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Esophageal cancer ranks as the sixth most common cause of cancer death worldwide.
Due to the limited efficacy of conventional therapeutic strategies, including surgery,
chemotherapy, and radiotherapy, treatments are still far from satisfactory in terms of
survival, prompting the search for novel treatment methods. Immune checkpoints play
crucial roles in immune evasion mediated by tumor cells, and successful clinical outcomes
have been achieved via blocking these pathways. However, only a small fraction of
patients can benefit from current immune checkpoint inhibitors targeting programmed cell
death ligand-1 (PD-L1) and cytotoxic T-lymphocyte-associated protein-4. Unfortunately,
some patients show primary and/or acquired resistance to immune checkpoint inhibitors.
Until now, novel immune checkpoint pathways have rarely been studied in esophageal
cancer, and there is a great need for biomarkers to predict who will benefit from existing
strategies. Herein, we primarily discuss the roles of new immune checkpoints as predictive
biomarkers and therapeutic targets for esophageal cancer. In addition, we summarize the
ongoing clinical trials and provide future research directions targeting these pathways.
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1 INTRODUCTION

Esophageal cancer (EC) is one of the most common cancers worldwide, ranking seventh in incidence
and currently the sixth leading cause of cancer-related deaths (1). Nearly half of new cases worldwide
are diagnosed in China every year, where the histological type is mainly esophageal squamous cell
carcinoma (ESCC) (2). Various treatment strategies have been developed and implemented in the
clinic, including surgery, radiotherapy, chemotherapy, and targeted gene therapy. In recent decades,
with the promotion of multidisciplinary diagnosis and treatment, the overall survival (OS) of EC has
been greatly improved, but the results are still unsatisfactory. epidermal growth factor receptor-
(EGFR-), human epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor
receptor- (VEGFR-), and cellular-mesenchymal epithelial transition factor- (c-MET-) targeted
therapy have been well studied and showed encouraging efficacy. However, the low therapeutic
efficacy of targeted therapy limits its application during the treatment of EC. Therefore, there is an
urgent need to exploit alternative therapeutic strategies with novel mechanisms of action that
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ameliorate antitumor efficacy and overcome adverse effects, thus
improving the prognosis of patients (3, 4).

Progressive insight into tumor immunology and
immunosuppressive environment that favors tumor growth has
paved the way for the advent of immunotherapy based on
immune checkpoints (ICs) targeting programmed cell death
protein 1 (PD-1) and cytotoxic T-lymphocyte-associated
protein-4 (CTLA-4), which have revolutionized current
therapeutic methods. The safety and efficacy of immune
checkpoint inhibitors (ICIs) have been verified in several
clinical trials that indicated that IC blockade is a promising
method in first- and second-line treatment for advanced EC (5,
6). However, only a small proportion of patients showed long
and lasting responses (7). In addition, some patients receiving
anti-CTLA-4 monoclonal Ab (mAb) and anti-PD-1 mAb have
shown resistance to ICIs to varying degrees due to tumor-
extrinsic and/or -intrinsic factors (8–10). Furthermore,
immune-related adverse events (irAEs) including colitis and
hepatitis have led to the discontinuation of treatment (11).
Therefore, it is essential to find an alternative IC pathway with
long-term efficacy, extensive beneficiaries, and controllable
toxicity in order to offer more feasible options for those who
do not benefit from ICIs targeting PD-1 and CTLA-4.

Lymphocyte activation gene-3 (LAG-3), T-cell immunoglobulin
(Ig) andmucin domain-containing protein-3 (TIM-3), and T-cell Ig
and ITIM domain (TIGIT) are candidates for the next generation of
ICs. Preclinical data have shown their notable immune inhibitory
effects toward lymphocytes, which indicates that the blockade of
these ICs could normalize immunity in the tumor
microenvironment (TME) and exert robust antitumor
effects (12–14) (Figure 1). For the sake of its synergetic
immunosuppressive effects with PD-1, the dual blockade of new
ICs with PD-1 has shown encouraging results in some preclinical
trials of some types of cancer, which also brings hope to
immunotherapy for EC (15–17).

Although the road ahead is promising, the biology of the new
targets is incompletely understood, especially in EC. Obtaining
deeper insight into their biology is conducive to optimize clinical
design with optimal efficacy and fewer toxicity. In the scope of
this review, we comprehensively summarize the characteristics of
these novel ICs and discuss the immune escape pathways
mediated by them. To date, the downstream signaling pathway
of LAG-3 remains obscure, although the latent downstream
signal pathway of LAG-3 has been described in different
studies and will be described in this review. Furthermore, we
highlight the potential use of these ICs as diagnostic and
prognostic biomarkers as well as therapeutic targets, which
could provide meaningful research directions for EC.
2 NOVEL IMMUNE CHECKPOINTS

2.1 Lymphocyte Activation Gene 3
2.1.1 Structure and Expression
LAG-3 (lymphocyte activation gene 3, CD223) is a new type I
acid transmembrane protein consisting of 498 amino acids
Frontiers in Immunology | www.frontiersin.org 2
belonging to the immunoglobulin superfamily. The LAG-3
gene is mapped on chromosome 12, which is located adjacent
to the CD4 gene. Although there are similarities in chromosome
location, approximately 20% of amino acid sequences are
identical (18, 19). Like CD4, the extracellular region of LAG-3
is composed of four immunoglobulin superfamily domains (D1–
D4) (8, 20). Unlike CD4, LAG-3 uses an “extra loop” consisting
of 30 amino acids in the D1 domain that bind to MHC class II
molecules with greater affinity than CD4. The D2 domain is
important for the LAG-3/MHC class II binding and participating
in the positioning of the D1 domain (21). In contrast to this
conclusion, a rat mAb (clone C9B7W) to mouse LAG-3 that
binds to the D2 domain could not interfere with LAG-3 binding
to MHC class II (7). A longer connecting peptide (CP) is located
between D4 and the transmembrane region, causing LAG-3 to be
cleaved by two transmembrane metalloproteases (ADAM10 and
ADAM17) in the CP, thereby generating a soluble form of LAG-
3 (sLAG-3) (8, 22, 23). The cytoplasmic region of LAG-3
incorporates three motifs (20). The first is the FxxL motif, which
includes two putative serine phosphorylation sites in humans (14,
24). This leads to the suspicion that the FxxL motif is crucial in
signal transmission because serine phosphorylation can activate the
protein. However, the serine mutation does not impact on the
activity of LAG-3. In addition, there are no tyrosine or threonine
residues, limiting phosphorylation events (25). The second is called
the “KIEELE” motif. Workman et al. (26) demonstrated that the
“KIEELE”motif is required for the inhibitory effects of LAG-3 onT
cells, while effects on downstream signaling and function are still
unclear. In fact, another study found that the KIEElE motif had no
influence on LAG-3 function after deletion (25). The third is the EP
motif composed of proline dipeptide and repetitive glutamate
(27, 28). It has been demonstrated that the key to counteract
CD3/TCR activation is binding between the EP motif and the
LAG-3-associated protein (LAP). However, LAG-3 mutants
lacking the EC motif still remain active, suggesting that this motif
is not indispensable for LAG-3 (27, 28).

Due to the special intracellular structure, the signaling pathway
pattern of LAG-3 remains obscure. Several studies have confirmed
that LAG-3 is an inhibitory receptor for T lymphocyte activation
and its presence can inhibit IL-2 production by CD4+ T cells (29).
LAG-3 exerts an inhibitory effect on the activation of the CD3/TCR
pathway and inhibits CD3-induced Ca2+ production (28).
According to previous studies, the activation of the CD3/TCR
pathway induces an efflux of Ca2+ from the endoplasmic
reticulum (ER), which binds to the calcium sensor protein
calmodulin. The calcium sensor protein calmodulin, in turn,
activates calcineurin (CaN). CaN dephosphorylates and activates
the NFAT transcription factor, which translocates to the nucleus to
promote gene expression in cooperation with multiple transcription
molecules to produce IL-2 (30, 31). Based on the above evidence, it
can be speculated that the CaN/NFAT signaling pathway is most
likely the downstream signaling pathway through which LAG-3
inhibits CD3/TCR function.

LAG-3 expression was found mainly in conventional T cells
(32), regulatory T cells (Tregs), and unconventional T cells,
including mucosal-associated invariant T (MAIT) cells, gdT
May 2022 | Volume 13 | Article 864202
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cells, natural killer T (NKT) cells, and invariant NKT (iNKT)
cells (21); NK cells (33); plasmacytoid dendritic cells (pDCs)
(33); neurons (34); and tumor-associated macrophages (TAM)
(21). Certain conditions, such as continued antigen stimulation
and exposure to cytokines (including IL-2, IL-7, and/or IL-12
and IFN-g) induce the expression of LAG-3 on T cells and NKT
cells (35). NKG2C+ NK cells, acting as a subpopulation of NK
cells, express LAG-3 in response to the IL-15 and NKG2C
agonist (35). Within the TME, increased expression of LAG-3
with other ICs such as TIM-3, TIGIT contributes to T-cell
dysfunction (18). Wang et al. (36) demonstrated that the
expression level of LAG-3 is higher in ESCC tissues than in
normal tissues. This may signify that the blockade of LAG-3
might exert antitumor effects in the immunotherapy of EC
patients with a positive expression of LAG-3 (Figure 2).

2.1.2 Ligands and Axis
Given the structural similarity between LAG-3 and CD4, major
histocompatibility complex class II (MHC II) molecules
expressed on antigen-presenting cells (APCs) and tumor cells
are the canonical ligands for LAG-3 (27, 37–39). LAG-3 plays
vital roles in the downregulation of the proliferation (40),
activation, and homeostasis of T cells through binding to
MHC II, while the exact mechanism of signal transmission
remains unclear (27, 36). LAG-3 affects the function of CD8+
Frontiers in Immunology | www.frontiersin.org 3
T cells that do not express MHC II molecules (21). Additionally,
some monoclonal antibodies enhance T-cell functions that do
not interfere with the binding between LAG-3 and MHC II.
These data have led to the doubt that there may be alternative
ligands for LAG-3 (41).

Currently, four molecules have been identified as ligands for
LAG-3: galectin-3, liver sinusoidal endothelial cell lectin
(LSECtin), fibrinogen-like protein 1 (FGL1), and a-synuclein
(7, 21, 42). Galectin-3 expression is not limited to tumors.
Epithelial cells and immune-related cells such as DCs,
monocytes, and macrophages were also shown to express
LAG-3 (43). In most tumors of the digestive tract and the
bloodstream of cancer patients, the expression level of galectin-
3 is increased (42, 44). LAG-3 was also suggested to be
indispensable for suppressing the secretion of IFN-g produced
by T cells in a galectin-3-dependent manner in vitro (45).
LSECtin expression was found on DC (46, 47). Furthermore,
fibrinogen-like protein 1 (FGL1) is regarded a major ligand of
LAG-3 that is secreted by the liver and upregulated in several
types of cancers (48). FGL1 does not appear to compete with
MHC II in binding to LAG-3, suggesting that MHC II and FGL1
may have different active binding sites (49). Further, it seems
possible that LAG-3 blockade cannot completely block its
inhibitory effects. LAG-3 also binds to a-synuclein, which is an
increased risk of Parkinson’s disease (50) (Figure 2).
FIGURE 1 | Tumor microenvironment (TME) in esophageal cancer: tumor cells evade host immunity via a series of cell-extrinsic factors that comprise the TME. Immune
checkpoint inhibitors (ICIs) are designed to reverse the TME of immunosuppressive effects, thereby enhancing patients’ immune responses against tumors. As shown in
the left section, CD8+ T cell, CD45RO+ T cell, and NK cell contribute to the antitumor immune response. However, some subsets of cells with negative immunomodulatory
function play crucial roles in suppressing antitumor effects. Regulatory T cells (Tregs) have been shown to dampen the activity of tumor-infiltrating lymphocytes (TILs).
Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) also boost the immune evasion of tumor cells. Some tumor cell–intrinsic factors
(e.g., PD-L1 expression, tumor mutation load, and MSI-high status) account for the cancer resistance to ICIs. The expression of ICI such as TIGIT and PD-1 may be
associated with the exhaustion of TILs. Induced frequency of NK cells in EC is ascribed to TNF-a, which is able to induce the expression of TIM-3 via the NF-kB signaling
pathway. The right section depicts the novel ICIs strategies targeting LAG-3, TIM-3, and TIGIT, which aim to reverse the exhaustion or dysfunction states of T cells.
May 2022 | Volume 13 | Article 864202
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2.2 TIM-3
2.2.1 Structure and Expression
TIM-3 or T-cell immunoglobulin and mucin-domain
containing-3 is a type I transmembrane protein, which consists
of 302 amino acids and belongs to the immunoglobulin
superfamily (51). The TIM-3 gene, HAVCR2, is located in
5q33.2 of the human genome, which is related to asthma,
allergies, and autoimmunity. It has an extracellular domain
composed of an N-terminal immunoglobulin domain at the far
end and a mucin domain containing latent sites for O-linked
sugars at the near end. Between the mucin and transmembrane
domains, the stalk domain includes sites for N-linked
glycosylation. The transmembrane domain is followed by a
cytoplasmic tail.

Many types of murine and human immune cells express
TIM-3 (52, 53), which is an inhibitory receptor for CD4+ and
CD8+ T cells that yield IFN-g. The co-expression of PD-1 and
TIM-3 a characteristic of serious T-cell failure, largely due to
considerably reduced cytokine production and the inhibition of
T-cell proliferation (54). Early studies of TIM-3 have shown that
its inhibitory effect causes the -inhibition of effector Th1
responses in models of multiple sclerosis and autoimmune
disease in mice with type 1 diabetes. The generation of IFN-g
and TNF from reactive T cells is increased and the development
of peripheral tolerance is inhibited by blocking anti-TIM-3
signaling (53, 55) and generating soluble forms of TIM-3,
TIM-3.FC (56). In subsequent human studies, increased IFN-g
production on CSF-produced T-cell clones from patients with
multiple sclerosis (MS) was associated with a decreased
expression of TIM-3, indicating that impaired T-cell tolerance
is associated with the dysregulation of TIM-3 expression. The
following studies have shown that non-T cells such as NK cells,
dendritic cells (DC), and macrophages also express TIM-3
Frontiers in Immunology | www.frontiersin.org 4
(51, 57). Another study found that the inhibitory function of
TIM-3 working in the non-T-cell population was consistent with
the characterization of T cells (Figure 3) (51).

2.2.2 Ligands and Axis
TIM-3 has several ligands (Gal-9, PtdSer, HMGB1, and
CEACAM-1). The interaction of TIM-3 with Gal-9 mediates
effector T-cell apoptosis through Calc-calprotease caspase 1,
which also increases IFN-g production in NK. However, a
study in chronic hepatitis B found the opposite (58).

The importance of exploring the downstream signaling
pathway of TIM-3 is highlighted by the fact that it is an
important regulator of effector T cells. No classical signaling
motif is contained in the cytoplasmic tail of TIM-3, which is
similar to LAG-3 (59). Instead, mouse and human TIM-3 both
have five conserved tyrosine residues in the cytoplasmic tails
where Y256 and Y263 can be phosphorylated by Src kinases (60)
or ITK (61). Y256 and Y263 are two sites involved in the binding
of Bat3 (HLA-B-associated transcript 3), p85 PI3K, Fyn, and Lck
to the C-terminal tail of TIM-3 (60, 62). When ligand-mediated
TIM-3 signaling is absent, Bat3 binds to it and blocks SH2
domain-binding sites in the tail. Subsequently, Bat3 recruits the
catalytically active form of Lck, forming an intracellular complex
that preserves and possibly promotes T-cell signaling (62). In
contrast, T cells deficient in Bat3 exhibit an increase in pY505
Lck, which is the catalytically inactive form of Lck (62). The
binding of Galectin-9 and Ceacam-1 to TIM-3 induces the
phosphorylation of Y256 and Y263, as well as the release of
Bat3 from the tail. Consequently, TIM-3-mediated T-cell
inhibition is promoted by the permissive binding of SH2-
containing Src kinases and is thus subsequent to the regulation
of TCR signaling (62, 63). In addition, Fyn binds to the same
region as Bat3. Fyn is involved in T-cell anergy (64) and is a key
FIGURE 2 | The extracellular region of LAG-3 is composed of four immunoglobulin superfamily domains (D1–D4). The cytoplasmic tail of LAG-3, incorporating three
regions, is highly conversed. LAG-3 binds to MHC class II with higher affinity than that of CD4 via an “extra loop” in the D1 domain. Galectin-3, LSECtin, FGL, and a-
synuclein are also ligands for LAG-3.
May 2022 | Volume 13 | Article 864202
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kinase that activates a phosphoprotein associated with
glycosphingolipid microdomains (PAG), which recruits Csk to
suppress Lck function (65, 66). As Fyn and Bat3 bind to the same
domain in TIM-3, it is likely that a change between TIM-3-Fyn
and TIM-3-Bat3 may cause the changes in TIM-3 function from
that in allowing T-cell receptor (TCR) signaling to the inhibiting
upstream TCR signaling. Consistent with the data from some
trials, the loss of Bat3 leads to the dephosphorylation and
degradation of TCRz (62) (Figure 3).

2.3 T-Cell Immunoglobulin and
Immunoreceptor Tyrosine-Based
Inhibitory Motif Domain
2.3.1 Structure and Expression
TIGIT, also cal led the T-cel l immunoglobulin and
immunoreceptor tyrosine-based inhibitory motif domain, is a
novel inhibitory IC receptor (67). The TIGIT gene is located on
human chromosome 3q13.31 and encodes a 244 amino acid
transmembrane glycoprotein. It has an extracellular
immunoglobulin variable domain: a type I transmembrane
domain and a short intracel lu lar domain with an
immunoreceptor tyrosine-based inhibitory motif (ITIM) and
an immunoglobulin tyrosine tail motif (ITT). TIGIT is
generally expressed in T cells and NK cells, including CD4+ T
cells, CD8+ T cells, and Tregs. High expression of TIGIT is
associated with the exhaustion of tumor-infiltrating NK cells.
Therefore, the deficiency of TIGIT alleviates NK-cell
exhaustion and slows tumor growth, which elicits potent
antitumor immunity (68). Tregs expressing TIGIT are a
distinct subset, which can particularly suppress Th1 and
Th17 pro-inflammatory responses and promote the
suppression of effector T-cell proliferation. We also found
that CD8+TIGIT+ cells display a dysfunctional subset with
less IL-2 and TNF-a production, however, along with high
Frontiers in Immunology | www.frontiersin.org 5
IL-10 secretion. Furthermore, TIGIT+ Tregs upregulate TIM-3
within the TME. They suppress antitumor immunity by
controlling cytotoxic T-cell activity (69). By binding to
poliovirus receptors and modulating dendritic cell cytokine
production, TIGIT plays a vital role in immunosuppressive
effects (70) (Figure 4).

2.3.2 Ligands and Axis
TIGIT has many ligands, CD155 (PVR or Necl-5), CD112
(nectin-2, also known as PRR2 or PVRL2), and CD113,
CD155, CD112, CD113, and CD111, which are expressed in
APCs or tumor cells. TIGIT, CD112R, and CD155 deliver
inhibitory signals to cells. However, DNAM-1 delivers
activating signals because it contains an immunoglobulin
tyrosine tail (ITT)-like domain. CD96 in humans and mice
contains an ITIM domain, but human CD96 also contains an
YXXM motif. CD96 can inhibit mouse cells and NK cells. TIGIT
binds CD155 with the highest affinity, followed by CD96 and
then DNAM-1, CD112R, and Nectin4 (a ligand for TIGIT, which
binds only to TIGIT). Competing with other counterparts
(CD266 and CD96), TIGIT exerts immunosuppressive effects
(8, 71, 72). PVRIG is a coinhibitory receptor that binds to PVRL2
(73). CD155 is always overexpressed in human malignant
tumors. The overexpression of CD155 promotes the invasion
and migration of tumor cells and is associated with a poor
prognosis in many types of tumors. The balance between CD155/
CD226 and CD155/TIGIT or CD155/CD96 maintains normal
NK- and T-cell function (73). Weulersse et al. (74) revealed that
the absence of CD226 expression identifies hyporeactive human
CD8+T cells. IL-15, which triggers NK-cell proliferation and
potentiates NK-cell function, induces the upregulation of the
expression of both CD226 and TIGIT (75). CD226 is
associated with the integrin LFA-1 and delivers a positive
signal (Figure 4).
FIGURE 3 | TIM-3 ligands include galectin-9, HMGB1, Ceacam-1, and PtdSer. Ligand binding induces the phosphorylation of Tyr256 and Tyr263 as well as the
release of Bat3 from the tail, and Fyn will bind to the same region; thus, the inhibitory function is initiated.
May 2022 | Volume 13 | Article 864202
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2.4 Other Newly Emerging
Immune Checkpoints
Despite TIM-3, LAG-3, and TIGIT, other newly emerging ICs,
for example, V-domain Ig suppressor of T cell activation
(VISTA), B7-H3, B and T lymphocyte attenuator (BTLA), and
Siglec-15, have been identified to date and are in various stages of
preclinical and clinical development in combination with IC
therapy. They are promising methods to improve response rates
in EC (76–79).

VISTA is a type I transmembrane protein with high-level
conversation and limited homology to other members of the B7
family (80). VISTA negatively regulates the activation of T cells and
induces the expression of Foxp3. VSIG-3 is a VISTA ligand whose
interaction with VISTA was shown to inhibit T-cell proliferation
and cytokine production. Anti-VISTA neutralization antibodies
were shown to mitigate the inhibition of T cells (81). The
expression of VISTA was found in tumor cells, CD68 + TILs, and
CD4+ TILs in tissues of esophageal adenocarcinoma (82). In
contrast to the previous concept that VISTA is an IC with a
negative immune regulator, VISTA might serve as a co-
stimulatory molecule in esophageal adenocarcinoma (76). Patients
with VISTA-positive expression achieved a higher median OS
compared to patients with VISTA-negative expression. The
subsequent subgroup analysis revealed that tumors with VISTA-
positive TILs exhibited higher OS in pT1/2 tumors compared to
patients with no VISTA expression on TILs (83) (Table 1).

B7-H3 is a type I transmembrane protein that belongs to the
B7 family (93). Initial studies reported that B7-H3 is a co-
stimulatory molecule, while recent studies have demonstrated
that it was an inhibitor of T cells. The ligand for B7-H3 has not
been defined, which may partly be accounted for its versatile
functions from other studies (93). The expression of B7-H3 is
significantly higher in EC cells, while no or a weak expression of
Frontiers in Immunology | www.frontiersin.org 6
B7-H3 has been found in normal esophageal tissues (90). This
result is in line with previous studies that identified B7-H3
mRNA in a wide range of normal human tissues, while the B7-
H3 protein is expressed at low levels (77). In vivo and in vitro
studies have revealed that high expression of B7-H3 was
correlated with tumor invasion and suppressed antitumor
immunity mediated by T cells displayed by enhanced intensity
of Foxp3+ T cells and the infiltration of TAM. Furthermore, the
high expression of both B7-H3 and B7-H4 has been associated
with increased invasion and a high TNM stage (90, 91) (Table 1).

BTLA is a type I glycosylated transmembrane protein that
belongs to the CD28 superfamily (94). BTLA is expressed on
lymphocytes in ESCC (92). The herpesvirus entry mediator
(HVEM) is considered a ligand for BTLA whose interactions
lead to the inhibition of T-cell division. BTLA competes with
LIGHT and lymphotoxin-a for binding to HVEM (80). BTLA
has been proposed as an independent factor for the evaluation of
OS in patients with ESCC. The positive expression of BTLA is
associated with worse OS rates compared to the negative
expression group of BTLA. The co-expression of PD-1 and
BTLA or TIM-3 and BTLA was also correlated with worse OS
(92) (Table 1).

Siglec-15 is a sialic acid-binding immunoglobulin-like lectin
belonging to the Siglec gene family member (95). Siglec-15
mRNA is not detected in most normal human tissues and
immune cells except for macrophages. However, Siglec-15
could be detected in TAMs and human cancer cells. IFN-g, an
inducer of PD-L1 expression, has also been shown to suppress
Siglec-15 expression, which may partly explain that the pattern
of Siglec-15 expression is mutually exclusive to that of PD-L1
(96, 97). This interesting finding indicated that blocking Siglec-
15 could be effective for patients who do not benefit from anti-
PD-L1 therapy and the proliferation of low PD-L1 expression.
FIGURE 4 | TIGIT contains an extracellular immunoglobulin variable domain, a type I transmembrane domain, and a short intracellular domain with one immunoreceptor
tyrosine-based inhibitory motif (ITIM) and one immunoglobulin tyrosine tail (ITT) motif. CD155, CD112, and CD113 are ligands for TIGIT.
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A significant finding is that Siglec-15 knockout mice did not
develop autoimmune-like diseases and displayed reduced tumor
growth with NK-cell and CD8+ T-cell infiltration. In addition,
enhanced cytokine production has also been detected, which was
in line with the concept of the normalization of cancer
immunotherapy previously proposed (79, 98).
3 PRECLINICAL DATA IN
ESOPHAGEAL CANCER

There has been no consensus on the exact role of sLAG-3. The
cleavage of LAG-3 is mediated by ADAM10 and ADAM17 for
efficient T-cell proliferation and cytokine production (23).
Therefore, sLAG-3 is likely “wasted” in terms of regulating T-
cell function (99). Conversely, the serum levels of sLAG-3 in
patients diagnosed with advanced EC were higher than in
healthy controls, indicating the crucial role of sLAG-3 (100).
sLAG-3 was demonstrated to prevent monocyte differentiation
from macrophages and DC (101). CD4+ T-cell clones release
soluble LAG-3-related peptides after activation, which is
positively associated with the production of IFN-g (102). In
addition, sLAG-3 may function as an immune adjuvant. In
mouse models, sLAG-3 was capable of enhancing antitumor
effects mediated by T cells in response to the irradiated tumor cell
vaccine (103). It is plausible that sLAG-3 binding to its ligand
inhibits its inhibitory effects. However, there is no ample
evidence to support the conjecture (99). LAG-3V3, which
contains 3 domains (D1-D3), another soluble form of LAG-3,
has been proposed as a serological marker of Th1 activity (104).
Frontiers in Immunology | www.frontiersin.org 7
Although the past decades have witnessed the improvement
of therapeutic methods, the prognosis of EC is still far from
satisfactory. Thus, there is an urgent need to find a viable
biomarker that is able to predict the prognosis of EC patients
(105). In fact, the evaluations of LAG-3 as a biomarker have been
confirmed in several tumor types. In hepatocellular carcinoma
(HCC), higher densities of LAG-3+cells were associated with
shorter OS and disease-free survival (DFS) (106). Consistent
with this result, LAG-3 expression was negatively correlated with
OS in colorectal cancer (107). In patients diagnosed with locally
advanced esophageal adenocarcinoma, the complete pathological
response (CR), LAG-3 and CXCL9 were more predictive than
CR alone in terms of DFS, which is correlated with the reduced
rate of recurrence (108). Patients with higher LAG-3 expression
have shown a correlation with better OS compared to those with
negative LAG-3 expression. However, such a survival benefit is
only detectable in pT34 tumors, while no difference was found in
pT1/2 tumors (84). However, the role of LAG-3 used as a
prognostic biomarker for ESCC remains controversial. Zhang
et al. (85) demonstrated that high expression of LAG-3 is
correlated with longer progression-free survival (PFS) and OS
while the worst recurrence-free survival (RFS) and OS were
found in patients with LAG-3+/CTLA-4+CD8− cell populations
(36). This contradictory pattern has also been observed in breast
cancer. In ER- and ER+ breast cancer, high expression of LAG-3
predicted a favorable outcome (109, 110). However, dual-
positive LAG-3 and PD-1 were correlated with an unfavorable
prognosis in terms of decreased DFS (111). In summary, LAG-3
may act as a promising biomarker for locally advanced
esophageal adenocarcinoma. As for ESCC, three reasons may
TABLE 1 | The therapeutic and prognosis value of novel immune checkpoint pathways in EC.

Immune
checkpoint

Species Site of
expression

Role Regulation mechanism Ref.

LAG-3 Human EAC tissues Reduced recurrence rate
Improved OS (pT3/4)

Patients with LAG-3 expression are correlated with improved OS compared
to those with negative LAG-3 expression.

(84)

Human ESCC
tissues

Controversial High LAG-3 expression is correlated with longer OS and PFS, while LAG-3+/
CTLA-4+CD8- patients showed unfavorable RFS and OS.

(36,
85)

TIM-3 Human ESCC
tissues

Suppressed anti-tumor immunity Patients with TIM-3+PD-1+CD8 low had the worst RFS and OS. Patients with
TIM-3-PD-1-CD8high had the best RFS and OS.

(86)

Human ESCC
tissues

Induced frequency of NK cells TNF-a was able to induce the expression of TIM-3 on NK cells through the
NF-kB signaling pathway.

(86)

TIGIT Human TILs TIL exhaustion TIGIT was upregulated in TILs and might be associated with TIL exhaustion. (87)
Human TILs Unfavorable prognosis PD-1+/TIGIT+ TILs had poor prognosis in primary ESCC. (88)
Human EC cells Unfavorable OS and PFS Highly expressed TIGIT was associated with unfavorable OS and PFS. (89)

VISTA Human EAC Higher median OS Patients with VISTA-positive expression are correlated with high median OS
compared with patients with VISTA-negative expression.

(83)

Human TILs Higher OS in pT1/2 Tumors with VISTA-positive TILs exhibited higher OS in pT1/2 tumors
compared to patients with no VISTA expression on TILs.

(83)

B7-H3 Human ESCC
tissues

Tumor invasion and suppressed anti-
tumor immunity mediated by T cells

High B7-H3 expression was correlated with tumor invasion and suppressed
anti-tumor immunity mediated by T cells.

(90)

Human ESCC
tissues

Enhanced intensity of Foxp3+ T cells and
infiltration of TAMs

The expression of B7-H3/B7-H4 was positively associated with the intensity
of Foxp3+ T cells and the presence of TAMs.

(91)

BTLA Human ESCC
tissues

Lower OS The positive expression of BTLA is associated with worse OS rates
compared to the BTLA-negative expression group.

(92)

Human ESCC
tissues

Lower OS The co-expression of PD-1 and BTLA or TIM-3 and BTLA was correlated
with worse OS.

(92)
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ESCC, esophageal squamous cell carcinoma; EAC, esophageal adenocarcinoma; TILs, tumor-infiltrating lymphocytes; OS, overall survival; PFS, progression-free survival; RFS,
recurrence-free survival; TAMs, tumor-associated macrophages.
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explain the paradox: First, different definitions of positive
expression of LAG-3; second, different experimental
parameters; third, as mentioned above, the expression of LAG-
3 is induced by IFN-g, which is a cytokine with antitumor effects.
According to the results of Zhang et al. (85), the elevated level of
IFN-g may explain the variability of the landscape of LAG-3
expression. From a clinical perspective, sLAG-3 could also serve
as a stage and diagnostic biomarker. For example, a high level of
sLAG-3 has been correlated with an advanced tumor stage in
patients with clear cell renal cell cancer (ccRCC) and a better
prognosis in gastric cancer (112–115). Little is known about the
diagnostic and prognostic values of sLAG-3 for EC, which is an
area that needs to be studied.

Synergy and cooperative interactions between inhibitory
pathways in cancer are pivotal regulators of immune escape in
cancer. The synergy between LAG-3 and PD-1 was
demonstrated to fortify tumor-induced tolerance. The dual
blockade of these ICs showed more potent immune responses
than monotherapy (16). A novel fully human antibody targeting
LAG-3 named LBL-007 was found to block the interaction
between LAG-3 and MHC II or LSECtin. The combination of
anti-PD-1 antibody and LBL-007 has enhanced inhibitory effects
on tumor growth than either monotherapy (116). Because it can
block the interaction of LAG-3 between its two ligands at the
same time, and its combination with anti-PD-1 antibody has a
better curative effect than monotherapy, this may provide a new
mechanism to alleviate the inhibitory effects against T cells.

TNF-a, which induces TIM-3 expression in T cells, and TGF-b,
which induces TIM-3 expression in macrophages, are significant
inflammatory factors in the TME (117, 118). Through the NF-kB
pathway, TNF-a can induce the expression of TIM-3 in NK cells,
the upregulation of TIM-3 may be correlated with NK-cell
dysfunction in the EC microenvironment, and the frequency of
peripheral TIM-3+ NK cells is associated with tumor invasion,
lymph node metastasis, and the clinical stage (119). According to
the study by Zheng et al. (119), TIM-3+ NK cells may be a potential
prognostic factor for patients with EC. Additionally, some studies
have shown that cytokines such as interleukin (IL)-4, transforming
growth factor (TGF)-b, and IL-6 are capable of inducing the
expression of TIM-3 in HCC cells and TIM-3 accelerates tumor
growth by the auto-secretion of IL-6 (120–122). For autoimmune
diseases, the situation is completely different. The anti-TIM-3
antibody was shown to exacerbate experimental autoimmune
encephalomyelitis (EAE), which serves as an animal model for
multiple sclerosis (MS). Studies using TIM-3-deficient mice and
wild-type mice treated with the TIM-3-Ig fusion protein showed
that TIM-3 signaling is required for the induction of antigen-
specific tolerance and that TIM-3 blockade enhances the
development of spontaneous autoimmunity (59, 123). Recent
studies have shown that patients with TIM-3+PD-1+CD8low have
theworstRFSandOS.Conversely,patientswithTIM-3−PD-1−CD8
high had the best RFS and OS (86). Furthermore, it was
demonstrated by Zhou et al. (124) that TIM-3+ PD-1+ T cells
show the lowest level of granzyme B, IFN-g, and TNF-a, which
indicates thatTIM-3 andPD-1 are important for the suppression of
T cells. Furthermore, Zhong et al. (125) suggested that TIM-3+
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Foxp3+ Treg (TFT) cells are highly enriched in the TME of diffuse
large B-cell lymphoma (DLBCL) and the abundance of TFT cells is
correlated with a poor prognosis in patients withDLBCL, while the
TIM-3 antibody is capable of inhibiting IL-10 secretion.

Zhao et al. (88) found that the high densities of PD-1+ and
TIGIT+ tumor-infiltrating lymphocytes (TILs) were expressed in
47.4% and 49.4% of ESCC patients, respectively. In addition,
CD155 and TIGIT are highly expressed in patients with primary
small cell carcinoma of the esophagus and are associated with
shorter OS and PFS, supporting their role as a prognostic
biomarker. PD-1 and TIM-3 expression on CD4+ T cells was
closely associated with the clinicopathological characteristics of
patients with EC (89). Xie et al. (87) found that the expressions of
PD-1, TIM-3, and TIGIT were upregulated in TILs, which could
be associated with TIL exhaustion. It may indicate that the
coinhibitory receptors PD-1, TIM-3, and TIGIT may be
potential therapeutic oncotargets for EC (Table 1).

Wang et al. (126) found that increased co-expression of PD-L1
and TIGIT is associated with poor OS in patients with ESCC. Chiu
et al. (127) found that PVRL1/TIGIT inhibitors could be developed
for the treatment of HCC through animal experiments. Their
experiments found that PVRL1 stabilizes cell surface PVR, which
interacts with TIGIT. This suppresses the anti-tumor immune
response. The findings of Chauvin et al. support combinatorial
immunotherapy with IL-15 and TIGIT blockade to promote the
NK-cell-mediated destruction ofMHC class I–deficient melanoma
(128). Freed-Pastor et al. (129) identified theCD155/TIGITaxis as a
key driver of immune evasion in pancreatic cancer, and
combination immunotherapy (TIGIT/PD-1 co-blockade plus
CD40 agonism) can induce antitumor responses in preclinical
models. Furthermore, the findings of He et al. support the
candidacy of CD155/TIGIT as a potential therapeutic target in
gastric cancer (130). Josefsson et al. (131) found that TIGIT
blockade is a relevant strategy for improved immunotherapy in
follicular lymphoma. Judge et al. (132) reported that combined IL-
15 and TIGIT blockade may be a promising clinical strategy in soft
tissue sarcoma. Kawashima et al. (133) also described that the
TIGIT/CD155 axis mediates resistance to ICIs in patients with
melanoma. Liu et al. (134) found that intratumor TIGIT+ CD8+ T
cell abundance could serve as an independent prognosticator of
clinical outcome and a predictive biomarker of inferior adjuvant
chemotherapy responsiveness inmuscle invasive bladder cancer. In
Italy, Raphael et al. (135) described that IC pathways TIGIT and
PD-1 are associatedwith patient outcome and antitumor immunity
in glioblastoma.
4 ONGOING CLINICAL TRIALS IN
ESOPHAGEAL CANCER

Current immunotherapy strategies are mainly focused on
neoadjuvant immunotherapy combined with chemo/
chemoradiotherapy and dual immuno-blockade. The
PALACE-1 trial revealed that pembrolizumab combined with
chemoradiotherapy was safe for patients with locally advanced
ESCC (136). Likewise, neoadjuvant immunotherapy combined
May 2022 | Volume 13 | Article 864202
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with concurrent chemoradiotherapy for locally advanced EC was
shown to be safe and effective (137). The CheckMate 648 trial
also showed that both nivolumab plus chemotherapy and
nivolumab plus ipilimumab in first-line treatment displayed
longer overall OS than chemotherapy alone for ESCC (138).
The effectiveness of immunotherapy makes it a promising
treatment in EC.

Recently, RELATIVITY-047 (NCT03470922), a phase-II/III
double-blind and randomized trial comparing relatlimab plus
nivolumab versus nivolumab in 714 patients with previously
untreated, unresectable stage III or IV melanoma revealed that
the median PFS was significantly higher in the relatlimab plus
nivolumab group compared to that of the nivolumab group (10.1
months vs. 4.6months,HR0.75, P = 0.006) and therewere no safety
concerns. This study indicated that the dual blockade of LAG-3 and
PD-1 provided better benefit in terms of PFS (139).

We also summarized and analyzed the current ongoing clinical
trials in EC registered with clinicaltrials.gov evaluating LAG-3. A
bispecific PD-1-LAG-3 antibody, RO7247669, has been tested in
two clinical trials (NCT04140500 and NCT04785820).
NCT04140500 was a phase I study to evaluate the safety/
tolerability, pharmacokinetics, pharmacodynamics, and
preliminary antitumor activity of RO7247669 in patients with
various solid tumors, including ESCC. NCT04785820 was a phase
II study to evaluate the safety and efficacy of RO7247669 (a PD-1-
LAG-3 antibody) and RO7121661 (a PD-1-TIM-3 antibody),
compared to nivolumab, in patients diagnosed with advanced or
metastatic ESCC. These two studies are currently recruiting
patients, so there are no results available. INCAGN02385 is an
Fc-engineered IgG1k antibody that targets LAG-3. INCAGN02385
has been tested in a wide range of solid tumors including HCC and
EC (140, 141). NCT03538028 was a phase-I open-label dose-
escalation trial to evaluate the safety, tolerability, and preliminary
efficacyof INCAGN02385 in solid tumors, includingEC,HCC, and
lung cancer (141). The trial was completed, but no results
are available.

NCT03708328 is another clinical trial evaluating RO7121661. It
is an open-label, multicenter phase 1multiple ascending dose study
for participantswith advanced and/ormetastatic solid tumors but is
not yet recruiting. Additionally, NCT03652077 is a study to
determine the safety, tolerability, and preliminary efficacy of
INCAGN02390 (a TIM-3 antibody) in participants with selected
advanced malignancies. It is worth mentioning that
INCAGN02390 also enhances IFN-g production from T cells
undergoing tonic TCR stimulation when combined with PD-1
blockade. The study was completed on November 15, 2021;
however, the results have not yet been submitted. Furthermore,
several studies have shown that the use of antibodies against PD-1
and TIM-3 in combination is also more effective than blocking
TIM-3 alone in HCC (122, 124).

There are some clinical trials that have used tislelizumab and
ociperlimab, atezolizumab and tiragolumab, or atezolizumab and
tiragolumab to treat EC; however, they are all recruiting; thus,
outcomes have not been reported to date (Table 2). Vibostolimab,
an anti-TIGIT antibody, plus pembrolizumab, was well tolerated
and has demonstrated antitumor activity in a phase I study for
Frontiers in Immunology | www.frontiersin.org 9
patients with advanced solid tumors, including advanced NSCLC
(142). This studymay provide a new landscape for the combination
of anti-TIGIT and anti-PD-1 in EC treatment.
5 CONCLUSIONS AND
FUTURE PERSPECTIVES

ICs play a significant role in maintaining self-tolerance and
preventing the occurrence of autoimmune diseases. Cancer
cells can hijack these molecules, leading to T-cell exhaustion
and dysfunction. Recent years have witnessed the rapid
development of ICI-based immunotherapy, and novel ICIs are
under investigation due to the limited efficacy and dose-
dependent toxicity of the previous agents. LAG-3, TIM-3, and
TIGIT have shown promising preclinical outcomes in a single
agent trial, especially in collaboration with the PD-1 inhibitor.

Not all patients can benefit from immunotherapy; therefore,
predicting patients who are prone to resistance to ICIs via
biomarkers is of the essence to switch to alternative treatments
(143). However, as recommended by the National Comprehensive
Cancer Network, the feasibility of microsatellite instability (MSI),
tumor mutational burden (TMB), and PD-L1 as biomarkers for
patients after ICI still needs further elucidation (144, 145). Thus,
exploring reliable biomarkers is of the essence. Shen et al. (146)
demonstrated that patients with melanoma with an LAG
immunotype (75.8 months) showed significantly longer median
survival compared to patients with an LAG+ immunotype (22.2
months) (P = 0.031). However, the role of LAG-3 as a biomarker in
EC is rarely reported. Our work supports the rationality of LAG-3 as
a potential biomarker predicting prognosis in EC. Two questions
emerge when considering ICs as reliable biomarkers: First, will
LAG-3, sLAG-3, TIM-3, and TIGIT be able to predict benefits to
other types of immunotherapy or conventional treatments, or even
tumor progression? Second, what types of biomarkers are rational to
assess therapeutic effects after receiving ICIs targeting LAG-3, TIM-
3, or TIGIT? In summary, the use of precise biomarkers will lead to
the development of precise personalized immunotherapies.

According to a model proposed by Anderson et al. (59), the
impact of ICs on maintaining homeostasis is proportional to the
autoimmune toxicity achieved after blocking. Based on this
principle, LAG-3, TIM-3, and TIGIT rank second in the
hierarchy with less toxicity, while CTLA-4 ranks the top of the
model with the highest toxicity. This theory indicates that ICIs
targeting the next generation of ICs may be safer than traditional
ICIs targeting PD-1 and CTLA-4. In addition, studies on other
newly emerging ICs are presented. VISTA, B7-H3, BTLA, and
Siglec-15 should be examined in EC, so as to provide additional
treatment strategies for patients at advanced stage.

Chemotherapy and radiation therapy can induce tumor cell
death, thereby promoting the release of antigens that activate
APCs (147). This process is called immunogenic cell death (147).
The recruitment and infiltration of cytotoxic T lymphocytes are
also observed after the treatment of chemotherapy and
radiotherapy (148, 149). To elicit robust antitumor immunity,
chemotherapy and radiation therapy can be combined with
May 2022 | Volume 13 | Article 864202
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TABLE 2 | The ongoing clinical trials evaluating ICIs targeting novel immune checkpoint pathways in EC.

Study design Patient population Status Phase Identifier

Arm A: (single-agent dose escalation): RO7247669 (RG6139, PD1-LAG3
BsAb)
Arm B: (tumor-specific expansion cohorts): RO7247669

Esophageal Squamous Cell Carcinoma*
Solid tumors
Metastatic melanoma
Non-small cell lung cancer

Recruiting Phase
I

NCT04140500

Arm A: INCAGN02385 Gastric Cancer (Including Stomach and
Gastroesophageal Junction*
Esophageal Cancer*
Cervical Cancer
Microsatellite Instability (MSI)-High
Endometrial Cancer
Hepatocellular Carcinoma
Melanoma (Uveal Melanoma Excluded)
Merkel Cell Carcinoma
Mesothelioma
MSI-High Colorectal Cancer
Non-Small Cell Lung Cancer
Ovarian Cancer
Squamous Cell Carcinoma of the Head
and Neck
Small Cell Lung Cancer
Renal Cell Carcinoma
Triple-Negative Breast Cancer
Urothelial Carcinoma
Diffuse Large B-Cell Lymphoma

Completed Phase
I

NCT03538028

Arm A: RO7121661 (RG7769, PD1-TIM-3 BsAb)
Arm B: RO7247669
Arm C: Nivolumab (Opdivo, anti-PD-1 mAb)

Advanced or Metastatic Esophageal
Squamous Cell Carcinoma*

Recruiting Phase
II

NCT04785820

Arm A: INCAGN02390 (anti-TIM-3) Esophageal Cancer*
Cervical Cancer
Gastric Cancer
Stomach Cancer
Gastroesophageal Junction Cancer
Hepatocellular Carcinoma
Melanoma
Uveal Melanoma
Merkel Cell Carcinoma
Mesothelioma
MSI
Non-Small Cell Lung Cancer
Ovarian Cancer
Squamous Cell Carcinoma of the Head
and Neck
Small Cell Lung Cancer
Renal Cell Carcinoma
Triple-Negative Breast Cancer
Urothelial Carcinoma
Mismatch Repair Deficiency

Active, not
recruiting

Phase
I

NCT03652077

Arm A: RO7121661 Esophageal Squamous Cell Carcinoma*
Solid Tumors
Metastatic Melanoma
Non-Small Cell Lung Cancer
Small Cell Lung Cancer

Recruiting Phase
I

NCT03708328

Arm A: Tislelizumab (anti-PD-1mAb) + Ociperlimab (Anti-TIGIT mAb)
Arm B: Tislelizumab plus Placebo

Esophageal Squamous Cell Carcinoma* Recruiting Phase
II

NCT04732494

Arm A: RO5541267 (Atezolizumab, anti-PD-L1mab) + RO7092284
(Tiragolumab, Anti-TIGITmAb) + Cisplatin + 5FU
Arm B: RO5541267 + Cisplatin + 5-FU
Arm C: Cisplatin + 5-FU
Arm D: RO5541267 + RO7092284

Gastroesophageal Junction
Adenocarcinoma*
Esophageal Carcinoma*
Gastric Adenocarcinoma

Recruiting Phase
II

NCT03281369

Arm A: RO7092284 + RO5541267
Arm B: RO7092284 Placebo + RO5541267
Arm C: RO7092284 Placebo + RO5541267 Placebo

Esophageal Squamous Cell Carcinoma* Recruiting Phase
III

NCT04543617
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immunotherapy. Currently, the implementation of ICI focuses
on the combination with other therapeutic strategies including
radiotherapy and chemotherapy in EC, and substantial clinical
trials have obtained encouraging results (5, 136, 138). Currently,
a hotspot of LAG-3, TIM-3, and TIGIT involves the dual-
blockade therapy with PD-1 because of their dramatic synergy
with PD-1 (139, 142). To our knowledge, the effects of novel
immunotherapy pathways with conventional treatment have
not been determined. Therefore, future research should focus
on the combination of ICIs and other treatment strategies,
such as chemotherapy and radiation therapy, with the aim
of broadening therapeutic options for advanced patients
with EC.
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Eomes-Dependent Loss of the Co-Activating Receptor CD226 Restrains
CD8(+) T Cell Anti-Tumor Functions and Limits the Efficacy of Cancer
Immunotherapy. Immunity (2020) 53(4):824–39.e10. doi: 10.1016/
j.immuni.2020.09.006

75. Pietra G, Mingari MC, Moretta L. TIGIT Blockade and IL15 in Tumor
Immunotherapy: Together is Better. Clin Cancer Res (2020) 26(20):5274–5.
doi: 10.1158/1078-0432.Ccr-20-2538

76. Huang X, Zhang X, Li E, Zhang G, Wang X, Tang T, et al. VISTA: An
Immune Regulatory Protein Checking Tumor and Immune Cells in Cancer
Immunotherapy. J Hematol Oncol (2020) 13(1):83. doi: 10.1186/s13045-020-
00917-y

77. Flem-Karlsen K, Fodstad Ø, Tan M, Nunes-Xavier CE. B7-H3 in Cancer -
Beyond Immune Regulation. Trends Cancer (2018) 4(6):401–4. doi: 10.1016/
j.trecan.2018.03.010

78. Chen YL, Lin HW, Chien CL, Lai YL, Sun WZ, Chen CA, et al. BTLA
Blockade Enhances Cancer Therapy by Inhibiting IL-6/IL-10-Induced CD19
(high) B Lymphocytes. J Immunother Cancer (2019) 7(1):313. doi: 10.1186/
s40425-019-0744-4

79. Wang J, Sun J, Liu LN, Flies DB, Nie X, Toki M, et al. Siglec-15 as an
Immune Suppressor and Potential Target for Normalization Cancer
Immunotherapy. Nat Med (2019) 25(4):656–66. doi: 10.1038/s41591-019-
0374-x

80. Nowak EC, Lines JL, Varn FS, Deng J, Sarde A, Mabaera R, et al.
Immunoregulatory Functions of VISTA. Immunol Rev (2017) 276(1):66–
79. doi: 10.1111/imr.12525

81. Wang J, Wu G, Manick B, Hernandez V, Renelt M, Erickson C, et al. VSIG-3
as a Ligand of VISTA Inhibits Human T-Cell Function. Immunology (2019)
156(1):74–85. doi: 10.1111/imm.13001

82. Mulati K, Hamanishi J, Matsumura N, Chamoto K, Mise N, Abiko K, et al.
VISTA Expressed in Tumour Cells Regulates T Cell Function. Br J Cancer
(2019) 120(1):115–27. doi: 10.1038/s41416-018-0313-5

83. Loeser H, Kraemer M, Gebauer F, Bruns C, Schröder W, Zander T, et al. The
Expression of the Immune Checkpoint Regulator VISTA Correlates With
Improved Overall Survival in Pt1/2 Tumor Stages in Esophageal
Adenocarcinoma. Oncoimmunology (2019) 8(5):e1581546. doi: 10.1080/
2162402x.2019.1581546

84. Gebauer F, Krämer M, Bruns C, Schlößer HA, Thelen M, Lohneis P, et al.
Lymphocyte Activation Gene-3 (LAG3) mRNA and Protein Expression on
Tumour Infiltrating Lymphocytes (TILs) in Oesophageal Adenocarcinoma.
J Cancer Res Clin Oncol (2020) 146(9):2319–27. doi: 10.1007/s00432-020-
03295-7

85. Zhang Y, Liu YD, Luo YL, Liu BL, Huang QT, Wang F, et al. Prognostic
Value of Lymphocyte Activation Gene-3 (LAG-3) Expression in Esophageal
Squamous Cell Carcinoma. J Cancer (2018) 9(22):4287–93. doi: 10.7150/
jca.26949

86. Zheng Y, Li Y, Lian J, Yang H, Li F, Zhao S, et al. TNF-Alpha-Induced Tim-3
Expression Marks the Dysfunction of Infiltrating Natural Killer Cells in
Frontiers in Immunology | www.frontiersin.org 13
Human Esophageal Cancer. J Transl Med (2019) 17(1):165. doi: 10.1186/
s12967-019-1917-0

87. Xie J, Wang J, Cheng S, Zheng L, Ji F, Yang L, et al. Expression of Immune
Checkpoints in T Cells of Esophageal Cancer Patients. Oncotarget (2016) 7
(39):63669–78. doi: 10.18632/oncotarget.11611

88. Zhao JJ, Zhou ZQ, Wang P, Chen CL, Liu Y, Pan QZ, et al. Orchestration of
Immune Checkpoints in Tumor Immune Contexture and Their Prognostic
Significance in Esophageal Squamous Cell Carcinoma. Cancer Manag Res
(2018) 10:6457–68. doi: 10.2147/cmar.S181949

89. Zhao K, Ma L, Feng L, Huang Z, Meng X, Yu J. CD155 Overexpression
Correlates With Poor Prognosis in Primary Small Cell Carcinoma of the
Esophagus. Front Mol Biosci (2020) 7:608404. doi: 10.3389/fmolb.
2020.608404

90. Chen L, Chen J, Xu B, Wang Q, Zhou W, Zhang G, et al. B7-H3 Expression
Associates With Tumor Invasion and Patient's Poor Survival in Human
Esophageal Cancer. Am J Transl Res (2015) 7(12):2646–60.

91. Wang L, Cao NN, Wang S, Man HW, Li PF, Shan BE. Roles of
Coinhibitory Molecules B7-H3 and B7-H4 in Esophageal Squamous Cell
Carcinoma. Tumour Biol (2016) 37(3):2961–71. doi: 10.1007/s13277-015-
4132-5

92. Chen Z, Cao K, Zhang J, Liu Z, Lu L, Qi B, et al. Concomitant Expression of
Inhibitory Molecules for T Cell Activation Predicts Poor Survival in Patients
With Esophageal Squamous Cell Carcinoma. Curr Cancer Drug Targets
(2020) 21:244–53. doi: 10.2174/1568009620666201120152333

93. Ceeraz S, Nowak EC, Noelle RJ. B7 Family Checkpoint Regulators in
Immune Regulation and Disease. Trends Immunol (2013) 34(11):556–63.
doi: 10.1016/j.it.2013.07.003

94. Gavrieli M, Sedy J, Nelson CA, Murphy KM. BTLA and HVEM Cross Talk
Regulates Inhibition and Costimulation. Adv Immunol (2006) 92:157–85.
doi: 10.1016/s0065-2776(06)92004-5

95. Ren X. Immunosuppressive Checkpoint Siglec-15: A Vital New Piece of the
Cancer Immunotherapy Jigsaw Puzzle. Cancer Biol Med (2019) 16(2):205–
10. doi: 10.20892/j.issn.2095-3941.2018.0141

96. Siglec-15: An Attractive Immunotherapy Target. Cancer Discov (2020) 10
(1):7–8. doi: 10.1158/2159-8290.Cd-nb2019-136

97. Sun J, Lu Q, Sanmamed MF, Wang J. Siglec-15 as an Emerging Target for
Next-Generation Cancer Immunotherapy. Clin Cancer Res (2021) 27
(3):680–8. doi: 10.1158/1078-0432.Ccr-19-2925

98. Sanmamed MF, Chen L. A Paradigm Shift in Cancer Immunotherapy: From
Enhancement to Normalization. Cell (2018) 175(2):313–26. doi: 10.1016/
j.cell.2018.09.035

99. Graydon CG, Mohideen S, Fowke KR. LAG3's Enigmatic Mechanism of
Action. Front Immunol (2020) 11:615317. doi: 10.3389/fimmu.2020.615317

100. Yoshida J, Ishikawa T, Doi T, Ota T, Yasuda T, Okayama T, et al. Clinical
Significance of Soluble Forms of Immune Checkpoint Molecules in
Advanced Esophageal Cancer. Med Oncol (2019) 36(7):60. doi: 10.1007/
s12032-019-1285-x

101. Buisson S, Triebel F. LAG-3 (CD223) Reduces Macrophage and Dendritic
Cell Differentiation From Monocyte Precursors. Immunology (2005) 114
(3):369–74. doi: 10.1111/j.1365-2567.2004.02087.x
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