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This review focuses on current clinical and immunological aspects of cerebral malaria
induced by Plasmodium falciparum infection. Albeit many issues concerning the
inflammatory responses remain unresolved and need further investigations, current
knowledge of the underlying molecular mechanisms is highlighted. Furthermore, and in
the light of significant limitations in preventative diagnosis and treatment of cerebral
malaria, this review mainly discusses our understanding of immune mechanisms in the
light of the most recent research findings. Remarkably, the newly proposed CD8+ T cell-
driven pathophysiological aspects within the central nervous system are summarized,
giving first rational insights into encouraging studies with immune-modulating adjunctive
therapies that protect from symptomatic cerebral participation of Plasmodium
falciparum infection.
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INTRODUCTION

Malaria is a mosquito-borne infectious disease that is self-limiting even without therapy. However,
in 1-2% of cases, mostly among children under the age of five, malaria becomes severe and life-
threatening (1). Why young children are especially prone to develop severe and cerebral malaria
(CM) is not fully understood. The vector responsible for most complicated malaria cases is the
parasite Plasmodium falciparum (Pf). However, P. vivax infections also can cause CM (2), and P.
knowlesi occasionally provokes severe malaria signs and symptoms (3).

Although it has become a declared global target of the World Health Organisation (WHO) to
eliminate malaria worldwide and malaria cases and death have been reduced within the last ten
years, in 2021, this progress was impeded as the COVID-19 pandemic disrupted malaria services
and diagnosis. The immense number of malaria cases in 2021 (241 million cases) and the distressing
number of deaths (627 000) revealed how fragile medical services are. Especially in the African
region, where 96% of all malaria deaths occurred, 80% were children under five, significantly more
effort is needed to reverse the last year’s trend for 2022 (4).

The definition of severe malaria by the WHO is Pf parasitemia together with one or more of the
following medical conditions: impaired consciousness, prostration, multiple convulsions, acidosis,
hypoglycemia, anaemia, renal impairment, jaundice, pulmonary oedema, significant bleeding and
shock (5). Apart from infants, pregnant women are also more likely to develop severe malaria,
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particularly in the second and third trimesters. Placental malaria
can lead to fetal and maternal death when untreated, and
premature labour and children with low birth weight are
common complications even with intermittent preventive
treatment in pregnancy (4). Other susceptible population
groups are non-semi-immune persons, e.g. travellers or
migrant workers, moving to holo-endemic areas.

Cerebral malaria (CM) is characterized by unarousable coma
not attributable to other neuro-pathologies combined with Pf
parasitemia. Of all severe malaria complications, CM is the most
prevalent and deadly, with a mortality rate of 100% if untreated
and a patient fatality of 15-25% if treated with current first-line
anti-malaria therapy (6). Children with CM present acutely in a
coma often precipitated by seizure and a one to three-day history
of fever, vomiting, and anorexia. Within two days, most children
will have recovered from or succumbed to the disease (7). 14-
25% of children recovering from CM suffer from long-term
sequelae like cognitive and hearing impairments (8, 9). As there
is no specific therapy beyond symptomatic neurocritical
management, all strategies aim to eliminate the parasite from
the system while targeting symptoms arising from severe
complications like respiratory distress or convulsions.
Furthermore, it is impossible to predict which children are
likely to develop cerebral complications because the exact
molecular mechanisms in human pathology remain unsolved.
In animal studies, which are a reasonable way to investigate
molecular pathophysiology, it has been shown that CM is, at least
in part, an immune-mediated disease. Most likely, cerebral
complications are caused by a misguided host immune
response provoked by the parasite infection. Therefore
adjunctive therapies focusing on the regulation of immune
cells are interesting new treatment strategies (10).

TREATMENT OF SEVERE AND
CEREBRAL MALARIA

Artemisinins, which have the fastest parasite clearing time of all
anti-malarial drugs, have become the drugs of the moment, and
artesunate is the first-line therapy for treating severe and cerebral
malaria in both children and adults (5).

The main difference between the treatment of uncomplicated
and severe malaria is the route of administration of the
artemisinin-based therapy. Artesunate should be administered
intravenously for 24 hours in severe and cerebral malaria cases. If
an intravenous application is not possible, the intramuscular
route is the second-best option, and artemether is reccommended
in case of missing artesunate. After that, a three-day oral
artemisinin-based combination therapy (ACT) should be
followed (5).

Beyond intravenous artesunate, no “brain-specific” drug is
available. Symptomatic therapy strategies are the only possibility
to manage organ manifestations and intracranial complications
of Pf malaria. Although not widely available, respiratory support
and artificial ventilation are crucial (11). Increasing intracranial
pressure decreases cerebral perfusion and leads to secondary

transtentorial herniation, the primary cause of death in children
with CM (12). Seizure management is another critical treatment,
as up to 70% of children with severe and cerebral malaria have
seizures, which, when treated with benzodiazepines, are less
likely to cause secondary neurological damage, and fever
should be controlled to reduce high fever convulsions and
long-term neurologic damage (12).

Although it is a breakthrough, the first-ever malaria
vaccination only provides partial protection. A four-dose
regimen (im.) of the MosquirixTM (RTS,S/AS01) vaccine
showed protection from severe and cerebral malaria in 32.2% of
children aged 5-17 months (13). Therefore, seasonal
chemoprevention should continue in addition to vaccination (14).

GENETIC COEVOLUTION

There have been millenniums of coevolution between humanity
and Plasmodium species. Considering this, it is no surprise that
both parasite and host have undergone genetic alterations for
successful coexistence. On the host side, protective variations
include sickle-cell anaemia (15), thalassemia (16), G6PD
deficiency (17) and other haemoglobinopathies with high
incidence in malaria-endemic countries. These severe inherited
haemoglobin disorders are nicely reviewed elsewhere (18).

Several novel genetic variants have been identified with new
technologies for genome-wide association studies (GWAS). Many
genetic polymorphisms related to malaria are relevant for red
blood cell (RBC) biology, like variants of the ATP2B4 gene, a
plasma membrane calcium transporter contributing to resistance
against severe malaria (19), or variants of the FREM3 gene and a
cluster of three glycophorin genes (GYPE, GYPB and GYPA)
associated with 33% protection against severe malaria (20).
However, newly identified single nucleotide polymorphisms
(SNPs) indicate the importance of other cells for malaria
disease progression, as variations in genes encoding proteins
necessary for neurons, endothelial cells and immune cell-
signalling have been identified with GWAS. For example, a
SNP close to the DDC (L-DOPA decarboxylase) gene is
associated with cerebral malaria susceptibility (21). DDC is an
enzyme that catalyzes the decarboxylation of L-DOPA to
dopamine, which is involved in neuronal signalling and
regulating the activation of specific lymphocyte subtypes (22).
SNPs near the MARVELD3 gene have been suggested to protect
against the severe progression of malaria (19, 23). Structural
variants of the gene product of MARVELD3 or alterations in its
expression could influence the barrier function and endothelial
adherence of parasitized erythrocytes. A more recent GWAS
identified the IL-23R and IL-12RBR2 genes associated with
alterations in malaria severity (24). Both genes are essential for
immune cell signalling, especially for T-cells. Variants of IL-12B
are protective against cerebral malaria in children (25).
Polymorphisms in Fc gamma receptors on the surface of
immune cells such as B-cells, NK cells and macrophages have
been linked to resistance and susceptibility to malaria in different
population studies (26).
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TABLE 1 | Genetic variations and their association to malaria.

Genetic Cell type Biological consequence Association with malaria Ref.
polymorphism
HBB (HbAS) RBCs Sickle cell trait Protective against malaria by increased (15, 18)
(heterozygous) clearance of sickling infected RBCs
Sickle cell disease (homozygous) Increased susceptibility to severe malaria
HBA1, HBA2 RBCs a-Thalassemia, hetero- and Protective against severe malaria and severe malaria anemia (16, 18)
Glucose-6-phosphate  RBCs Glucose-6-phosphate dehydrogenase Protective against severe malaria in female heterozygotes and male (17, 18)
dehydrogenase homozygotes because of decreased parasite invasion
ATP284 RBCs Encodes PMCA4 (ubiquitous Ca2 Expected to be protective against parasite invasion into RBCs (19)
+pump)
FREM3/GYPA,B,E RBCs Encode erythrocyte-binding and Protective against severe malaria through (20)
parasite binding ligands
DDC Neuronal Encoding L-dopa decarboxylase Increased susceptibility to severe and cerebral malaria 21, 22)
cells
lymphocytes
MARVELD3 ECs Encodes tight-junction structures of Suggested to be protective by maintaining endothelial (19, 23)
vascular endothelial cells barrier function
IL23RIJL-12RBR2 Lymphocytes Improved cell-mediated immune Protective against severe malaria (24, 25)
response against intracellular
parasites
FC gamma receptor ~ Lymphocytes Altered immune response Protective or increased susceptibility, depending on the SNP location (26)
ADORA2A RBCs Encodes Adenosine 2a receptor Increased susceptibility for severe malaria 27)
Lymphocytes
ECs
GRK5 Lymphocytes Encodes G-coupled receptor kinase 5  Increased susceptibility for severe malaria (28)

Accumulating evidence indicates that the G protein-coupled
signal transduction pathways are involved in the regulation of
malaria, specifically in the severe, life-threatening manifestations
of the disease. In a case-controlled study of adults, SNPs of
ADORA2A and GRK5 genes were associated with virulence and
infectivity of the malaria parasite (27). The ADORA2A gene was
associated with severe Pf malaria in children in a meta-analysis
that evaluated several G protein-coupled signalling pathways
(28). Identified genes and proteins listed in Table 1 might be as
new drug targets and require further exploration in malaria
studies to validate and functionally characterize causalities to
enhance our understanding of cerebral malaria pathology.

PATHOPHYSIOLOGY OF
CEREBRAL MALARIA

Magnetic resonance imaging has achieved vital progress in
elucidating cerebral malaria pathology in children suffering
from cerebral manifestations. It has become evident that brain
swelling and brain stem herniation lead to respiratory arrest and
death (6). Further investigations could link the swelling of the
brain to a dysfunctional blood-brain barrier, indicating increased
vascular permeability (29). Causative for the penetration of vascular
fluid into brain tissue might be an excessive inflammatory response
to sequestration of parasitized erythrocytes in the cerebral
vasculature (30). Overall, CM seems to be caused by a
combination of host factors and parasite factors, leading to
inflammation and coagulation in the brain vasculature (31).
Endothelial cell dysfunction due to inflammation is the main
driver for brain pathology concerning host factors. On the
parasite side, PfEMP-1 (Pf erythrocyte membrane protein-1)

molecules on the surface of iRBCs are responsible for most
parasite-host cell interactions.

PARASITE VIRULENCE FACTORS

In order to escape the clearance by the spleen, iRBCs adhere to
vessel walls in several organs (32). The surface molecule PfEMP-
1 mediates this sequestration by binding to the host vasculature
via interaction with specific adhesion molecules. PfEMP1 is
encoded by the var gene family with approximately 60
members (33). The extracellular (interacting) part of PfEMP1
consists of Duffy-binding-like (DBL) domains and cysteine-rich
interdomain regions (CIDR), each of which can be subdivided
into seven and three main sequence classes, respectively (34).
Among the host endothelial adhesion molecules, intercellular
adhesion molecule-1 (ICAM-1) has long been suggested as the
main anchor point for PEEMP-1 (35). Still, more recently, CD36
and endothelial protein C receptor (EPCR) were identified as
more probable binding sites (36, 37). CIDR02-6 domains of
PfEMP1 bind to CD36 (38), and CIDRol binds to EPCR on
endothelial cells (39).

HOST VIRULENCE FACTORS

On the host side of malaria pathology, activated endothelial cells
play a significant role in mediating cerebral manifestations.
Endothelial cells are activated permanently upon Pf infection
and sequestration of iRBCs to the vasculature. This chronic
activation leads to dysregulation in the endothelial barrier
function and brain oedema (40).
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Activation of the Brain Endothelium

Brain endothelial cells are activated during the first phase of Pf
infection, even before the sequestration of iRBCs. The exact
mechanism of early endothelial cell activation is unknown, but it
is hypothesized that soluble factors from iRBCs such as Pf
histidine-rich-protein 2 (PfHRP2) might activate brain
endothelial cells (41). PfHRP2 has been suggested as a
prognostic marker for CM as plasma levels increase with
malaria severity (42). However, studies outside the African
continent could not confirm the correlation between plasma
levels and disease complications (43).

Changes in the bioavailability of nitric oxide (NO), being the
principal protector of endothelium homeostasis, have been
reported in children with Pf malaria (44). However, inhaled NO
as adjunctive therapy for severe malaria proved insufficient for
change of outcome (45). Another vasoactive substance elevated in
the plasma of malaria patients is endothelin-1 (ET-1) (46). This
peptide is among the most effective vasoconstrictive peptides in
the human body, but whether ET-1 is involved in vasculopathy in
cerebral manifestations of malaria remains unanswered.

Under hypoxic conditions, after vasoconstriction due to
sequestration of iRBCs, vascular endothelial growth factor-A
(VEGF-A) is released by endothelial cells (47). VEGF-A binds to
its receptor (VEGFR2) on endothelial cells, inducing vascular
permeability. On the other hand, VEGF-A exerts protective,
anti-apoptotic effects in endothelial and neuronal cells. As
reviewed elsewhere, the role of VEGF-A remains controversial
(48). However, a study investigating serum samples from malaria
patients showed significantly lower levels of VEGF-A in cerebral
malaria non-survivors, pointing instead to a protective effect of
VEGF-A in cerebral complications of malaria (49). Similar
protective effects on the vascular brain endothelium are
mediated by angiopoietin-1 (Ang-1) and its receptor Tie-2. Ang-
1 is essential for endothelial quiescence but can be blocked by
Ang-2, which renders a natural competing antagonist for Ang-1
regarding the binding to their shared Tie-2 receptor. Ang-2
destabilizes existing vessels as part of the initiation of
angiogenesis, the formation of new blood vessels (50), and is
released from activated endothelial cells. Elevated levels of Ang-2
are found in severe and cerebral malaria (47, 51). Although anti-
malarial therapy decreases Ang-2 levels (52), direct targeting of the
Ang-2/Tie-2 pathway remains challenging and has been reviewed
elsewhere (53).

Many of these peptides from endothelial activation have been
suggested as possible biomarkers to predict the fatal outcome of
CM. However, currently, there is no test available to confirm the
diagnosis of cerebral manifestations prior to the appearance of
clinical symptoms.

Blood-Brain Barrier Disruption

The blood-brain barrier (BBB) comprises brain endothelial cells
connected by tight junctions formed by transmembrane proteins
occludin, claudin and zonula occludens protein-1 (ZO-1).
Endothelial cells are in contact with surrounding pericytes and
astrocytes situated in the perivascular space. Together, these cells
provide a highly functional barrier between the blood and the
brain interstitial fluid. In cerebral malaria, an impaired barrier

function allows leakage of plasma proteins and fluids into the
perivascular space causing vasogenic oedema and brain swelling
(6). One reason for the disintegration of the BBB is the decrease
in endothelial tight junction proteins occludin and ZO-1 (54).
Another reason for the destruction of the BBB lies in the
apoptosis of endothelial cells caused by a hyperinflammatory
environment upon lymphocyte sequestration.

Cytokine Mediated Inflammation
of the Brain
Numerous studies showed that serum levels of the pro-
inflammatory cytokine TNF-o. were higher in CM than in
severe forms of malaria in children and adults (55).
Nevertheless, a more recent study showed that brain swelling of
children suffering from CM is independent of peripheral plasma
cytokine levels (56), and therapy with a monoclonal antibody
against TNF-ou did not improve survival in CM patients (57).
Likewise, I[FN-y is released from immune cells like CD4+ and
CD8+ T cells, natural killer cells and y8-T cells during malaria
infection. IFN-vY is a potent activator of macrophages, increasing
their phagocytosis activity, vital in the early control of parasite
growth. On the other side, IFN-y induces brain endothelium
activation and an increase of adhesion molecules (58). However,
targeting the IFN-y pathway as adjunctive therapy for CM is
questionable as this important cytokine is involved in many
distinctive processes important for gaining immunity against
malaria (59).

Chemokine Induced Migration to the Brain
Besides promoting the expression of adhesion molecules in the
brain vasculature, IFN-y is active in up-regulating CXCL10
released from endothelial cells (60). Confirming, CXCL10 has
been described as a biomarker of CM and a predictor of mortality
(61). The receptor to which CXCL10 binds is CXCR3, which is
predominately expressed on immune cells such as CD4+ and
CD8+ T-cells (62). Recently, the adhesion of CD8+ T cells to the
brain vascular endothelium was shown to be involved in
manifestations of human CM for the first time (63).

CD8+ T Cells Sequestration

From murine cerebral malaria research, we know that T cells
play a crucial role in the experimental cerebral malaria (ECM)
model, and functional studies using neutralizing antibodies or T
cell-deficient mice have demonstrated a significant role of CD8+
T cells in inducing brain damage (64). However, evidence for the
involvement of CD8+ T cells in human CM has long been
missing. Recent studies have investigated the presence of CD8+
T cells in human CM post-mortem sections. A first study
successfully showed the presence of CD8+ T cells in the brains
of children who died from malaria. However, a clear correlation
to cerebral manifestations could not be drawn (65). Finally,
Riggle et al. provided evidence for the significant involvement
of CD8+ T cells in the human setting by investigating 31 brains
of children who had died from CM, using multiplexed histology
(63). Interestingly, the presence of CD8+ T cells was correlated
with the number of iRBCs within the lumen of brain veins.
Additionally, sequestered CD8+ T cells showed positive staining
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for the cytolytic protease granzyme B (GrB) (63). As enzymes
such as GrB (66) and perforin (67) are responsible for apoptosis
of endothelial cells in ECM, the findings presented by Riggle et al.
indicate a similar mechanism in human CM and underline the
relevance of the murine malaria model.

IMMUNOLOGICAL ASPECTS OF
CM PATHOLOGY

CD8+ T cells recognize pathogens through major histocompatibility
complex I molecules (MHCI) on the surface of antigen-presenting cells
or infected cells and contribute, therefore, to clearance and immunity
against intracellular pathogens. However, as erythrocytes lack MHCI
receptors, CD8+ T cells do not recognize Pf infected RBCs and are
therefore unable to add to clearance of blood-stage infections. Instead,
CD8+ T cells are suspected to be the main drivers for cerebral
pathology in humans and experimental mouse models (68, 69). One
important step for enabling cytotoxic CD8+ T cells (CTLs) to interfere
with brain ECs, is a specific process called cross-presentation. As a
result of chronic activation of ECs by sequestration of iRBCs in
combination with high IFNy levels, ECs start to phagocytose
parasites (e.g. free merozoites) and present these antigens via their
major histocompatibility complex class I (MHCI) (70, 71). In Figure 1,
we compile the current knowledge of all the stepwise mechanisms
which, as we propose, may lead to CM in non-immune humans.

EXPERIMENTAL CEREBRAL MALARIA

The mouse model to examine CM named experimental cerebral
malaria (ECM) is studied with C57BL/6 mice infected with
Plasmodium berghei ANKA (PbA). In this mouse model, RBCs
bearing asexual forms of the parasite are injected intraperitoneal
(10° infected RBCs) or intravenously (10* infected RBCs). As
asexual forms do not enter hepatocytes, the liver stage of the
disease is circumvented, and the blood stage is visible in blood
smears after approximately three days. Mice show signs of
neurological symptoms such as ataxia, convulsions or paralysis
starting from day four and die between days 6-8. Mice that do
not develop cerebral manifestations die from hyper-parasitemia
and anaemia at later time points (day 14 to 21) (72). Similarly to
human CM, brain pathology includes dysfunction of the BBB,
brain haemorrhaging and brain swelling (68). In addition, mice
with neurological symptoms treated with anti-malarial drugs
survive with long-lasting cognitive deficits (73). The most
significant difference between the murine model and human
CM is the extent of iRBCs sequestration in the brain’s
microvasculature (74) due to the lack of molecules on RBCs
infected with PbA. Therefore, the malaria mouse model is mainly
used to study host virulence factors of malaria. However, the
presence of parasites in the brain vasculature is also critical for
ECM (75, 76). Several studies searched for functional equivalents
of PEEMP1 in mouse and non-falciparum human Plasmodium
species (77, 78). Two proteins necessary for the transport of
PfEMP1 to the erythrocyte surface, SBP1 and MAHRPI, are

evolutionarily conserved between Plasmodium species, and their
orthologues have been identified in Plasmodium berghei,
although the transported surface protein is not known (79-81).

MOUSE MODELS OF CM AND THEIR
TRANSLATIONAL POTENTIAL

In experimental malaria models, multiple pathways have been
classified as essential for developing CM. After the deletion of
specific genes, several knockout mice infected with PbA showed
resistance against cerebral manifestations of malaria. The identified
genes can serve as potential therapeutic targets. Many of the
involved genes discussed hereafter encode proteins that function
in leukocyte migration to the brain and modulate T-cell effector
functions. However, the limitations of the experimental murine
model for translational research will also be discussed in the
following passage.

Interferon-Gamma

Cytokines such as interferon-gamma (IFNy) and its receptors
(IFNYR) seem crucial for CM development. In mouse models,
IFNYR2 knockout proved protective against CM, whereas specific
knockout on T cells (CD4-Cre* IFN-yR2™¥1%) did not prevent
cerebral symptoms and early death (82). A probable explanation for
the survival benefits in an IFNy deficient system is that this cytokine
is involved in activating the brain endothelium, enabling the cross-
presentation of parasite proteins by endothelial cells. Therefore,
endothelial cells act as antigen-presenting cells (APCs) and are thus
recognized by cytotoxic T cells and destroyed. As a result, the
endothelial layer gets leaky and infiltrating fluid causes brain
swelling (proposed in Figure 1).

Outside the model of ECM, however, IFNY is essential for a
functional immune system, and its stimulation of innate and
adaptive immune responses is crucial to attack hepatic stages of
Pf during the early stage of infection (83). Therefore, blocking
IFNYy during a Pf infection might do more harm in the long run
than prevent cerebral complications.

Tumour Necrosis Factor-Alpha

Tumour necrosis factor receptor 2 (TNFR2) deficient mice were
resistant to CM pathology and maintained BBB integrity during
infection with PbA (84). Accordingly, in the human setting,
TNFo has been suggested to mediate the sequestration of iRBCs
by upregulation of adhesion molecules on endothelial cells and
induce the fatal inflammatory cascade together with IFNy and
nitric oxide (85).

Instead, Lymphotoxin alpha (LTo), which binds the same
receptors as TNFa (TNFR1 and TNFR2), might be a more
specific target and control late-stage inflammation to prevent
neurological complications. LTo knockout animals and LIGHT-
lymphotoxin beta receptor (LTBR) deficient mice were protected
from CM (86), and LTBR-/- mice showed reduced lymphocyte
recruitment to the brain resulting in a survival benefit (87).

However, the translational potential of TNFo and LTo for
human CM is questionable, as, similar to IFNy, TNFa and its
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1 | After phagocytosis of infected red blood cells (iRBCs), dendritic cells (DCs) in the
spleen present parasite antigens via MHCI/Il. CD4+ and CD8+ T cells bind to
MHCI/II, respectively, with their T cell receptor (TCR) and become parasite-
specific (priming of T cells).

2 | In order to circumvent clearance in the spleen, iRBCs bind to endothelial cells
(ECs) via interaction of PfEMP1 with surface proteins CD36, endothelial protein c
receptor (EPCR) and integrins aVB. This adhesion process is called sequestration.

3 | IFNy released from stimulated immune cells (e.g. CD4+ T cells) in combination
with sequestration of iRBCs activate brain ECs, which acquire the ability to
phagocytose and present parasite antigens via MHCI receptors. This event is
referred to as cross-presentation.

4 | Activated ECs produce the chemokine CXCL10.

Parasite-specific CD8+ cells express the chemokine receptor CXCR3 and migrate
up the CXCL10 chemokine gradient to the brain.

6 | Antigen-specific binding of CD8+ T cells to cross-presenting ECs evokes the
cytotoxic activity (CTL) of CD8+ T lymphocytes.

7 | Cytolytic enzymes such as Granzyme B (GrB) destroy the EC-monolayer and
blood-brain barrier integrity, thus leading to vascular leakage and brain oedema.

FIGURE 1 | CD8+ T cell dependent CM pathology.
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receptors are associated with gaining immunity against
malaria (88).

Interleukins

Interleukins (IL) are other cytokine family members playing a
role in cerebral malaria complications. For instance, prophylactic
treatment with IL-4 increased survival time in PbA infected mice
by reducing parasitemia by stimulation of Th2 CD4+ T cells and
the phagocytic system. However, IL-4 treatment was only
effective as a preventive strategy, whereas starting therapy on
day five after infection did not abrogate CM fatality (89).
However, knockout of the interleukin-4 receptor alpha (IL-
4Ra) specifically on dendritic cells (DCs) resulted in decreased
numbers of cytotoxic CD8+ T cells in the brain (90). In human
studies, increased serum levels of IL-4 are associated with severe
and cerebral forms of malaria (91), probably by increasing the
fatal inflammatory response.

Interleukin-12 receptor beta2 (IL-12RPB2) deficient mice are
protected against cerebral complications, whereas IL-12-p40
deficient mice show similar susceptibility as wild-type animals
(92), suggesting that ECM induction through IL-12RB2 can
occur independently of IL-12 ligands. Interestingly, IL-12R[32
primarily occurs on activated T cells and NK cells, emphasizing
the role of these cells in ECM pathology. In human CM,
decreased plasma levels of IL-12 occur in severe childhood
malaria (93). Unfortunately, no study differentiated between
severe and cerebral pathologies of malaria to give data on IL-
12 involvement in human brain pathology.

The Interleukin-33 receptor (ST2) is expressed on brain
endothelial cells, and ST2 knockout mice are protected from CM
due to less cytotoxic CD8+ T in the brain microvasculature (94).

Adhesion Molecules

The role of the adhesion molecule ICAM1 in ECM development
has long been an undoubted truth as ICAM ™" mice are protected
from brain pathologies (95). With newer technologies enabling
ICAM1 knock-down selectively on endothelial cells (ECs), this
theory has become questionable, as these EC-specific knockout
mice still developed CM with cellular sequestration independent
from ICAM-1 expression on cerebral microvasculature (96).
Recently, PIEMP1 A-Type ICAM-1-binding domains have been
shown to be not associated with CM in children (97). Instead, the
role of PfEMP1 binding to endothelial protein C receptor (EPCR)
was significantly linked with brain swelling (98).

Integrin oDB2 on the surface of lymphocytes is involved in
adhesion to brain vessels (99), a critical step in ECM
development. In a preclinical study investigating PfEMP1
interacting partners, integrins ooVB3 and oVP6 have been
shown to bind to the DBLS_D4 domain of a specific parasite
line expressing the single var gene PFL2665¢ (100). Therefore,
the authors have suggested that endothelial cells expressing
oVPB3 and aVPB6 integrins potentially add to the sequestration
of iRBCs via the DBLS_D4 domain of PfEMP1.

CD36 (cluster of differentiation 36) is a membrane protein
found on the surface of ECs and has been described as essential
for cytoadherence of iRBCs in ECM, although survival of CD36
knockout mice was not improved (101). In human CM,

polymorphisms of CD36 are associated with protection from
neurological complications (102), and CD36 is a common target
of the PfEMP1 protein on iRBCs for adherence to endothelial
receptors (103).

Chemokines

Chemokine receptor CXCR3™" mice are protected from fatal
ECM by decreased infiltration of perforin-positive CD8+ T cells
to the brain. The results suggest that CXCR3 is necessary for the
migration of CD8+ cells to the brain (104). The ligands of the
CXCRS3 receptor, IP-10 (CXCL10) and Mig (CXCL9), however,
did only partially protect mice from fatal CM when genetically
knocked out (105). In patients, CXCL10 serum levels have been
significantly associated with a high risk for cerebral
complications (61) and suggested as prognostic biomarkers for
severe and cerebral complications of malaria (106).

Transcription Factors

When the transcription factor Batf3 is knocked out in mice,
animals lack a specific DC subset necessary for T cell priming. As
a result, Batf3”" mice show decreased cytolytic active CD8+ T
cells and are protected from developing CM (107). Batf3 is a
potential target for immunotherapy in humans, although its
impact on CM has not been investigated so far (108).

Lipoproteins

Apolipoprotein E (ApoE) is the dominant apolipoprotein in the
brain, and ApoE™"~ mice are protected against the development
of ECM through decreased sequestration of parasites and T cells
within the brain. Additionally, treating mice with the ApoE
antagonist heparin octasaccharide significantly decreased ECM
incidence (109). Whether heparin-based therapies might be
promising for reestablishing blood perfusion in congested
brain microvasculature, however, is unclear, as bleedings are a
possible complication in the neurological complex of CM.

Protein-Kinases

Protein kinase C-theta (PKC-theta) deficient mice do not show
neurologic symptoms typical for CM, such as abrogated cerebral
microcirculation or brain ischemia. Interestingly, recruitment
and activation of CD8+ T cells were reduced in the brain of
resistant mice (110). Further investigation with specific
pharmacological inhibitors of the PKC-theta pathway may
present a new treatment strategy that needs to be investigated.

CONCLUSION

Summing up the latest research data from mouse and human
CM studies, the importance of lymphocyte sequestration in the
brain vasculature has achieved objective evidence. Although
substantial progress has been made in elucidating the cause of
death in CM, specific treatment is still missing, and solutions are
not within sight. For this reason, research regarding targets,
which are drugable in the human setting, is urgently needed, and
focus should be concentrated on the development of adjunctive
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therapies for treating and preventing the potentially fatal
evolution into CM.
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