the engineered peptides remained immunogenic. This work
will open the route to in silico multiple-allele epitope engineering.
2 RESULTS

2.1 Multiple-Allele Peptide
Engineering Protocol
The multiple-allele engineering protocol enables the design of
peptides capable of binding with high affinity to multiple targets
(Figure 1). Its key innovation is to run in parallel multiple
PARCE (42) simulations, accepting mutations that increase the
affinity to the majority of targets. The protocol starts with a given
epitope sequence, and requires building an atomistic model of
the peptide bound to each allele. Figure 1A shows an example
of a starting structure for a single MHC II allele. A sequence of
single-point mutations is then attempted (see the Methods). MD
simulations are ran in parallel, one for each allele with the new
mutated peptide (Figure 1B). Each MD trajectory is then scored
using several scoring functions (see the Methods). The mutation
is considered favorable for each allele if the majority of scoring
functions provide a positive score. Then, the new peptide
sequence is accepted, if it is favorable for at least 75% of the
alleles; otherwise, the sequence is rejected (Figure 1C).
Therefore, the protocol is accepting mutations that not only
improve the affinity but importantly reduce the affinity gap
between the alleles. The process is iterated until the estimated
affinity toward the target does not significantly improve.
Figure 1D shows an example of the evolution of the scoring
functions, which collectively shift toward better scores for the
multiple alleles. An animation of the design process is shown in
Supplementary Video 1 for an Influenza A virus peptide.

2.2 Optimization Design of an Influenza
Epitope Toward a Single MHC II Allele
We first benchmarked the protocol on the design of an epitope
for a single allele of MHC II. As a starting sequence we have
April 2022 | Volume 13 | Article 862851
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chosen an Influenza A virus peptide from the Hemagglutinin
antigen, with sequence YPKYVKQNTLKLAT. For this epitope,
structural information and binding data toward the allele
DRB1*01:01 (IC50= 130 nM) are available (20). We tested
different mutation strategies (Figure 2A and Supplementary
Note 1) with 100 attempted mutations per strategy, in order to
observe convergence of the scoring functions (see
Supplementary Figure 1). Uniformly-distributed random
mutations in the peptide sequence favour sequences with many
Frontiers in Immunology | www.frontiersin.org 3
hydrophobic amino acids, which are prone to aggregation. This
motivated us to exclude sequences with many hydrophobic
amino acids or those that violated many empirical peptide-
synthesis rules (see Supplementary Note 2). We also explored
the possibility of enhancing the mutation probability in the
pept ide core reg ion us ing bio informat ics der ived
information (Figure 2A).

From the different runs, a total of 105 peptide candidates that
are potentially better binders than the original peptide (see
A B

C D

FIGURE 1 | Multiple-allele epitope engineering protocol. (A) MHC II receptor bound to a peptide, with chain a represented in blue, chain b in orange, the peptide core region
in green and the peptide flanking regions in yellow. (B) PanMHC-PARCE workflow for epitope optimization toward multiple alleles (DRB1*01:01 in orange, DRB1*15:01 in
green, DRB1*04:01 in red and DRB1*03:01 in blue). First, the starting protein-peptide complexes are modelled. Then, a Monte Carlo algorithm is performed. At each step, a
single-point mutation on the peptide is attempted. Then, parallel simulations of the mutated peptide with each allele are sampled with MD. The trajectory snapshots, for each
allele, are scored with multiple scoring functions, and a consensus criterion is applied. The mutation is accepted if the scoring consensus is favorable for three out of the four
alleles. (C) An example of a rejected mutation during the design is colored in red, and an accepted mutation colored in green. (D) Example of the evolution of the scoring
results for the multiple-allele engineering of the P. vivax epitope for Firedock, Pisa, Haddock and Vina (see the Methods). The dots in the curves represent the mutations that
are accepted and the colors of the different MHC alleles are based on panel (B).
April 2022 | Volume 13 | Article 862851
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Supplementary Tables 1–5) were obtained. In Figure 2B, the
average rank of each peptide is shown (using the six scoring
functions and calculated over 5 ns of MD) as a function of the
number of violated empirical synthesis rules and a hydrophobicity
scale. We used the average rank, physicochemical and similarity
filters (see Methods and Supplementary Note 2), to select a small
set of 22 candidates for longer (200 ns) MD simulations. By
monitoring several structural observables (e.g., the Ca RMSD
shown in Figure 2C), we selected 17 complexes that were more
stable. The average rank, calculated using the average scores over the
last 100 ns, was also used to select the peptide candidates for
experimental testing. Two controls reporting positive binding data
toward the MHC I I a l l e l e ( th e PADRE ep i t ope
AKFVAAWTLKAAA, and an influenza immunogenic epitope
PKYVKQNTLKLAT) were also scored with the same procedure
(see Supplementary Table 6 for details).

The selected candidates, the original peptide, and the two
controls were synthesized and analysed using the ProImmune
REVEAL® MHC-peptide binding assay. This experiment assessed
Frontiers in Immunology | www.frontiersin.org 4
the level of binding to the MHC II (HLA) allele DRB1*01:01
(Figure 2D). The ProImmune REVEAL® binding score for each
MHC-peptide complex is calculated at 0 and 24 hours in
comparison to the binding of the positive controls (PADRE and
Influenza peptide) at 0 hours. The results are shown in Figure 2E.
Interestingly, we found that one peptide (YSKYKKQNTLKAAT
-pep8) reported a performance much superior to the original
peptide sequence, and even to the PADRE control used in the
experiment. This peptide only reports three modified positions
with respect to the original sequence. Another peptide,
YHVYKKVNTLLCKT (pep9), reported a performance similar
to the original peptide, despite being highly modified by six
substitutions in both the core and flanking regions. We
highlight that these two peptides were identified within a
relatively small pool of 17 peptides. In addition, the binding
remains stable for these peptides (Figure 2E) after 24 hours,
which is crucial for MHC presentation (43). From a virtual
screening perspective, this is a highly positive result that
motivates us to design epitopes for multiple-allele binding.
A B

D E

C

FIGURE 2 | Influenza peptide design for binding to a single allele. (A) Design strategies implemented: random mutations (strategy 1), mutations filtered by bioinformatic
properties (strategies 2 and 3) and mutations filtered by MHC II binding motifs (strategies 4 and 5). (B) Hydrophobicity values, the number of synthesis rules violated and
the average rank (scoring from 5 ns MD simulations) for the designed peptides. The thresholds (red dashed lines) used for selecting 22 peptides (blue circles) for long MD
simulations. The original peptide is represented by a blue-filled circle. The controls are represented as black stars. (C) Ca RMSD to the starting structure of the 22
selected peptides during the long MD, colored by the mutation strategy panel (A). (D) Illustration of the Proimmune REVEAL binding assay. The peptide (yellow) binds the
MHC II protein. When the components bind in the correct conformation, a positive signal is generated via a labelled antibody (green). (E) Experimental results of the
REVEAL assay for the 17 designed peptides, the original sequence and two positive controls (PADRE and Influenza peptide PKYVKQNTLKLAT). The REVEAL binding
score is a value between 0 and 100, which is determined by the comparison with a control T-cell epitope. The peptides are split into the five mutation strategies [color
code as in panel (A)]. The scores are shown at 0 hours (blue bar) and after 24 hours (purple bar). The box highlights the two peptides with better binding than the
reference sequence, with the modifications in bold, and colored in red and green to represent changes in the core and flanking regions, respectively.
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2.3 Multiple-Allele Binding Engineering of
a P.vivax Epitope
We selected the epitope from P. vivax with sequence
DYDVVYLKPLAGMYK, which has been assayed against multiple
MHC II alleles, and with positive immunological responses in an
animal model (44). An advantage of this epitope is that it belongs to
theMerozoite Surface Protein (MSP-1), which is also used as a source
of epitopes for P. falciparum (45) Because of the available
experimental data, and the differences in binding affinities between
the MHC II alleles: DRB1*01:01 (IC50= 1 nM), DRB1*15:01 (IC50 =
792.9 nM), DRB1*04:01 (IC50 = 1636.1 nM) and DRB1*03:01 (IC50 =
17807.9 nM), the sequence is a suitable starting point for the design of
a better multiple-allele epitope. Note that this epitope is quite active
toward allele DRB1*01:01, but the affinity is several orders of
Frontiers in Immunology | www.frontiersin.org 5
magnitude smaller for the other alleles, being worst for
allele DRB1*03:01.

Two alternative mutation protocols were attempted
(Figure 3A) using the multiple-allele engineering presented in
section 2.1 (Figure 1B). For the first mutation strategy (strategy 6
in Figure 3A), we selected peptide positions that were in contact
with non-conserved amino acids of the alleles as evinced by a
multiple sequence alignment of orthologs of the MSP-1 antigen
in Plasmodium species (positions 7, 9, 11 and 13, see Figure 3C).
The motivation for this mutation protocol is that mutations in
contact with polymorphic residues of the target might impact
binding, without dramatically disrupting the immune response.
The second mutation strategy (strategy 7 in Figure 3A) consisted
of modifying amino acids that belong to the flanking regions.
A C

D

B

E

FIGURE 3 | P. vivax epitope design for multiple-allele binding. (A) Mutation strategies implemented by randomly modifying amino acids in the core region with low
conservation (strategy 6), and those belonging to the peptide flanking regions (strategy 7). (B) Logo representation of the alignment showing the frequency of the
epitope amino acids at each position. The positions modified during design strategy 1 are marked with purple stars, and the reported polymorphism is marked with
an orange star. (C) Structural view of the polymorphic amino acids from the MHC II b-chain. (D) Hydrophobicity values, the number of synthesis rules violated and
the number of alleles where the consensus score criterion was improved for the designed peptides. From a total of 42 peptides, 18 were selected for long MD
simulations (orange circles). The controls are represented as black stars. (E) Average rank of the peptide candidates for the four alleles estimated from the long MD.
The darker the shade of blue, the higher the rank. The peptides are color-coded according to the two mutation strategies from panel (A) The reference peptide is
labeled green.
April 2022 | Volume 13 | Article 862851
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This allows the conservation of core interactions, and avoids
drastically affecting immunogenicity. In this protocol the design
was run by modifying any of the 6 flanking amino
acids randomly.

The design for multiple-allele binding was run for both
strategies, obtaining 42 designed sequences. Most of the
substitutions are found in the C-terminal region, obtaining
sequences with a maximum of 4 substitutions from the
original peptide. In Figure 3D, the number of alleles with
improved scores is shown as a function of the hydrophobicity
scale and the number of empirical-synthesis rules violated per
peptide. To select a small set of candidates, we also took into
account the number of empirical solubility rules violated
(see Methods). From these results, a total of 18 designed
Frontiers in Immunology | www.frontiersin.org 6
sequences (yellow circles in Figure 3D) were prioritized and
subjected to MD simulations of 100 ns (see Supplementary
Tables 7, 8). The long MD was used to calculate an average rank
per allele using the individual rank of each scoring function
evaluated over the last half of the trajectory (Figure 3E). We note
that most sequences predicted better affinities for the alleles with
the worst experimental IC50 values (i.e., DRB1*04:01 and
DRB1*03:01), which is ideal for balancing binding among the
four alleles. We also subjected four known epitopes to the same
scoring protocol: the PADRE epitope (AKFVAAWTLKAAA),
an influenza immunogenic epitope (PKYVKQNTLKLAT), the
Vimentin peptide (SAVRLRSSVPGVR) and the natural CLIP
substrate (PVSKMRMATPLLMQA), which were used as
controls. According to the average scores, the controls (for
A

B

FIGURE 4 | Experimental findings for the P. vivax engineered peptides. (A) Cumulative Multiple-allele REVEAL score for the selected peptides and the controls toward the
four alleles included in the study. The human MHC II (HLA) alleles are represented as: DRB1*01:01 in orange, DRB1*15:01 in green, DRB1*04:01 in red and DRB1*03:01 in
blue. The peptides with the best experimental results are enclosed in orange. The black dash line is the activity achieved by the reference peptide, values above it indicate a
better performance. (B) Bound conformation of best designed peptide (bottom) and the reference peptide (top) to the DRB1:01*01 allele. Representative structures are taken
from the long MD simulations. The mutated amino acids are shown in bold in the sequences, and labeled on the structures to highlight their physical interactions. Acidic amino
acids are colored in red, basic in blue, polar in green and non-polar in white.
April 2022 | Volume 13 | Article 862851
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most cases) ranked better than the reference epitope (see
Supplementary Figure 2). With respect to the designed
peptides, the controls are ranked in intermediate positions.

The 18 designed candidates and the additional controls were
synthesized and analysed using the ProImmune REVEAL® MHC-
peptide binding assay to determine their level of binding to the
MHC II alleles DRB1*01:01, DRB1*03:01, DRB1*04:01 and
DRB1*15:01. A multiple-allele score was measured to evaluate if
the peptides improved toward multiple alleles (Figure 4A). Of the
18 peptides, the peptide DYCVVYLKPLAGYDN could not be
synthesized by the Prospector PEPscreen® technology. This
peptide has the highest hydrophobicity scale (highest yellow circle
in Figure 3D), indicating that the pre-selection filters are important.
From the remaining set, we found that four of the peptides bound
better than the majority of the alleles with respect to the reference
epitope. None of the peptides, including the controls, were able to
trigger a signal for the allele DRB1*03:01 (see Figure 4A). This is
probably because the affinity of the original reference is too low
toward this allele (four orders of magnitude in comparison to
DRB1*01:01) and the peptides’ signal is not resolvable with
respect to the internal control of the ProImmune experiment.
Therefore, we cannot draw conclusions if the designed peptides
are better or worse than the reference for this allele.

Three out of the four peptides with better binding affinities
were obtained from the strategy where only flanking amino acids
were modified. These results suggest that the flanking region is
prone to mutations that successfully increase the multiple-allele
affinity. The ProImmune REVEAL® scores were also internally
weighted based on the potential impact of the peptides in the
population (see Supplementary Figure 3). Remarkably, we
observed that one of the peptides (DYTVVYLKPLAGYDH) is
superior to the PADRE epitope toward the studied alleles, which
is a major achievement of this study.

Using long MD simulations, we investigated the
physicochemical interactions that stabilize the designed
peptides. In Figure 4B, we compared the interactions of the
reference epitope to those created by the best-performing
designed peptide using allele DRB1*01:01. These peptides differ
by four mutations: a D3T in the C-terminal, and M13Y, Y14D
and K15H in the N-terminal regions. Note that the charge
distributions are quite different: -2 charge at the C-terminal
and +1 at the N-terminal of the reference in comparison to -1
and 0, respectively, for the best-designed peptide. These
differences have a significant impact on binding. The D3T
avoids unfavorable negative-negative charge interactions with
residue GLU:55 chain A (left side Figure 4B). The M13Y, Y14D
and K15H mutations present a perfect complement to the charge
and hydrophobic distribution of the receptor (right side
Figure 4B). We highlight the Y14D replacement where the
aspartic acid makes tight salt-bridges with residues LYS:75 or
ARG:76 (see Supplementary Note 3 for an analysis of the other
designed peptides).

We note that our method is the first to engineer modifications
on MHC II epitopes to design neoepitopes for multiple-allele
binding. So far, machine learning state-of-the-art methods have
been focused on scoring pre-existing sequences (18, 46).
Frontiers in Immunology | www.frontiersin.org 7
We investigated how the ranks predicted with these methods
compare with the experimental rank (extracted from the
multiple-allele REVEAL® score) of the 18 P. vivax designed
peptides. In Supplementary Figure 4A, we present the predicted
ranks for NetMHCIIPan 4.0 (23), the IEDB consensus tool (19),
and MARIA (25) toward the resolved experimental alleles.
Although some of these methods rank a couple of the peptides
favorably, their scores are in general poorly correlated to the
experiments, and some of the best peptides are not recognized as
such. Considering the four best-performing designed peptides as
hits, we calculated an enrichment plot: number of hits as a
function of the best-ranked peptides for each method (see
Supplementary Figure 4B). We find that our method
PanMHC-PARCE has the highest enrichment.

2.4 Ex vivo Experiments
In order to verify if the peptides are able to induce a cellular
immune response ex vivo, C57BL/6 mice were immunized with
individual peptides in the presence of AddaVax adjuvant, while
the control group received only the adjuvant (see
Supplementary Figure 5A). Fifteen days after the last dose,
splenocytes from immunized mice were incubated with each
peptide to evaluate the number of specific IFNg-producing cells
by ELISpot. For P. vivax engineered peptides (see
Supplementary Figure 5B), we observed that splenocytes from
mice immunized with DYDVVYWKPLAGIYK and its reference
epitope DYDVVYLKPLAGMYK, presented the highest numbers
of specific IFNg-producing cells (228 and 295 SFU/106 cells,
respectively) when compared to groups immunized with
peptides DYTVVYLKPLAGYDH, DYTVVYLKPLAGYDN or
VYDVVYLKPLAGCYK (127, 54 and 145 SFU/106 cells,
respectively). Remarkably, the P. vivax designed peptides also
presented cross-reactivity, suggesting that the stimulation across
this set of peptides is transferable (see Supplementary Figure 6).

The engineered Influenza peptide also retained its ability to
induce a specific immune response (see Supplementary
Figure 5C), since YSKYKKQNTLKAAT induced a similar
number of specific IFNg-producing cells compared with the
reference epitope YPKYVKQNTLKLAT (473 and 463 SFU/106

cells, respectively). Furthermore, Influenza peptides induced a
similar IFNg response when compared with the previously
described PADRE epitope (AKFVAAWTLKAAA). In contrast,
the control group showed a negligible specific response.
Regarding the controls, we used the Influenza peptide
(YPKYVKQNTLKLAT) for the groups that received the
different Plasmodium peptides in the immunization. On the
other hand, the PADRE peptide was used as a negative control
for the groups immunized with the Influenza peptides. Our
results showed that there was zero response using these
controls. Thus, we were able to observe that the production of
interferon-gamma was specific, since no significant interferon-
gamma production was observed using uncorrelated peptides
(see Supplementary Table 9).

We note that the designed peptides were not optimized for
the mouse H-2-IAb allele, which differs by at least 10 mutations
in the binding pocket with respect to the human alleles assessed
April 2022 | Volume 13 | Article 862851
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above (see Supplementary Figure 7). Even if the peptides were
not designed for that allele, their quality can be assessed by
following the same procedure described in Methods. In
particular, we ran long MD simulations of the best P. vivax
and Influenza peptides toward the mouse MHC allele and ranked
them using the same sampling/scoring approach. Our
computational predictions of the rank of these peptides to the
H-2-IAb allele correlate relatively well with the ex vivo
experimental rank (see Supplementary Table 10 for P. vivax
and Supplementary Table 11 for the Influenza design).
Together, these results demonstrate that improving the binding
of peptides to MHC molecules can conserve the induction of
cellular immune responses, even for alleles which are
significantly different from the human alleles.
3 DISCUSSION

In this work, we have introduced a computational design
protocol to improve the affinity of epitopes toward human
MHC II alleles. The key novelty is that the method enables the
engineering of peptides with immunological properties for many
alleles simultaneously. A first validation performed on a single
allele indicated which and how many positions on the peptide
can be modified in order to improve peptide-binding. These
findings were used to guide a multiple-allele binding design of a
reported P. vivax T-helper epitope. The in vitro experiments
proved that four designed peptides had a multiple-allelic
performance superior to the reference P. vivax epitope. Out of
the mutation strategies explored, and for the particular case of
multiple-allele optimization, we found that the most promising
results are obtained with the mutation strategy that modified the
flanking regions (strategy 7 in Figure 3A), finding 3 of the 4 best
performing peptides, including the best. An additional advantage
of this strategy is that by modifying the flanking regions, there is
a reduced risk of drastically changing the interaction with the T-
cell receptor and the immune response pathway.

It was previously demonstrated that the use of binding
prediction algorithms allows for the identification of T-cell
epitopes that could be used for epitope-driven vaccine design
(47). Our contribution may lead to a better choice of epitopes
capable of inducing immune responses as well as binding to
multiple alleles, covering the majority of the target population
(48). Here, we observed cross-species recognition of T-cell
epitopes since they were able to bind titin vitro to human
MHC II (DRB1*01:01, DRB1*15:01, DRB1*04:01 and
DRB1*03:01) and also elicit ex vivo T-cell responses in H-2b
mice. Indeed, this phenomenon has previously been described
for natural T-cell epitopes from several pathogen-derived
antigens (49–51). For example, the P. vivax epitope
DYDVVYLKPLAGMYK was able to induce a strong immune
response in mice and non-human primates (44). Here, we have
shown that C57BL/6 mice immunized with two doses of four
engineered peptides based on the DYDVVYLKPLAGMYK
epitope presented a potent and specific cellular immune
response. In addition, we observed that the predicted
Frontiers in Immunology | www.frontiersin.org 8
DYDVVYWKPLAGIYK peptide induced an IFNg response
similar to that observed in the reference peptide. T-cell
immunity is also considered vital for the containment of the
spread of influenza infection and for minimizing the period of
illness, since antibodies generated after vaccination are not able
to keep up with the frequent antigenic drift (52). The
modifications introduced in the YPKYVKQNTLKLAT peptide
showed an improvement in its ability to bind to human MHC II,
as well as in its ability to induce similar production of IFNg when
compared to the reference peptide. Therefore, epitopes were able
not only to bind to MHC molecules, but also to induce strong T-
cell immunity.

Regarding the protocol, the combination of a consensus
strategy based on six scoring functions and molecular
dynamics sampling is an efficient alternative to exhaustive
computational methods that calculate more accurate but time-
consuming observables, such as binding free energies (53). This
is necessary given the large number of mutations that must be
explored in order to find optimal candidates, as well as to
guarantee the convergence of the protocol. In this sense, the
better the sampling of the peptide sequence space, the higher the
probability of detecting peptides with good experimental
properties. The protocol has been optimized for the MHC II
system, which is an experimentally well-characterized receptor
bound to many substrates (54). The code is fully open source and
publicly available to the design of peptide-binders for different
targets (not only MHC II) (42). The protocol is sufficiently
flexible that additional criteria, such as peptide stability [e.g.,
for increasing TCR response (55)], could be included in the
protocol. Regarding the computational time, the cost is directly
proportional to the total MD simulation time, which scales
linearly with the number of alleles. Our calculations for the
multiple-allele design (4 alleles) for the P. vivax epitope were
around 1 microsecond in total. Therefore, if one wants to
perform the same number of mutations, the computational
cost would be 250 nanoseconds times the number of alleles.
We also remark that our approach is “embarrassingly parallel”
with respect to the number of alleles, as it is based on performing
independent MD simulations. If the user wants to include more
alleles, a protocol to model peptides bound to MHC II crystal
structures is available in ref (29).

The essence of the design protocol is to exploit structural
information and biophysical simulations for exploring, in an
unsupervised manner, the peptide sequence and protein-peptide
conformations for multiple alleles simultaneously. Machine
learning methods have been very successful in identifying
whether a predetermined sequence is a potential epitope. These
methods have limitations in predicting affinity differences (29),
and they are highly dependent on the training set. The results
presented in Supplementary Figure 4 highlight that data-based
approaches are less accurate than our approach in predicting
novel epitopes. Importantly, our protocol is a genuine design
scheme, which allowed us to explore novel sequences that
otherwise would not have been available, especially those with
random changes in the flanking regions of the peptide. However,
in the future, for efficiency purposes it might be useful to
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combine both data-driven and ab initio strategies. A possible
direction for future research would be to exploit the efficiency of
these tools in a first massive-screening stage, and then use this
structural-dynamics protocol for refinement of a smaller set of
candidates selected from the previous stage (prior to
experimental validation).

Our strategy enables researchers to engineer epitopes for a
pathogen of interest, increasing the actionable range of potential
antigenic subunits, toward MHC II alleles. In fact, this approach
can be generalized to design peptidic adjuvants that can increase
the expected cellular response by targeting both MHC II and T-
cell receptors simultaneously. Of course the designed peptides
must be tested to avoid side-effects associated with molecular
mimicry, which are commonly associated with autoimmune
events (56). Currently, developing a new vaccine is an
expensive, time-consuming and non-trivial process (more so
for neglected diseases that lack investment). We consider the
multiple-allelic design of great potential in the first steps of
epitope optimization for a cheaper and more effective
vaccine development.
4 MATERIALS AND METHODS

4.1 Multiple Allele Engineering Protocol
In the following section, we present a brief description of the
multiple-allele protocol (shown in Figure 1B). To begin with an
equilibrated system, the starting complexes are sampled with
MD simulations for 100 ns (for details about the MD see the
section 4.5). After the initial MD sampling, we generated single-
point mutations in the peptide sequence following different
strategies for each system. The prediction of rotamers for the
mutated amino acids was done with Scwrl4 (57). The program
was selected based on a previous assessment of single-point
mutation protocols (58). After generating the mutation for all
complexes, we performed the following minimization and
equilibraton procedure in parallel. First, minimization of the
predicted side chain alone is performed with Rosetta (38). In
order to relocate overlapping atoms and avoid clashes, a second
minimization with Gromacs version 5.1.4 (59) is run with the
new amino acid and the water molecules surrounding it within a
2 Å radius. A minimization of the full system is performed with a
subsequent NVT equilibration of 100 picoseconds (ps). Finally
for each mutation, we performed 5 ns of MD simulations to
sample the bound conformations. To compute the score, a
snapshot of the trajectory was saved every 100 ps for each
complex. This sampling/scoring strategy was previously
benchmarked using different MHC II-peptide complexes to
define the optimal simulation parameters (54).

The conformations are scored with six scoring functions used
for protein-protein and protein-peptide affinity predictions:
Haddock (60), Vina (61), a combination of DFIRE and GOAP
(DFIRE-GOAP) (62, 63), Pisa (64), FireDock (65), and the BMF-
BLUUES scoring combination (66, 67). Details of each scoring
function are available in ref (54). For the P. vivax application, we
exchanged BMF-BLUUES for IRAD (68), which correlated better
Frontiers in Immunology | www.frontiersin.org
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with the experimental affinities of the P. vivax epitope to the four
alleles (see Supplementary Figure 8). Similarly as in ref (69). an
average score over all the conformations for each scoring
function was used. If the score difference between the previous
and current mutation is negative, then the scoring function
predicts a good mutation. For each complex, a consensus-by-
vote approach is used (see Supplementary Note 4), where a
mutation is considered favorable if the number of scoring
functions that consider it good is three or higher. Finally, the
mutation is accepted if the number of alleles that consider it
favorable is three of four alleles; otherwise it is rejected. The
mutation process is iterated for many attempts.

4.2 Influenza Epitope: Optimization
Toward a Single MHC II Allele
We first attempted to design peptides with higher affinity toward
a single MHC II (HLA) allele. This phase was relevant in
identifying key factors, such as how to perform the mutations,
which and how many positions can be modified, and how to
optimize the parameters used in the protocol.

4.2.1 Starting MHC II-Epitope System
The starting complex for this optimization was the human MHC
II (HLA) allele DRB1:01*01 bound to a peptide of 14 amino acids
that is part of the Influenza A virus Hemagglutinin antigen
(YPKYVKQNTLKLAT). This sequence has a reported
bioactivity of IC50 = 130 nM from a curated dataset of peptide
binders against multiple MHC II alleles (20). The starting crystal
structure was that of 1DLH (70) from the Protein Data Bank
(PDB) (71), which contains a similar peptide that is missing the
tyrosine at the N-terminal flanking region. The missing amino
acid was modelled using the Rosetta Remodel functionality (72).
This complex was first relaxed using Rosetta with the peptide-
protein backbone fixed. Then, it was minimized and NVT/NPT
equilibrated using Gromacs version 5.1.4 (59). Afterwards, it was
subjected to an MD simulation of 100 ns.

4.2.2 Mutation Strategies and Design
To obtain a diverse and optimal set of peptide candidates, we
performed five independent peptide design runs using different
mutation strategies. These included the random selection of
amino acids or prioritization of residues based on
bioinformatic filters and probability matrices (see Figure 2A
and Supplementary Note 1). The design protocol was run, and
resulted in 105 accepted sequences for all runs. To select the
sequences for the long MD, we applied an additional filter based
on the similarity between each pair of peptides. This was done to
avoid the inclusion of very similar sequences and increase the
diversity of the library (see Supplementary Note 2). 200 ns of
MD were performed for 22 peptide candidates bound to the
single allele. Using the average rank from the long MD, a total of
17 designed peptides were selected for the competitive binding
assay experiments, together with the reference peptide and two
positive controls: PADRE and the original Influenza epitope.
This allowed the evaluation of a full batch of 20 peptides required
for the assay.
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4.3 Design Engineering of P. vivax Epitope
Multiple-Allele MHC II Binding
4.3.1 P. vivax Epitope
We searched for P. vivax-derived peptides with reported affinities
toward multiple alleles and immunological assays available at the
IEDB database (19). A mySQL version of the database was
downloaded and accessed using 15-mer peptides with reported
IC50 values as queries. From that search, we selected an epitope
which is part of the merozoite surface protein 1 (MSP-1) antigen
(DYDVVYLKPLAGMYK). The peptide has been tested against
four human MHC II (HLA) alleles: DRB1*01:01 (IC50 = 1 nM),
DRB1*03:01 (IC50 = 17807.9 nM), DRB1*04:01 (IC50 = 1636.1
nM) and DRB1*15:01 (IC50 = 792.9 nM) (44). In the same work,
immune assays were conducted in mice with positive results.

4.3.2 Natural Variants of the Peptide
Sequences of MSP-1 from different Plasmodium species,
including P. vivax, were obtained from the PlasmoDB database
(73). These were used to run a multiple sequence alignment with
the Clustal Omega program (74) to search for natural variants.
The species in the alignment were clustered based on publicly
available phylogenetic trees of the protein, given its role as an
antigen for malaria vaccine studies (75). In addition, we
conducted a search of polymorphisms reported in the region
of the P. vivax genome that codes for this protein. The
information was obtained from the MalariaGEN project (76).
The variants were mapped onto the epitope region, looking for
silent or non-synonymous mutations that can provide clues as to
which positions of the peptide are more susceptible to
modification. A Logo representation of the sequence variants
was created using WebLogo3 (77).

4.3.3 Starting Structures and Simulations
The selected P. vivax epitope was modelled bound with the four
MHC II allele (HLA) structures: DRB1*01:01 (PDB id 1DLH),
DRB1*03:01 (PDB id 1A6A), DRB1*04:01 (PDB id 1J8H) and
DRB1*15:01 (PDB id 1BX2). We noted that these PDBs have
different peptides bound to the receptor. We modelled the new
epitope by aligning the core regions and mutating position-by-
position based on each template. We applied the NetMHCIIpan-
3.1 tool (23) to predict the 9-mer core region of the epitope to be
modelled. The mutations were performed using the fixbb
package from Rosetta (78). The modelling of additional amino
acids in the flanking region was made with the Remodel package
from RosettaCommons (72), with side chain relaxation. Each
modelled complex was subjected to 100 ns of MD simulations as
described below.

4.3.4 Mutation Strategies
We aimed at performingminimal modifications on the peptide with
the hope of not interfering with the epitope’s immunological
activity. From the single-allele peptide design phase, we found
that it is possible to improve the peptide’s activity with a small
number of mutations (e.g., ≤4), and both the core and flanking
regions provide valuable sites. Therefore, we defined two design
strategies for multiple-allele binding enhancement (Figure 3A). The
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first strategy (strategy 6 in Figure 3A) consists of mutations
performed over natural variants and peptide positions in contact
with MHC II polymorphisms. We used the starting MD trajectories
to monitor the contacts created between the peptide and
polymorphic residues from the MHC II b chain. Using a
threshold of 4 Å, we detected amino acids in the core region and
in the flanking region interacting with highly polymorphic sites. In
addition, we analyzed the multiple sequence alignment of the
antigenic region in the P. vivax epitope to identify non conserved
residues in the peptide. Based on this analysis, we selected four
positions, three in the core and one in the flanking region (stars in
Figure 3B), to mutate during the design protocol. The second
strategy (strategy 7 in Figure 3A) involves modifying only amino
acids from the flanking regions, without changing the identified
core of the peptide. For both strategies, the probability of generating
the new mutation is uniform (i.e., there are no preferential
amino acids).

4.3.5 PanMHC-PARCE Design Details
For the design protocol, we used as starting complexes the last
frame from the MD simulations of the original P. vivax epitope
bound to each of four alleles. We ran 100 attempted mutations for
each mutation strategy, obtaining a total of 42 new designed
sequences for all runs. We evaluated for how many alleles the
affinity is improved in comparison to the reference peptide using
the consensus criteria for each individual allele. We also calculated
the bioinformatic properties and filters, similar to the single-allele
phase (see Supplementary Note 2: Peptide selection criteria for P.
vivax). Using these results, we selected 18 new sequences with the
desired properties, and a better predicted rank for multiple alleles.
This small set was subjected to long MD simulations of 100 ns for
the four alleles. We also ran MD simulations of four additional
controls reporting positive binding data toward the MHC II: the
PADRE epitope (AKFVAAWTLKAAA), an influenza
immunogenic epitope (PKYVKQNTLKLAT), the peptide
Vimentin (SAVRLRSSVPGVR) and the natural CLIP substrate
(PVSKMRMATPLLMQA). The peptides were modelled onto the
MHC II binding sites following the methodology explained in ref
(54). The set of designed peptides used in the long MD and the
controls were experimentally tested. The code used is publicly
available and explained in the Supplementary Note 5.

4.3.6 Prediction of Selected Peptides Toward the
Mouse MHC Allele
The designed sequences from P. vivax and Influenza that were
included in the ex vivo experiment were subjected to binding
predictions toward the mouse MHC II allele H-2-IAb. We used
the same MD/scoring approach implemented with the human
alleles for the long MD simulations (see above), but using as
reference the mouse MHC II crystal structure with PDB id 1r5v.

4.4 Peptide-Candidate Selection
For each mutation strategy, we performed 100 attempted-
mutations. We monitored the evolution of the scores to verify if
these attempts were optimizing (i.e., lowering) their values (such
as in Figure 1D). To combine the results from the different design
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runs, we used the scores calculated from the 5 ns MD simulations
to obtain an average rank for each accepted peptide. Specifically,
all the accepted peptides were ranked using each scoring function,
and the average rank over the six functions was used to prioritize
those peptides that had potentially higher affinities.

This rank was used together with three bioinformatics filters to
select the candidates for long MD simulations. Two filters consisted
of empirical rules to account for solubility and synthesis issues
associated with the peptides. The solubility and synthesis rules
describe violations raised by certain amino acid patterns found in
the peptide sequence (https://bioserv.rpbs.univ-paris-diderot.fr/
services/SolyPep/index.html) (79). The higher the number of
violations, the lower the probability of synthesizing the peptide.
The third filter used a hydrophobic score of the peptide from the
Eisenberg hydrophobicity scale defined for proteinogenic amino
acids (80). The thresholds for each filter and details of the empirical
rules are described in Supplementary Note 2. After applying the
selection criteria, a small set of peptide candidates was subjected to
longer MD simulations (see the Methods). The last half of the
trajectory was used to calculate the average score for the same six
scoring functions used in the design. Using the average of each
scoring function, an average rank was calculated and used to re-rank
the candidates. This long MD re-ranking was used to select the set
of designed peptides for the experiments.

4.5 MD Simulations
Eachprotein-peptide complexwas subjected toMDsimulationswith
previous minimization and NVT/NPT equilibration phases. The
system was minimized using the steepest descent algorithm, with
50000 steps and amaximum force threshold of 10 kJ/mol/nm. NVT
and NPT equilibrations were performed for 100 ps using position
restraints on the heavy atoms of the protein to allow for the
equilibration of the solvent. Gromacs version 5.1.4 (59) was used to
perform theMD simulations. The Amber99SB-ILDN protein force-
field (81) and TIP3P water model (82) were used. The protein was
solvated with a cubic box of water with a distance of 8Å from the
furthest atom of the protein. After solvation, counterions of Na+ and
Cl- were included in the solvent to make the box neutral. The
electrostatic interactions were calculated using the Particle Mesh
Ewald (PME)method with 1.0 nm short-range electrostatic and van
derWaals cutoffs (83). The equations ofmotionwere solvedwith the
leap-frog integrator (84) using a timestep of 2 femtoseconds (fs). The
simulation was run using a modified Berendsen thermostat (85) at
350K temperature-coupling, and the Parrinello-Rahman barostat
(86). This was done to allow a fast exploration of the conformational
space. To maintain the system at this temperature, all the receptor
atoms located at a distance greater than 12 Å from any peptide atom
were restrained. The atoms from the receptor located at a distance
lower than the threshold remained flexible, as well as the peptide.

4.6 Experiments
4.6.1 Rate-Binding Assays
A gold-standard method of rate binding experiments against the
MHC II alleles was performed with the Proimmune REVEAL®

binding assay. Themethod uses antibody-labelled peptides that emit
a signal if native conformations of the complexes are detected.
Consequently, we can verify if a peptide binds to a particular MHC
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II allele and if the complex remains stable. An illustration of the
molecular complex and the emitted signal is shown in Figure 2D.
Using a control baseline, provided by Proimmune, a score (between
0 an 100) determines a proxy affinity toward the MHC II allele
within two time points, one at 0 hours and a second after 24 hours.
The peptides were synthesized using the Prospector PEPscreen®

technology with high purity standards based on quality controls
obtained by MALDI-TOF mass spectrometry (87).

For the single-allele binding optimization phase, 17 peptides
selected were assayed together with the controls against the
DRB1*01:01 allele. For the multiple-allele engineering phase, 18 P.
vivax engineered epitopes were evaluated for the MHC II alleles
DRB1*01:01, DRB1*03:01, DRB1*04:01 and DRB1*15:01. A
multiple-allele score was calculated by averaging the scores of each
allele, and by weighting each allele based on the their frequencies in
the world population. The calculations were provided by Proimmune.
These measures were used to evaluate the binding performance of
each peptide toward the four alleles simultaneously.

4.6.2 Peptide Synthesis for Ex vivo Experiment
The peptides were synthesized by GenScript USA Inc with more
than 75% purity to be tested ex vivo: reference P. vivax
(DYDVVYLKPLAGMYK) and four predicted peptides
(DYTVVYLKPLAGYDH , DYTVVYLKPLAGYDN ,
VYDVVYLKPLAGCYK and DYDVVYWKPLAGIYK);
PADRE epitope (AKFVAAWTLKAAA); Influenza reference
(PKYVKQNTLKLAT) and one predic ted sequence
(YSKYKKQNTLKAAT). Peptides were resuspended in DMSO
(10 mg/mL) and stored at -20 degree Celsius.

4.6.3 Mice and Immunization
Six- to eight-week-old female C57Bl/6 mice were bred at Centro
de Desenvolvimento de Modelos Experimentais para Medicina e
Biologia (CEDEME) – UNIFESP. All mice were housed in a
temperature-controlled, light-cycled facility at the Division of
Immunology- UNIFESP. All experiments using mice in this
study were approved by the UNIFESP Institutional Animal
Care and Use Committee (IACUC) under protocol number
4615161120, and were in accordance with the recommendations
of the Federal Law 11.794 (2008), and the Guide for the Care and
Use of Laboratory Animals of the Brazilian National Council of
Animal Experimentation (CONCEA). For immunization, mice
received two doses, at 2-week intervals, with 50mg of each peptide
in the presence of AddaVax adjuvant (1: 1 v/v; In vivogen) in a total
volume of 100 mL delivered subcutaneous at the base of the tail.

4.6.4 Splenocyte Isolation
Fifteen days after the last dose, mice were euthanized and spleens
were aseptically removed. Single cell suspensions were obtained
after red blood cells lysis with ammonium chloride potassium
(ACK). Cells were then resuspended in R-10 (RPMI supplemented
with 10% fetal bovine serum, 2 mM L-glutamine, 1% v/v vitamin
solution, 1 mM sodium pyruvate, 1% v/v non-essential amino
acids solution, 1% v/v pen strep, 40 mg/mL of gentamicin and
5×105 M 2-mercaptoethanol (all from Gibco). Cell viability and
concentration were estimated using a cell counter (CountessTM
Automated Cell Counter, Invitrogen).
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4.6.5 T Cell ELISpot Assay
IFNg-producing cells were assessed using Mouse IFNg ELISPOT kit
(BD Bioscience). The procedure was performed according to the
manufacturer’s instructions. Briefly, 96-well plates (MAIPS 4510,
Millipore) were coated with IFNg capture antibody and incubated
overnight at 4°C. The plates were washed twice and blocked for 2
hours with R10 at room temperature. Splenocytes were incubated
for 18 hours at 37°C in 5% CO2 in the presence of each peptide
(10mg/mL), Concanavalin A (ConA-2.5 mg/mL; positive control) or
R10 (negative control). The plates were washed and incubated with
biotinylated anti-mouse IFNg for 2 hours at room temperature. The
plates were then washed and incubated with avidin-HRP for 45
minutes at room temperature in the dark. After extensive washes,
the spots were developed with 3-amino-9-ethylcarbazole (AEC)
(BD Biosciences) and the number of spots were counted using the
AID ELISpot Reader System (Autoimmun Diagnostika GmbH,
Germany). The number of IFNg-producing cells/106 splenocytes
was calculated subtracting unstimulated values from stimulated.
Statistical significance (p - values) was calculated by One-way
ANOVA followed by Tukey honestly significantly different (HSD)
post hoc test. Statistical analysis and graphical representation were
performed using GraphPad Prism version 7.0 software.
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